用户名: 密码: 验证码:
镁合金表面磁控溅射沉积Cr基涂层的结构与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg合金是未来最有潜力的结构材料之一,但表面质软和易腐蚀是需要解决的重要问题。虽然当前应用在Mg合金上的表面处理技术改善了Mg合金表面的性能,但所制备的涂层在结合性能、摩擦磨损以及机械性能均不能满足Mg合金在关键零部件领域的应用。磁控溅射是目前主流的PVD表面处理技术之一,制备的涂层具有结合性能强和致密度高的优点;所需的沉积温度低,可以满足Mg合金低工艺温度的要求。因此,磁控溅射技术沉积硬质涂层为改善Mg合金表面的摩擦磨损提供了一种思路。
     在目前的研究工作中,采用平面磁控溅射技术在Mg合金上沉积CrNx涂层和CrNxOyCz涂层,并通过扫描电镜(SEM)、光电子能谱(XPS)以及X-射线衍射(XRD)等分析技术对涂层的结构特性进行了表征。采用非平衡闭合磁场磁控溅射离子镀技术沉积CrTiAlN涂层,通过透射电镜(TEM)、显微硬度仪以及摩擦磨损实验研究涂层在Mg上的界面结构、机械性能以及摩擦磨损性能。此外,还讨论了柱状晶的生长和表面轮廓的演化特征。主要研究结果如下:
     ①CrNx涂层的结构特性取决于沉积的工艺,包括衬底温度、N2浓度、靶电流密度以及衬底偏压。沉积速度是电流密度的二次增长函数关系,而增加的N2含量导致沉积速度呈指数的衰减。在Mg合金上的CrNx涂层随着N2浓度的增加则趋向于形成更为开放的边界。
     ②CrN涂层的沉积涉及到Cr桥接层、CrNx过渡层以及化学比的CrN层。Cr膜在镁合金上的柱状生长起源于网状膜,CrN涂层的柱状生长机制包括遮蔽和吞并。面内平均直径和粒度的方差σ2均与厚度呈线性关系,表面的粗糙度值与厚度呈现指数的关系。
     ③衬底表面轮廓在涂层表面的演化取决于涂层的厚度,表面轮廓随着涂层的增厚趋于平滑。由于相内粗化,表面粗糙度随着涂层的增厚而增加,同时偏置功率的增加也会导致表面轮廓的偏差减小。CrNx涂层的表面粗糙度与N原子浓度呈线性关系,与厚度呈指数关系。
     ④CrNxOyCz涂层为柱状生长,涂层中含有CrN、Cr2N、Cr3C2、Cr2O3、CrO2以及CrNxOy相;污染或氧化的O和C原子浓度在表面的深度分布服从衰减的一阶指数函数,涂层中的Cr3C2和Cr2N属于非稳定相。涂层的摩擦磨损特性比CrNx涂层的要差。
     ⑤AZ31-Mg合金的标准磨损率SWR达到1055×10-15m3·N-1·m-1,而在Mg合金上的CrTiAlN涂层的SWR只有2.4×10-15m3·N-1·m-1。偏压在-50V时CrTiAlN涂层的结合力达到10N。
     ⑥当在中N2水平和衬底偏压为-55V时,CrTiAlN涂层和摩擦副WC-Co6%球之间的磨损最小,摩擦系数能够稳定在0.2-0.3。CrTiAlN/MoS2涂层的摩擦磨损性能比CrTiAlN涂层明显改善,滑动摩擦循环次数Nc达到70000次,摩擦系数能够稳定在0.2-0.35之间。
It will be one of the prevalent structure materials in future for Mg alloy, which need to be treated due to soft surface and lower ability of corrosion resistance. Although the surface treatment technologies applied in Mg alloy have improved surface performance, adhesion force, frictional wear and mechanical property can not satisfy demand which Mg alloy is applied in key parts area. At present magnetron sputtering is one of the mainstream PVD (physical phase deposition) technologies, and the coating deposited demonstrated high adhesion force and density at lower deposition temperature. So, it proposed a method that the hard coatings were deposited by magnetron sputtering.
     In present research, the CrNx and CrNxOyCz coatings on Mg alloy were deposited by planner magnetron sputtering and the structure property of coatings were characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The CrTiAlN coatings were deposited by closed field unbalanced magnetron sputtering ion plating (CFUBMS), and the structure, frictional wear and mechanical property were characterized by transmission electron microscope (TEM), frictional wear tester (ST3001) and microhardness tester, respectively. Moreover, the growth of columnar crystal and evolution of surface profile were discussed, the main results are as follows:
     ①Structure property of CrNx coatings depends on the technological parameters which include subastrate temperature, N2 content, current density of target and bias voltage of substrate. Deposition rate shows the quadratic increasing function of current density, while it demonstrates exponentially decay with increasing N2 content. The CrNx coatings on Mg alloy tend to form columnar crystal with open boundary with increasing in N2 content.
     ②Deposition of CrNx coatings is related to bridged Cr layer, transition CrNx layer and atomic CrN layer. The columnar growth of Cr film on Mg alloy originates from meshy growth. Growth of CrN coating on Mg alloy includes shadow and merger growth. The in-plane average diameter and variance of grain size (σ2) indicate linear growth with thickness increasing, and surface roughness presents exponential growth.
     ③Surface profile of coating which was affected by substrate surface depends on coating thickness, and tends to smooth with coating thickening if the roughness of in-phase is omitted. Surface roughness increases with film thickness thickening for in-phase roughness, and the increased bias power will result in decrease of surface roughness. It shows linear function between surface roughness of CrNx coatings and N atomic concentration, and exponential relationship between one and thickness.
     ④The CrNxOyCz coatings deposited in reactive atmosphere reveals columnar growth, several different species occur, including CrN, Cr2N, Cr3C2, Cr2O3, CrO2 and CrNxOy. The profile concentration Oxygen and Carbon atoms obey first order exponential decay function, and Cr3C2 and Cr2N belongs to unstable phase. The frictional wear property of CrNxOyCz coating is worse than that of CrNx coatings.
     ⑤The special wear rate (SWR) of AZ31 arrives at 1055×10-15m3·N-1·m-1, while that of CrTiAlN coatings on Mg alloy is 2.4×10-15m3·N-1·m-1. The adhesion force of CrTiAlN coatings at bias voltage (Vb) -50V reaches to 10N.
     ⑥The SWR of CrTiAlN coatings and WC-Co6% ball are the smallest at Vb=-55V and medium N2, and friction coefficient can stabilize at 0.2-0.3. Frictional wear property of CrTiAlN/MoS2 coating outperforms CrTiAlN coating, cycle index of sliding friction reaches to 70000, and friction coefficient can stabilize at 0.2-0.35.
引文
[1] H. Guo, M. An. Effect of surfactants on surface morphology of ceramic coating fabricated on magnesium alloys bymicroarc oxidation [J]. Thin Solid Films, 2006, 500:186-189.
    [2] H. Duan, K. Du, C. Yan. Electrochemical corrosionbehavior of composite coatings of sealedMAO film on magnesium alloyAZ91D [J]. Electrochimica Acta, 2006, 51:2898-2908.
    [3] W. Xue, Z. Deng, R. Chen, T. Zhang. Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy [J]. Thin Solid Films, 2000, 372(1-2): 114-117.
    [4] J. Li, H. Cai, B. Jiang. Growth mechanism of black ceramic layers formed by microarc oxidation [J]. Surface and Coatings Technology, 2007, 201(21): 8702-8708.
    [5] J. Liang, B. Guo, J. Tian. Effects of NaAlO2 on structureand corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate-KOH electrolyte [J]. Surface & Coatings Technology, 2005, 199:121-126.
    [6] H. Guo, M. An. Effect of surfactants on surface morphology of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation [J]. Thin Solid Films, 2006, 500: 186-189.
    [7] R. Zhang, D. Shan, E. Han. Development of micro-arc oxidation process to improve corrosion resistance on AZ91 HP magnesium alloy [J]. Trans. Nonferrous Met. Soc., 2006, 16: 685-688.
    [8] B. Rajasekaran, S. Ganesh Sundara Raman, S.V. Joshi, G. Sundararajan. Effect of microarc oxidised layer thickness on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy [J]. International Journal of Fatigue, 2008, 30(7):1259-1266.
    [9] A. K. Mondal, S. Kumar, C. Blawert, Narendra B. Dahotre. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy [J]. Surface and Coatings Technology, 2008, 202(14) 3187-3198.
    [10] Y. Jun, G. P. Sun, S. S. Jia. Characterization and wear resistance of laser surface melting AZ91D alloy [J]. Journal of Alloys and Compounds, 2008, 455(1-2):142-147.
    [11] S. Ignat, P. Sallamand, D. Grevey, M. Lambertin. Magnesium alloys laser (Nd: YAG) cladding and alloying with side injection of aluminium powder [J]. Applied Surface Science, 2004, 225(3):124-134.
    [12] A. S. Khanna, S. Kumari, S. Kanungo, A. Gasser. Hard coatings based on thermal spray and laser cladding [J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(2):485–491.
    [13] Y. Gao, C. Wang, H. Pang, H. Liu, M. Yao. Broad-beam laser cladding of Al–Cu alloy coating on AZ91HP magnesium alloy [J]. Applied Surface Science, 2007, 253:4917–4922.
    [14] V. Ocelík, U. de Oliveira, M. de Boer, J. Th. M. de Hosson. Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties [J]. Surface and Coatings Technology, 2007, 201: 5875–5883.
    [15] J. Xu, W. Liu, M. Zhong. Microstructure and dry sliding wear behavior of MoS2/TiC/Ni composite coatings prepared by laser cladding [J]. Surface & Coatings Technology, 2006, 200: 4227–4232.
    [16] J. E. Gray, B. Luan. Protective coatings on magnesium and its alloys—a critical reviews [J]. Journal of Alloys and Compounds, 2002, 336:88–113.
    [17] T. M. Yue, Q.W. Hu, Z. Mei, H.C. Man. Laser cladding of stainless steel on magnesium ZK60-SiC composite [J]. Materials Letters, 2001, 47:165–170.
    [18] P. Volovitch, J. E. Masse, A. Fabre, L. Barrallier, W. Saikaly. Microstructure and corrosion resistance of magnesium alloy ZE41 with laser surface cladding by Al–Si powder [J]. Surface and Coatings Technology, 2008, 202(20): 4901-4914.
    [19] Y. Gao, C. Wang, M. Yao, H. Liu. The resistance to wear and corrosion of laser-cladding Al2O3 ceramic coating on Mg alloy [J]. Applied Surface Science, 2007, 253(12): 5306-5311
    [20] B. Cantor. Nanocrystalline materials manufactured by advanced solidification processing methods [J]. Material and Nanocrystallines Materials, 1999, 1:143-152.
    [21] C. Christoglou, N. Voudouris, G. N. Angelopoulos, M. Pant, W. Dahl. Deposition of aluminium on magnesium by a CVD process [J]. Surface and Coatings Technology 2004, (184):149-155.
    [22] M. H. Lee, I. Y. Bae, K. J. Kim, K. M. Moon, T. Oki. Formation mechanism of new corrosion resistance magnesium thin films by PVD method [J]. Surface and Coating Technology, 2003, 169-170: 670-674.
    [23] H. Altun, S. Sen. The effect of PVD coatings on the wear behaviour of magnesium alloys [J]. Materials Characterization, 2007, 58: 917–921.
    [24] H. Altun, S. Sen. The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys [J]. Surface & Coatings Technology, 2005, 197: 193–200.
    [25] F. Hollstein, R. Wiedemann, J. Scholz. Characteristics of PVD-coatings on AZ31hp magnesium alloys [J]. Surface & Coatings Technology, 2003, 162:261–268.
    [26] G. Erkens. New approaches to plasma enhanced sputtering of advanced hard coatings [J]. Surface and Coatings Technology, 2007, 201: 4806-4812.
    [27] N. G. Dhere. Recent developments in thin film solar cells [J]. Thin Solid Films, 1990, 193-194: 757-768.
    [28] E. Fortunato, P. Barquinha, A. Pimentel, A. Gon?alves, A. Marques, L. Pereira, R. Martins.Recent advances in ZnO transparent thin film transistors [J]. Thin Solid Films, 2005, 487(1-2): 205-211.
    [29] J. S. Chapin. Sputtering process and apparatus [P]. United States Patent, No: 4166018, 1979, 8, 28.
    [30] J. A. Thornton. Magnetron sputtering: basic physics and application to cylindrical magnetrons [J]. J. Vac. Sci. Technol., 1978, 15(2):171-176.
    [31] R. K. Waits. Planar magnetron sputtering [J]. J. Vac. Sci. Technol., 1978, 15 (2):179-187.
    [32] S. Schiller, U. Heisig, K. Goedicke. Use of the ring gap plasmatron for high rate sputtering [J]. Thin Solid Films, 1977, 40: 327-334.
    [33] S. Logothetidis, I. Alexandrou, S. Kokkou. Optimization of TiN thin film growth with in situ monitoring: the effect of bias voltage and nitrogen flow rate [J]. Surface and Coatings Technology, 1996, 80:66-71.
    [34] K. R. Pollitt, J. C. Robb, D. W. Thomas. Mechanism of sputtering of solid surfaces by ion-impact [J]. Nature, 1978, 272:436–437.
    [35] B. Window, N. Savvides. Unbalanced dc magnetrons as sources of high ion fluxes [J]. J. Vac. Sci. Technol. A , 1986, 4(2):453-456.
    [36] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, F. Milde. Pulsed magnetron sputtering technology [J]. Surface and Coatings Technology, 1993, 61:331–337.
    [37] A. S. Penfold, J. A. Thornton. Electrode type glow discharge apparatus [P], United States Patent: 3884793, 1975, 5, 20.
    [38] A. S. Penfold, J. A. Thornton. Electrode type glow discharge method and apparatus [P], United States Patent: 4030996, 1977, 6, 21.
    [39] S. Schiller, U. Heisig, K. Goedicke. The role of plasmatron/magnetron systems in physical vapor deposition techniques [J]. Thin Solid Films, 1978, 54:33-47.
    [40] J. L. Vossen, W. Kern. Thin film processes. New York: Academic Press, 1978.
    [41] D. G. Teer. Magnetron sputters ion plating [P], United States Patent: 5556519, 1996,9,17.
    [42] J. Musil, M. Mi?ina, D. Hovorka. Planar magnetron sputtering discharge enhanced with radio frequency or microwave magnetoactive plasma [J]. J. Vac. Sci. Technol. A, 1997, 15(4):1999-2006.
    [43] J. Musil, A. Rajsky, A. J. Bell, J. Matou?. High-rate magnetron sputtering [J]. J. Vac. Sci. Technol. A, 1996, 14(4):2187-2191.
    [44] J. Musil. Low-pressure magnetron sputtering [J]. Vacuum, 1998, 50(3-4):363-372.
    [45] S. Kadlec, J. Musil. Low pressure magnetron sputtering and selfsputtering discharges [J]. Vacuum, 1996, 47(3): 307-311.
    [46] J. Heller. Reactive sputtering of metals in oxidizing atmospheres [J]. Thin Solid Films, 1973, 17(2):163-176.
    [47] T. Abe, T. Yamashina. The deposition rate of metallic thin films in the reactive sputtering process [J]. Thin Solid Films, 1975, 30(1):19-27.
    [48] B. Goranchev, V. Orlinov, V. Popova. D.C. cathode sputtering: influence of the oxygen content in the gas flow on the discharge current [J]. Thin Solid Films, 1976, 33(2):173-183.
    [49] J. C. Sellers. The disappearing anode myth strategies and solutions for reactive PVD from single magnetrons [J]. Surf. & Coat. Technology, 1997, 94-95:184-188.
    [50] G. Br?uer, J. Szczyrbowski, G. Teschner. Mid frequency sputtering-a novel tool for large area coating [J]. Thin Solid Films, 1997, 94-95(1):658-662.
    [51] R. S. Nowicki. Properties of rf-sputtered Al2O3 films deposited by planar magnetron [J]. J. Vac. Sci. Technol.,1977, 14:127.
    [52] L. D. Hartsough, P. S. Mcleod. High-rate sputtering of enhanced aluminum mirrors [J]. J. Vac. Sci. Technol.,1977, 14:123.
    [53] L. T. Lamont, F. T. Turner. The role of dc self-bias potential in the control of RF sputtering [J]. J. Vac. Sci. Technol.,1974, 11:47.
    [54] J. Musil, P. Baroch, J. Vl?ek, K. H. Nam, J. G. Han. Reactive magnetron sputtering of thin films: present status and trends [J]. Thin Solid Films, 2005, 475:208–218.
    [55] B. Window, N. Savvides. Charged particle fluxes from planner magnetron sputtering sources [J]. J. Vac. Sci. Technol. A, 1986, 4(2):196-202.
    [56] P. J. Kelly, R. D. Arnell. Magnetron sputtering: a review of recent developments and applications [J]. Vacuum, 2000, 56:159-172.
    [57] I. Petrov, F. Adibi, J. E. Greene, J.-E. Sundgren. Average energy deposited per atom: A universal parameter for describing ion-assisted film growth? [J]. Appl. Phys. Lett., 1993, 63(1): 36-38.
    [58] S. Seo, J. In, H. Chang, J. Han. Effects of substrate bias on electron energy distribution in magnetron sputtering system [J]. PHYSICS OF PLASMAS, 2004, 11(10):4796-4800.
    [59] S. Seo, H. Chang. Anomalous behaviors of plasma parameters in unbalanced direct-current magnetron discharge [J]. PHYSICS OF PLASMAS, 2004, 11(7):3595-3601.
    [60] S. Seo, J. In, H. Chang. Effects of a sheath boundary on electron energy distribution in Ar/He dc magnetron discharges [J]. Journal of Applied Physics, 2004, 96(1):57-64.
    [61] L. I. Maissel, P. M. Schaible. Thin Films Deposited by Bias Sputtering [J]. Journal of Applied Physics, 1965, 36(1):237-242.
    [62] N. Savvides, B. Window. Unbalanced magnetron sputtering ion-assisted deposition andproperty modification of thin films [J]. J. Vac. Sci. Technol. A, 1986, 4(3):504-507.
    [63] N. D. Telling, M. Petty, M. D. Crapper. Simple method for the control of substrate ion fluxes using an unbalanced magnetron [J]. J. Vac. Sci. Technol. A, 1998, 16(1):145-147.
    [64] I. Petrov, F. Adibi, J. E. Greene, W. D. Sproul, W. -D. Münz. Use of an externally applied axial magnetic field to control ion/neutral flux ratios incident at the substrate during magnetron sputter deposition [J]. J. Vac. Sci. Technol. A, 1992, 10(5): 3283-3287.
    [65] P. J. Kelly, R. D. Arnell. Development of a novel structure zone model relating to the closed-field unbalance magnetron sputtering system [J]. J. Vac. Sci. Technol. A, 1998, 16(5):2858-2869.
    [66] J. Musil, S. Kadlec. Reactive sputtering of TiN films at large substrate to target distances [J]. Surface and Coatings Technology, 1990, 40(5):435-444.
    [67] S. Schiller, U. Heisig, K. Goedicke. Alternating ion plating-a method of high-rate ion vapor deposition [J]. J. Vac. Sci. Technol., 1975, 12 (4):815-818.
    [68] S. Schiller, U. Heisig, K. Goedicke. On the use of ring gap discharges for high-rate vacuum coating [J]. J. Vac. Sci. Technol., 1977, 14 (3):858-864.
    [69] D. M. Mattox, J. E. McDonald. Interface Formation during Thin Film Deposition [J]. Journal of Applied Physics, 1963, 34(8):2493-2494.
    [70] F. Vaz, L. Rebouta, Ph. Goudeau, T. Girardeau, J. Pacaud, J. P. Riviére, A. Traverse. Structural transitions in hard Si-based TiN coatings: the effect of bias voltage and temperature [J]. Surface and Coatings Technology, 2001, 146–147:274–279.
    [71] D. B. Lewis, Q. Luo, P. Eh. Hovsepian, W. -D. Münz. Interrelationship between atomic species, bias voltage, texture and microstructure of nano-scale multilayers [J]. Surface and Coatings Technology, 2004, 184:225–232.
    [72] P. J. Kelly, R. D. Arnell. The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system [J]. Surface and Coatings Technology, 1998, 108–109: 317–322.
    [73] H. Shimamura, S. Fujita, M. Sakata, T. Kamei, S. Kobayashi. Aluminum sputtering with intermittent pulse bias application [J]. J. Vac. Sci. Technol. A, 1989, 7: 1202.
    [74] K. E. Cooke, J. Hamsphire, W. Southall, D. G. Teer. The industrial application of pulsed DC bias power supplies in closed field unbalanced magnetron sputter ion plating [J]. Surface and Coatings Technology, 2004, 177–178:789–794.
    [75] M. S. Wong, W. J. Chia, P. Yashar, J. M. Schneider, W. D. Sproul, S. A. Barnett. High-rate reactive D.C. magnetron sputtering of ZrOx coatings. Surface and Coatings Technology, 1996, 86/87:381–387.
    [76] P. J. Kelly, O. A. Abu-Zeid, R. D. Arnell, J. Tong. The deposition of aluminium oxide coatings by reactive unbalanced magnetron sputtering [J]. Surface and Coatings Technology, 1996, 86/87:28-32.
    [77] M. ?ada, J. W. Bradley, G. C. B. Clarke, P. J. Kelly. Measurement of energy transfer at an isolated substrate in a pulsed dc magnetron discharge [J]. Journal of Applied Physics, 2007, 102, 063301.
    [78] J. Bohlmark, M. Lattemann, J. T. Gudmundsson, A. P. Ehiasarian, Y. Aranda Gonzalvo, N. Brenning. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge [J]. Thin Solid Films, 2006, 515:1522-1526.
    [79] J. Vl?ek, P. K., K. Burcalová, J. Musil. High-power pulsed sputtering using a magnetron with enhanced plasma confinement [J].The Journal of Vacuum Science and Technology A, 2007, 25(1):42-47.
    [80] P. J. Kelly, R. Hall, J. O’Brien, J. W. Bradley, R. D. Arnell. Studies of mid-frequency pulsed DC biasing [J]. The Journal of Vacuum Science and Technology A, 2001, 19(6):2856-2865.
    [81] Y. M. Kim, M. J. Jung, S. G. Oh, J. G. Han. Spatially resolved optical emission spectroscopy of pulse magnetron sputtering discharge [J]. Thin Solid Films, 2005, 475:91– 96.
    [82] M. Rubio-Roy, C. Corbella, J. Garcia-Céspedes, M. C. Polo, E. Pascual, J. L. Andújar, E. Bertran. Diamond like carbon films deposited from graphite target by asymmetric bipolar pulsed-DC magnetron sputtering [J]. Diamond & Related Materials, 2007, 16: 1286–1290.
    [83] P. Sunal, R. Messier, M. W. Horn. Reactive co-deposition of TiNx/SiNx nanocomposites using pulsed direct current magnetron sputtering [J]. Thin Solid Films, 2006, 515:2185–2191.
    [84] J. Lee, S. Tien, Y. Kuo, C. Chen. The mechanical properties evaluation of the CrN coatings deposited by the pulsed DC reactive magnetron sputtering [J]. Surface and Coatings Technology, 2006, 200:3330–3335.
    [85] M. Lattemann, A. P. Ehiasarian, J. Bohlmark, P. ?. O. Persson, U. Helmersson. Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel [J]. Surface and Coatings Technology, 2006, 200:6495–6499.
    [86] J. Lin, B. Mishra, J. J. Moore, W. D. Sproul, J. A. Rees. Effects of the substrate to chamber wall distance on the structure and properties of CrAlN films deposited by pulsed-closed field unbalanced magnetron sputtering (P-CFUBMS) [J]. Surface and Coatings Technology, 2007, 201:6960–6969.
    [87] J. A. Thornton. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings [J]. J. Vac. Sci. Technol. 11, 1974, 4:666-670.
    [88] S. Craig, G. L. Harding. Effects of argon pressure and substrate temperature on the structureand properties of sputtered copper films [J]. J. Vac. Sci. Technol., 1981, 19 (2):205-215.
    [89] L. Hultman, W.–D. Münz, J. Musil, S. Kadlec, I. Petrov, J. E. Greene. Low energy (-100eV) ion irradiation during growth of TiN deposited by reactive magnetron sputtering: Effects of ion flux on film microstructure [J]. J. Vac. Sci. Technol. A, 1991, 9 (3):434-438.
    [90] K. Laing, J. Hampshire, D. Teer, G. Chester. The effect of ion current density on the adhesion and structure of coatings deposited by magnetron sputter ion plating [J]. Surface and Coatings Technology, 1999, 112:177–180.
    [91] C. Reinhard, A. P. Ehiasarian, P. Eh. Hovsepian. CrN/NbN superlattice structured coatings with enhanced corrosion resistance achieved by high power impulse magnetron sputtering interface pre-treatment. Thin Solid Films, 2007, 515:3685–3692.
    [92] R. Messier, A. P. Giri, R. A. Roy. Revised structure zone model for thin film physical structure [J]. J. Vac. Sci. Technol. A, 1984, 9 (3):500-503.
    [93] J. M. Anton, B. Mishra, J. J. Moore, J. A. Rees, W. D. Sproul. Investigation of processing parameters for pulsed closed-field unbalanced magnetron co-sputtered TiC–C thin films [J]. Surface and Coatings Technology, 2006, 201(7): 4131-4135.
    [94] W. D. Sproul, P. J. Rudnik, M. E. Graham, S. L. Rohde. High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system [J]. Surface and Coatings Technology, 1990, 43-44:270-278.
    [95] D. E. Harrison. Theory of the sputtering Process [J]. Physical Review, 1961,102(6): 1473-1480.
    [96] M. M. Jakas, E. M. Bringa. Thermal-spike theory of sputtering: The influence of elastic waves in a one-dimensional cylindrical spike [J]. Physical Review B, 2000, 62:824-830.
    [97] A. Wucher, Z. ?roubek. Formation of metastable excited states during sputtering of transition metals [J]. Physical Review B, 1997, 55:780-786.
    [98] V. Vancoppenolle, P.–Y. Jouan, M. Wauterelet, J.–P. Dauchot, M. Hecq. Glow discharge mass spectrometry study of the deposition of TiO2 thin films by direct current reactive magnetron sputtering of a Ti target [J]. J. Vac. Sci. Technol. A, 1999, 17: 3317-3321.
    [99] E. B. Henschke. New Collision Theory of Cathode Sputtering of Metals at Low Ion Energies [J]. Physical Review, 1957, 106: 737-753.
    [100] D. E. Harrison, G. D. Magnuson. Sputtering Thresholds [J]. Physical Review, 1961, 122:1421-1430.
    [101] I. Pázsit, A. K. Prinja. Theory of sputter yield fluctuation and calculation of the variance [J]. Physical review B, 1995, 52: 877-883.
    [102] D. S. Simons, P. Chi. Secondary ion yield changes in Si and GaAs due to topography changesduring O2+ or Cs + ion bombardment [J]. J. Vac. Sci. Technol. A, 1988,6(1): 76-80.
    [103] Z. Wroński, J. Sielanko. Glow discharge sputtering of two-component cathode target [J]. Vacuum, 2005, 78:605–610.
    [104] M. H. Shapiro, P. Lu. The influence of the ion–atom potential on molecular dynamics simulations of sputtering [J]. Nuclear Instruments and Methods in Physics Research B, 2004, 215:326–336.
    [105] M. A. Makeev, A. Barabási. Effect of surface morphology on the sputtering yields. I. Ion sputtering from self-affine surfaces [J].Nuclear Instruments and Methods in Physics Research B, 2004, 222:316–334.
    [106] M. A. Makeev, A. Barabási. Effect of surface morphology on the sputtering yields. II. Ion sputtering from self-affine surfaces [J]. Nuclear Instruments and Methods in Physics Research B, 2004, 222:335–354.
    [107] W. D. Westwood, S. Maniv, P. J. Scanlon. The current-voltage characteristic of magnetron sputtering systems [J]. Journal of Applied Physics, 1983, 54(12): 6841-6846.
    [108] S. Maniv, W. D. Westwood, P. J. Scanlon. Calculation of the current-voltage-pressure characteristics of dc diode sputtering discharges [J]. Journal of Applied Physics, 1982, 53(2): 856-860.
    [109] E. Eser, R. E. Ogilvie, K. A. Taylor. Measurement of plasma discharge characteristics for sputtering applications [J]. J. Vac. Sci. Technol. A, 1978, 15: 199-202.
    [110] I. V. Svadkovski, D. A. Golosov, S. M. Zavatskiy. Characterization parameters for unbalanced magnetron sputtering systems [J].Vacuum, 2003, 68:283–290.
    [111] F. Shinoki, A. Itoh. Mechanism of RF reactive sputtering [J]. Journal of Applied Physics, 1975, 46(8):3381-3384.
    [112] J.-E. Sundgren, B. -O. Johansson, S.-E. Karlsson. Kinetics of nitride formation on titanium targets during reactive sputtering [J]. surface science, 1983,128:265-280.
    [113] W. D. Sproul, M. E. Graham, M. Wong, P. J. Rudnik. Reactive D.C. magnetron sputtering of the oxides of Ti, Zr and Hf [J]. surface and coatings technology, 1997, 89:10-15.
    [114] S. Berg, T. Nyberg. Fundamental understanding and modeling of reactive sputtering processes [J]. Thin Solid Films, 2005, 476: 215-230.
    [115] S. Hofmann. Target and substrate surface reaction kinetics in magnetron sputtering of nitride coatings [J]. Thin Solid Films,1990, 191(2):335-348.
    [116] S. Zhu, F. Wang, W. Wu. Simulations of reactive sputtering with constant voltage power supply [J]. Journal of Applied Physics, 1998, 84(11): 6399-6408.
    [117] S. Zhu, F. Wang. Abnormal steady states in reactive sputtering [J]. J. Vac. Sci. Technol. A,1999, 17(1):70-76.
    [118] A. G. Spencer, R. P. Howson, R. W. Lewin. Pressure stability in reactive magnetron sputtering [J]. Thin Solid Films, 1988, 158(1):141-149.
    [119] B. Ku?akowska-Pawlak, J. Walkowicz. Study on reactive sputtering of titanium in the linear magnetron discharge [J].Surface and Coatings Technology, 2006, 201(6):3571-3576.
    [120] S. Maniv, W. D. Westwood. Oxidation of an aluminum magnetron sputtering target in Ar/O2 mixtures [J]. Journal of Applied Physics, 1980, 51(1):718-725.
    [121] E. Kusano. An investigation of hysteresis effects as a function of pumping speed, sputtering current, and O2/Ar ratio, in Ti-O2 reactive sputtering processes[J]. Journal of Applied Physics, 1991, 70 (11):7089-7096.
    [122] S. Berg, H. -O. Blom, T. Larsson, C. Nender. Modeling of reactive sputtering of compound materials [J]. J. Vac. Sci. Technol. A, 1987, 5: 202-207.
    [123] N. Martin, C. Rousselot. Instabilities of the reactive sputtering process involving one metallic target and two reactive gases [J]. J. Vac. Sci. Technol. A, 1999, 17(5):2869-2878.
    [124] P. Sigmund. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets [J]. Physical Review. 1969, 184:383-184.
    [125] P. H. Mayrhofer, F. Kunc, J. Musil, C. Mitterer. A comparative study on reactive and non-reactive unbalanced magnetron sputters deposition of TiN coatings [J]. Thin Solid Films, 2002, 415:151–159.
    [126] V. Bellido-González, B. Daniel, J. Counsell, D. Monaghan. Reactive gas control of non-stable plasma conditions [J]. Thin Solid Films, 2006, 502:34–39.
    [127] G. M. Turner. Monte Carlo calculations of gas rarefaction in a magnetron sputtering discharge [J]. J. Vac. Sci. Technol. A, 1995, 13(4): 2161-2169.
    [128] A. Billard, D. Mercs, F. Perry, C. Frantz. Influence of the target temperature on a reactive sputtering process [J]. Surface and Coatings Technology, 1999, 116–119:721–726.
    [129] T. J. Vink, J. B. A. D. van Zon. Stress in sputtered Mo thin films: The effect of the discharge voltage [J]. J. Vac. Sci. Technol. A, 1991, 1(1):124-127.
    [130] M. W. Thompson, B. W. Farmery, P. A. Newson. A mechanical spectrometer for analysing the energy distribution of sputtered atoms of copper or gold [J]. Philosophical Magazine, 1968, 152(18):361-376.
    [131] A. Gras-Marti, J. A. Valles-Abarca. Slowing down and thermalization of sputtered particle fluxes: Energy distributions [J]. Journal of Applied Physics, 1983, 54(2):1071-1075.
    [132] K. Meyer, I. K. Schuller, C. M. Falco. Thermalization of sputtered atoms [J]. Journal of Applied Physics, 1981, 52(9):5803-5805.
    [133] A. Kersch, W. Morokoff, Chr. Werner. Selfconsistent simulation of sputter deposition with the Monte Carlo method [J]. Journal of Applied Physics, 1994, 75(4):2278-2285.
    [134] Y. Yamamura, M. Ishida. Monte Carlo simulation of the thermalization of sputtered atoms and reflected atoms in the magnetron sputtering discharge [J]. Journal of Vacuum Science and Technology A, 1995, 13(1):101-112.
    [135] G. M. Turner, I. S. Falconer, B. W. James, D. R. McKenzie. Monte Carlo calculation of the thermalization of atoms sputtered from the cathode of a sputtering discharge [J]. Journal of Applied Physics, 1989, 65(9): 3671-3679.
    [136] V. Yu. Kulikovsky. The influence of the discharge power on film composition obtained by reactive magnetron sputtering [J]. Surface and Coatings Technology, 1997, 94-95: 428-432.
    [137] C. V. Thompson. Structure evolution during processing of polycrystalline films [J]. Annu. Rev. Mater. Sci., 2000, 30: 159–90.
    [138] K. Müller. Dependence of thin-film microstructure on deposition rate by means of a computer simulation [J]. Journal of Applied Physics, 1985, 58(7): 2573-2576.
    [139] C. V. Thompson. On the grain size and coalescence stress resulting from nucleation and growth processes during formation of polycrystalline thin films [J]. Journal of Materials Research, 1999, 14:3164.
    [140] C. V. Thompson. Grain growth in thin films [J]. Annu. Rev. Mater. Sci., 1990, 30: 245–268
    [141] R. P. Karunasiri, R. Bruinsma, J. Rudnick. Thin film growth and the shadow instability [J]. Phys. Rev. Lett., 1989, 62: 788-791.
    [142] K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara. Oblique-incidence anisotropy of the iron films evaporated at low substrate temperatures [J]. Journal of Magnetism and Magnetic Materials, 1988,73(2):161-166.
    [143] L. Abelmann, C. Lodder. Oblique evaporation and surface diffusion [J]. Thin Solid Films, 1997, 305(1-2):1-21.
    [144] N. Kuratani, A. Ebe, K. Ogata, I. Shimizu, Y. Setsuhara, S. Miyake. Fundamental study of ion-irradiation effects on the columnar growth of chromium films prepared by ion-beam and vapor deposition [J]. J. Vac. Sci. Technol. A, 2001, 19: 153-157.
    [145] P. J. Kelly, R. D. Arnell. Control of the structure and properties aluminum oxide coatings deposited by reactive pulsed magnetron sputtering [J]. Surface and Coatings Technology, 1996, 86-87: 28-32.
    [146] R. Bruinsma, G. Aeppli. Interface Motion and Nonequilibrium Properties of the Random-Field Ising Model [J]. Phys. Rev. Lett. 1984, 52:1547-1550.
    [147] J. Koplik, H. Levine. Interface moving through a random background [J]. Phys. Rev.B, 1985,32:280-292.
    [148] M. Kardar, G. Parisi, Y. Zhang. Dynamic scaling of Growing Interfaces [J]. Phys. Rev. Lett. 1986, 56:889-892.
    [149] A. Mazor, D. J. Srolovitz, P. S. Hagan, B. G. Bukiet. Columnar growth in thin films [J]. Phys. Rev. Lett.1988, 60:424-427.
    [150] A. E. Lita, J. E. Sanchez. Effects of grain growth on dynamic surface scaling during the deposition of Al polycrystalline thin films [J]. Physical review B, 2000, 61, 7692-7699.
    [151] C. Friedrich, G. Berg, E. Broszeit, F. Rick, J. Holland. PVD CrxN coatings for tribological application on piston rings [J]. Surface and Coatings Technology, 1997, 97: 661–668.
    [152] P. Panjan, P. Cvahte, M. ?ekada, B. Navin?ek, I. Urankar. PVD CrN coating for protection of extrusion dies [J]. Vacuum, 2001, 61: 241-244.
    [153] A. Kawana, H. Ichimura, Y. Iwata, S. Ono. Development of PVD ceramic coatings for valve seats [J]. Surface and Coatings Technology, 1996, 86-87: 212-217.
    [154] C. Gautier, H. Moussaoui, F. Elstner, J. Machet. Comparative study of mechanical and structural properties of CrN films deposited by D.C. magnetron sputtering and vacuum arc evaporation [J]. Surface and Coatings Technology, 1996, 86-87: 254-262.
    [155] W. Herr, B. Matthes, E. Broszeit, M. Meyer, R. Suchentrunk. Influence of substrate material and deposition parameters on the structure, residual stresses hardness and adhesion of sputtered CrxNy hard coatings [J]. Surface and Coatings Technology, 1993, 57: 428-433.
    [156] P. Hones, R. Sanjinés, F. Lévy. Characterization of sputter-deposited chromium nitride thin films for hard coatings [J]. Surface and Coatings Technology, 1997, 94-95: 398-402.
    [157] C. Rebholz, H. Ziegele, A. Leyland, A. Matthews. Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering [J]. Surface and Coatings Technology, 1999, 115: 222-229.
    [158] G. Bertrand, H. Mahdjoub, C. Meunier. A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings [J]. Surface and Coatings Technology, 2000, 126: 199-209.
    [159] J. Creus, H. Idrissi, H. Mazille, F. Sanchette, P. Jacquot. Improvement of the corrosion resistance of CrN coated steel by an interlayer [J]. Surface and Coatings Technology, 1998, 107: 183–190.
    [160] B. Navin?ek, P. Panjan, I. Milo?ev. Industrial applications of CrN (PVD) coatings, deposited at high and low temperature [J]. Surface and Coatings Technology, 1997, 97: 182-191.
    [161] T. Nyberg, C. Nebder, S. Berg. Copposition control by current modulation in dc-reactive sputtering [J]. Thin Solid Films, 2005, 476: 215-230.
    [162] W. D. Sproul. High rate reactive sputtering process control [J]. Surface and Coatings Technology, 1987, 33: 73 -81.
    [163] K. H. Nam, M. J. Jung, J. G. Han. A study on the high rate deposition of CrNx films with controlled microstructure by magnetron sputtering [J]. Surface and Coatings Technology, 2000, 131: 222-227.
    [164] Z. B. Zhao, Z. U. Rek, S.M.Yalisove, J. C. Bilello. Nanostructured chromium nitride films with a valley of residual stress [J]. Thin Solid Films, 2005, 472: 96-104.
    [165] Z. Han, J. Tian, Q. Lai, X. Yu, G. Li. Effect of N2 partial pressure on the microstructure and mechanical properties of magnetron sputtered CrNx films [J]. Surface and Coatings Technology, 2003, 162:189-193.
    [166] M. -A. Djouadi, C. Nouveau, O. Banakh, R. Sanjinés, F. Lévy, G. Nouet. Stress profiles and thermal stability of CrxNy films deposited by magnetron sputtering [J]. Surface and Coatings Technology, 2002, 151-152: 510-514.
    [167] R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim, Y. Lu. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel [J]. Corrosion Science, 1990,31: 179-190.
    [168] B. Stypula, J. Stoch. The characterization of passive films on chromium electrodes by XPS [J]. Corrosion Science, 1994, 36: 2159-2167.
    [169] A. M. Beccaria, G. Castello, G. Poggi. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. British Corrosion Journal, 1995, 30( 4): 283-287.
    [170] K. Merritt, M. Millard, R. S. Wortman, S. A. Brown. XPS Analysis of 316 LVM Corroded in Serum and Saline [J]. BIOMAT. MED. DEV. ART. ORG., 1983, 11(1) 115-124.
    [171] G. Latha, N. Rajendran, S. Rajeswari. Influence of alloying elements on the corrosion performance of alloy 33 and alloy 24 in seawater [J]. Journal of Materials Engineering and Performance, 1997,6(6):743-748.
    [172] O. Nishimura, K. Yabe, M. Iwaki. X-ray photoelectron spectroscopy studies of high-dose nitrogen ion implanted-chromium: a possibility of a standard material for chemical state analysis [J]. Journal of Electron Spectroscopy and Related Phenomena, 1989, 49: 335-442.
    [173] I. Milo?ev, H.-H. Strehblow, B. Navin?ek. Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation [J]. Thin Solid Films, 1997, 303:246-254.
    [174] I. L. Singer, J. S. Murday. Chemical state of ion- implanted nitrogen in Fe18Cr8Ni steel [J]. J. Vac. Sci. Technol., 1980, 17(1):327-329.
    [175] C. A. Kovac, J.G. Clabes, M. J. Goldberg. Metal–polymer chemistry. II. Chromium–polyimideinterface reactions and related organometallic chemistry [J]. J. Vac. Sci. Technol. A, 1988, 6(3): 991-996.
    [176] A. Lippitz, T. Hübert. XPS investigations of chromium nitride thin films [J]. Surface and Coatings Technology, 2005, 200: 250-253.
    [177] CH. Cardinaud, G. Lemperiere, M.C. Peignon, P.Y. Jouan. Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy [J]. Applied Surface Science, 1993, 68, 595-603.
    [178] D. Güttler, R. Gr?tzschel, W. M?ller. Lateral variation of target poisoning during reactive magnetron sputtering [J]. APPLIED PHYSICS LETTERS, 2007, 90, 263-502.
    [179] R. Mientus, K. Ellmer. Reactive DC magnetron sputtering of elemental targets in Ar/N2 mixtures: relation between the discharge characteristics and the heat of formation of the corresponding nitrides [J]. Surface and Coatings Technology, 1999, 116–119: 1093–1101.
    [180] H. A. Jehn, J. Kim, S. Hofmann. Composition and properties of transition metal nitride thin films (ZrNx, NbNx, MoNx) [J]. Surface and Coatings Technology, 1988, 36: 715-727.
    [181] D. Mao, J. Hopwood. Ionized physical vapor deposition of titanium nitride: A deposition model [J]. J. Appl. Phys., 2004, 96: 820-828.
    [182] F. S. Ohuchi, S. C. Freilich. Metal polyimide interface: A titanium reaction mechanism [J]. J. Vac. Sci. Technol. A, 1986, 4(3) 1039-1045.
    [183] XPS and AES database, http://www.lasurface.com/accueil/index.php.
    [184] R. Sanjinés, P. Hones, F. Lévy. Hexagonal nitride coatings: electron and mechanical properties of V2N, Cr2N andδ-MoN [J]. Thin Solid Films, 1998, 332:225-229.
    [185] M.-A. Djouadi, C. Nouveau, P. Beer, M. Lambertin. CrxNy hard coatings deposited with PVD method on tools for wood machining [J]. Surf .Coat. Technol., 2000, 133-134: 478-483.
    [186] H. Oechsner. Process controlled micro-structural and binding properties of hard physical vapor deposition films [J]. J. Vac. Sci. Technol A., 1998, 16(3):1956-1962.
    [187] J. S. Zabinski, A. A. Voevodin. Recent developments in the design, deposition, and processing of hard coatings [J]. J. V.ac. Sci. Technol. A, 1998, 16(3)1890-1899.
    [188] J. E. Sundgren. Structure and properties of TiN coatings [J]. Thin solid films, 1985, 128(1-2):21-44.
    [189] J. Pelleg, L. Z. Zevin, S. Lungo, N.Croitoru. Reactive-sputter-deposited TiN films on glass substrates [J]. Thin solid films, 1991, 197(1-2):117-128.
    [190] V. V. Serikov, K. Nanbu. Monte Carlo numerical analysis of target erosion and film growth in a three-dimensional sputtering chamber [J]. J. Vac. Sci. Technol. A, 1996, 14: 3108-3123.
    [191] T. Hurkmans, D. B. Lewis, J.S. Brooks, W. -D. Münz. Chromium nitride coatings grown byunbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABSTM) deposition techniques [J]. Surface and Coatings Technology, 1996, 86-87:192-199.
    [192] G. Reiners, M. Griepentrog. Hard coatings on magnesium alloys by sputter deposition using a pulsed D.C. bias voltage [J]. Surface and Coatings Technology, 1995, 76-77: 809-814.
    [193] M. Hawley, I. D. Raistrick, J. G. Beery, R. J. Houlton. Growth mechanism of sputtered films of YBa2Cu3O7 studied by scanning tunneling microscopy [J]. Science, 1991, 251: 1587-1589.
    [194] R. Messier, J. E. Yehoda. Geometry of thin-film morphology [J]. Journal of Applied Physics, 1985, 58(10):3739-3746.
    [195] G. S.Bales, A. Zangwill. Growth dynamics of sputter deposition [J]. Physical review letters, 1989, 63: 692.
    [196] L. E. Shikrot, D. J. Srolovitz, J. Tersoff. Dynamically stable growth of strained-layer superlattice [J]. Physical review letters, 2000, 77(2): 304-306.
    [197] C. Tang, S. Alexander, R. Bruisma. Scaling theory for the growth of amorphous films [J]. Physical review letters, 1990, 64: 772-775.
    [198] P. Keblinski, A. Maritan, F. Toigo, R. Messier, J. Banavar. Continuum model for the growth of interfaces [J]. Physical review E, 1996, 53: 759-778.
    [199] J. L. Zubimendi, M. E. Vela, R. C. Salvarezza, L. Vázquez, J. M. Vara, A. J. Arvia. Fractal to nonfractal behavior of vapor-deposited gold surfaces and the relationship to the substrate temperature [J]. Physical review E, 1994, 50: 1367-1371.
    [200] I. Milo?ev, H.-H. Strehblow, B. Navin?ek, M. Metiko -Hukovi . Electrochemical and thermal oxidation of TiN coatings studied by XPS [J]. Surface and Interface Analsys, 1995, 23: 529-539.
    [201] P. Marcus, M. E. Bussell. XPS study of the passive films formed on nitrogen-implanted austenitic stainless steels [J]. Applied Surface Science,1992, 59(1):7-21.
    [202] P. J. Kelly, R. D. Arnell. Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering [J]. J. Vac. Sci. Technol. A, 1999, 17(3): 945-953.
    [203] F. Lai, L. Lin, Z. Huang, R. Gai, Y. Qu. Effect of thickness on the structure, morphology and optical properties of sputter deposited Nb2O5 films [J]. Applied Surface Science, 2006, 253: 1801–1805.
    [204] A. E. Lita, John E. Sanchez. Characterization of surface structure in sputtered Al films: Correlation to microstructure evolution [J]. J. Appl. Phys., 1999: 85: 876-882.
    [205] J. E. Palmer, C. V. Thompson, H. I. Smith. Grain growth and grain size distributions in thin germanium films [J]. J. Appl. Phys. 1987, 62: 2492-2497.
    [206] Huajian GAO, William D. Nix. Surface roughness of heteroepitaxial thin films [J]. Annu. Rev.Mater. Sci.,1999, 29: 173-209.
    [207] Cheng-Hsin Chiu, GAO Huajian. Stress singularities along a cycloid rough surface [J]. International Journal of Solids and Structures, 1993, 30: 2983-3012.
    [208] W. W. Mullins. Theory of Thermal Grooving [J]. Journal of Applied Physics, 1957, 28: 333-339.
    [209] W. W. Mullins, R. F. Sekerka. Stability of a Planar Interface during Solidification of a Dilute Binary Alloy [J]. Journal of Applied Physics, 1964, 35: 444-451.
    [210] D. J. Srolovitz. On the stability of surfaces of stressed solids [J]. Acta Metallurgica, 1989, 37(2): 621-626.
    [211] Huajian GAO. Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure [J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 741-772.
    [212] Cheng-Hsin Chiu, Huajian GAO. A Numerical Study of Stress Controlled Surface Diffusion during Epitaxial Film Growth [J]. Materials research Symposium Proceedings, 1995, 356: 33-44.
    [213] Huajian GAO. Stress concentration at slightly undulating surfaces [J]. Journal of the Mechanics and Physics of Solids, 1991, 39: 443-458.
    [214] F. Family, T. Vicsek. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model [J]. J. Phys. A: Mathematical and General, 1985, 18, 75-81.
    [215] R. Mientus, R. Gr?tschel, K. Ellmer. Optical and electronic properties of CrOxNy films, deposited by reactive DC magnetron sputtering in Ar/N2/O2(N2O) atmospheres [J]. Surface and Coatings Technology, 2005, 200: 341-345.
    [216] M. ?ekada, P. Panjan, M. Ma?ek, P. ?míd. Comparison of structural and chemical properties of Cr-based hard coatings [J]. Surface and Coatings Technology, 2002, 151–152:31–35.
    [217] St. Collard, H. Kupfer, G. Hecht, W. Hoyer, H.Moussaoui. The reactive magnetron deposition of CrNxOy films: first results of property investigations [J]. Surface and coatings technology, 1999, 112: 181–184.
    [218] J. Almera, M. Odén, G. H?kansson. Microstructure, stress and mechanical properties of arc-evaporated Cr-C-N coatings [J]. Thin Solid Films, 2001, 385: 190-197.
    [219] M. ?ekada, M. Ma?ek, D. K. Merl, P. Panjan. Properties of Cr(C, N) hard coatings deposited in Ar–C2H2–N2 plasma [J]. Thin Solid Films, 2003, 433: 174–179.
    [220] T. Suzuki, H. Saito, M. Hirai, H. Suematsu, W. Jiang, K. Yatsui. Preparation of Cr(Nx,Oy) thin films by pulsed laser deposition [J]. Thin Solid Films, 2002, 407: 118-121.
    [221] T. Suzuki, J. Inoue, H. Saito, M. Hirai, H. Suematsu, W. Jiang, K. Yatsui. Influence of oxygen content on structure and hardness of Cr–N–O thin films prepared by pulsed laser deposition[J]. Thin Solid Films, 2006, 515: 2161-2166.
    [222] P. Wilhartitz, S. Dreer, P. Ramminger. Can oxygen stabilize chromium nitride?—Characterization of high temperature cycled chromium oxynitride [J]. Thin Solid Films, 2004, 447–448: 289-295.
    [223] B. A. Movchan, A. V. Demchishin, G. F. Badilendo, R. F. Bunshah, C. Sans, C. Deshpandey, H. J. Doerr. Structure-property relationships in microlaminate TiC/TiB2 condensates [J]. Thin solid films, 1982, 97: 215.
    [224] H. Holleck. Material selection for hard coatings [J]. J. Vac. Sci. Technol. A, 1986, 6: 2661-2669.
    [225] U. Helmersson, S. Todorova, S. A. Barnett, J.-E. Sundgren, L. C. Markert, J. E. Greene. Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness [J]. J. Appl. Phys. 1987, 62: 481.
    [226] W. D. Ssproul. New routes in the preparation of mechanically hard films [J]. Science, 1996, 273: 889-892.
    [227] R. Franchy. Growth of thin, crystalline oxide, nitride and oxynitride films on metal and alloy surfaces [J]. Surface Science reports, 2000, 38: 195-294.
    [228] S. Agouram, F. Bodart, G. Terwagne. LEEIXS and XPS studies of reactive unbalanced magnetron sputtered chromium oxynitride thin films with air [J]. Journal of Electron Spectroscopy and Related Phenomena, 2004, 134: 173–181.
    [229] I. Milo?ev, H.-H. Strehblow, B. Navin?ek. XPS in the study of high-temperature oxidation of CrN and TiN hard coatings [J]. Surface and Coatings Technology, 1995, 74-75: 897-902.
    [230] H. Schmiers, J. Friebel, P. Streubel, R. Hesse, R. K?psel. Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis [J]. Carbon, 1999, 37: 1965-1978.
    [231] Z. Zhang, X. Zhang, T. Zheng, H. Yu, Q. Liu. Structural study of compartmental complexes of europium and copper [J]. Journal of Molecular Structure, 1999, 478:23-27.
    [232] R. Nowak, P. Hess, H. Oetzmann, C. Schmidt. XPS characterization of chromium films deposited from Cr(CO)6 at 248 nm [J]. Applied Surface Science, 1989, 43:11-16.
    [233] S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova, I. Rashkov. Fullerene core star-like polymers—1. Preparation from fullerenes and monoazidopolyethers [J]. European Polymer Journal, 1998, 34: 905-915.
    [234] G. M. Wilson, S. O. Saied, S. K. Field. Mechanical and physical properties of C and C–Cr sputter coatings measured at the nano-scale [J]. Thin Solid Films, 2007, 515: 7820-7828.
    [235] T. Wierzchoń, I. Ulbin-Pokorska, K. Sikorski. Corrosion resistance of chromium nitride andoxynitride layers produced under glow discharge conditions [J]. Surface and coatings technology, 2000, 130: 274-279.
    [236] S. Agouram, F. Bodart, G. Terwagne. Characterisation of reactive unbalanced magnetron sputtered chromium oxynitride thin films with air [J]. Surface and coatings technology, 2004, 180–181:164-168.
    [237] H. M. Liao, R. N. S. Sodhi, T. W. Coyle. Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy [J]. J. Vac. Sci. Technol. A, 1993, 11: 2681.
    [238] J. C. Sánchez-López, M. D. Alcalá, C. Real, A. Fernández. The use of X-ray photoelectron spectroscopy to characterize fine AlN powders submitted to mechanical attrition [J]. Nanostructured Materials, 1999, 11(2): 249-257.
    [239] L. Ramqvist, K. Hamrin, G. Johansson, A. Fahlman, C. Nordling. Charge transfer in transition metal carbides and related compounds studied by ESCA [J]. Journal of Physics and Chemistry of Solids, 1969, 30(7) : 1835-1847.
    [240] L. I. Johansson, H. I. P. Johasnsson, K. L. H?kansson. Surface-shifted N 1s and C 1s levels on the (100) surface of TiN and TiC [J]. Phys. Rev. B, 1993, 48: 14520-14523.
    [241] I. Bertóti, M. Mohai, J. L. Sullivan, S. O. Saied. Surface characterisation of plasma-nitrided titanium: an XPS study [J]. Applied Surface Science, 1995, 84: 357-371.
    [242] A. ATRENS, A. S. LIM. ESCA studies of Nitrogen-Containing Stainless Steels [J]. Applied Physics A, 1990, 51: 411-418.
    [243] G. Hopfeng?rtner, D. Borgmann, I. Rademacher, G. Wedler, E. Hums, G. W. XPS studies of oxidic model catalysts: Internal standards and oxidation numbers [J]. Spitznagel. Journal of Electron Spectroscopy and Related Phenomena, 1993, 63: 91-116.
    [244] N. Jiang, Y.G. Shen, H.J. Zhang, S.N. Bao. X.Y. Hou. Superhard nanocomposite Ti–Al–Si–N films deposited by reactive unbalanced magnetron sputtering [J]. Materials Science and Engineering: B, 2006, 135: 1-9.
    [245] M. Bou, J. M. Martin, T. L. Mogne, L. Vovelle. Chemistry of the interface between aluminium and polyethyleneterephthalate by XPS [J]. Applied Surface Science, 1991, 47: 149-161.
    [246] C. D. Wagner, D. E. Passoja, H. A. Six, H. F. Hillery, J. A. Taylor, T. G. Kinisky, W. T. Jansen. Auger and photoelectron line energy relationship in aluminum oxygen and silicon-oxygen compounds [J]. J. Vac. Sci. Technol., 1982, 21(4): 933-944.
    [247] J. M. E. Harper, K. P. Rodbell. Microstructure control in semiconductor metallization [J]. Journal of Vacuum Science & Technology B, 15(4): 763-779.
    [248] G. S. Kim, S. Y. Lee, J. H. Hahn, S. Y. Lee. Synthesis of CrN/AlN superlattice coatings usingclosed-field unbalanced magnetron sputtering process [J]. Surface and Coatings Technology, 2002, 171: 91-95.
    [249] M. Nordin, M. Larsson, S. Hogmark. Mechanical and tribological properties of multilayered PVD TiN/CrN [J]. Wear, 1999, 232: 221-225.
    [250] M. Wong, G. Hsiao, S. Yang. Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings [J]. Surface and Coatings Technology, 2000, 133-134:160-165.
    [251] S. M. Aouadi, D. M. Schultze, S. L. Rohde, K. -C. Wong, K. A. R. Mitchell. Growth and characterization of Cr2N/CrN multilayer coatings [J]. Surface and Coatings Technology, 2001, 140: 269-277.
    [252] K. E. Cooke, S. Yang, C. Selcuk, A. Kennedy, D.G. Teer, D. Beale. Development of duplex nitrided and closed field unbalanced magnetron sputter ion plated CrTiAlN-based coatings for H13 aluminium extrusion dies[J].Surface & Coatings Technology, 2004, 188–189: 697– 702.
    [253] G. S. Fox-Rabinovich, K. Yamomoto, S. C. Veldhuis, A. I. Kovalev, G. K. Dosbaeva. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions [J]. Surface & Coatings Technology, 2005, 200: 1804–1813.
    [254] Y. J. Kim, H. Y. Lee, T. J. Byun, J. G. Han. Microstructure and mechanical properties of TiZrAlN nanocomposite thin films by CFUBMS [J]. Thin Solid Films, 2008, 516: 3651-3655.
    [255] I. Wadsworth, I. J. Smith, L. A. Donohue, W. -D. Münz. Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings [J]. Surface and Coatings Technology, 1997, 94–95: 315–321.
    [256] P. L. Tam, Z. F. Zhou, P. W. Shum, K.Y. Li. Structural, mechanical, and tribological studies of Cr–Ti–Al–N coating with different chemical compositions[J]. Thin Solid Films, 2008, 516(16): 5725-5731.
    [257] Q. Yang, D.Y. Seo, L. R. Zhao. Multilayered coatings with alternate pure Ti and TiN/CrN superlattice [J]. Surface and Coatings Technology, 2004, 177–178: 204–208.
    [258] J. S. Koehler. Attempt to Design a Strong Solid [J]. Phys. Rev. B, 1970, 2: 547.
    [259] M. Kato, I. Mori, L. H. Schwartz. Hardening by spinodal modulated structure [J]. Acta Metallurgica, 1980, 28: 285.
    [260] M. Andson, C. Li. Hall-Petch relations for multilayered materials [J]. Nanostruct. Mater. 1995, 5: 349.
    [261] X. Chu, Scott A. Barnett. Model of superlattice yield stress and hardness enhancements [J]. J. Appl. Phys. 1995, 77: 4403-4411.
    [262] I. Pollini, A. Mosser, J. C. Parlebas. Electronic, spectroscopic and elastic properties of early transition metal compounds [J]. Physics Reports, 2001, 355: 1–72.
    [263] P.W. Shum, W.C. Tam, K.Y. Li, Z.F. Zhou, Y.G. Shen. Mechanical and tribological properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering [J]. Wear, 2004, 257: 1030–1040.
    [264] C. P. Constable, J. Yarwood, P. Hovsepian, L. A. Donohue, D. B. Lewis. Structural determination of wear debris generated from sliding wear tests on ceramic coatings using Raman microscopy [J]. J. Vac. Sci. Technol. A, 20001, 8: 1681-1689.
    [265] J. Lin, J. J. Moore, B. Mishra, M. Pinkas, W. D. Sproul, J.A. Rees. Effect of asynchronous pulsing parameters on the structure and properties of CrAlN films deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) [J]. Surface and Coatings Technology, 2008, 202: 1418–1436.
    [266] M. Guemmaz, A. Mosser, J. -C. Parlebas. Electronic changes induced by vacancies on spectral and elastic properties of titanium carbides and nitrides [J]. Journal of Electron Spectroscopy and Related Phenomena, 2000, 107: 91-101.
    [267] M. Guemmaz, A. Mosser, R. Ahujab, B. Johansson. Elastic properties of sub-stoichiometric titanium carbides: Comparison of FP-LMTO calculations and experimental results [J]. Solid State Communications, 1999, 110: 299-303.
    [268] N. Raykar, V. Gupta, B. Kear, M. Chhowalla, A. B. Mann. Nanomechanics of a high H/E carbonaceous material [J]. Scripta Materialia, 2007, 57: 925–928.
    [269] A. Leyland, A. Matthews. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour [J]. Wear, 2000, 246: 1–11.
    [270] A. Bogaerts, J. Naylor, M. Hatcher, W. J. Jones, R. Mason. Influence of sticking coefficients on the behavior of sputtered atoms in an argon glow discharge: Modeling and comparison with experiment [J]. J. Vac. Sci. Technol. A, 1998, 16: 2400-2410.
    [271] I. Petrov, L. Hulman, J.-E. Sundgren. Polycrystalline TiN films deposited by reactive bias magnetron sputtering: Effects of ion bombardment on resputtering rates, film composition, and microstructure [J]. J. Vac. Sci. Technol. A, 1992, 10: 265-272.
    [272] J. M. Martin, H. Pascal, C. Donnet, Th. Le Mogne, J. L. Loubet, Th. Epicier. Superlubricity of MoS2: crystal orientation mechanisms. Surface and Coatings Technology, 1994, 68-69: 427-432.
    [273] Johann Rechberger, Roland Dubach. Soft physical vapour deposition coatings—a new coating family for high performance cutting tools [J]. Surface and Coatings Technology, 1993, 60(1-3): 584-586.
    [274] V. Bellido-González, A. H. S. Jones, J. Hampshire, T. J. Allen, J. Witts, D. G. Teer, K. J. Ma,David Upton. Tribological behaviour of high performance MoS2 coatings produced by magnetron sputtering [J]. Surface and Coatings Technology, 1997, 97(1-3) 687-693.
    [275] Johann Rechberger, Paul Brunner, Roland Dubach. High performance cutting tools with a solid lubricant physically vapour- deposited coating [J]. Surface and Coatings Technology, 1993, 62(1-3) 393-398.
    [276] J.-PH. Nabot, A. Aubert, R. Gillet, PH. Renaux. Cathodic sputtering for preparation of lubrication films [J]. Surface and Coatings Technology, 1990, 43-44629-639.
    [277] V. Rigato, G. Maggioni, D. Boscarino, L. Sangaletti, L. Depero, V. C. Fox, D. Teer, C. Santini. A study of the structural and mechanical properties of Ti---MoS2 coatings deposited by closed field unbalanced magnetron sputter ion plating [J]. Surface and Coatings Technology, 1999, 116-119: 176-183.
    [278] N. M. Renevier, J. Hamphire, V. C. Fox, J. Witts, T. Allen, D. G. Teer. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings [J]. Surface and Coatings Technology, 2001, 142-144: 67-77.
    [279] Vanessa Fox, Joanne Hampshire, Dennis Teer. MoS2/metal composite coatings deposited by closed-field unbalanced magnetron sputtering: tribological properties and industrial uses [J]. Surface and Coatings Technology, 1999, 112:118-122.
    [280] Michael Lane. Interface Fracture [J]. Annu. Rev. Mater. Res., 2003, 33: 29–54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700