用户名: 密码: 验证码:
基于神经影像的多尺度动态有向连接理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大脑是结构分离却功能整合的平衡体,也是复杂系统中尤为突出的经典实例。人们热衷于利用复杂网络研究人脑这一复杂系统。近年,对复杂脑网络的研究致力于探索其复杂的网络拓扑性质。目前,更多的研究转向于探索复杂脑网络的不同时空尺度的动力学,以及对应的网络结构演化过程。
     从解剖和功能水平来理解脑的复杂网络拓扑性质是迄今为止最大的挑战。除利用解剖结构连接(通常指白质纤维束)外,也发展了很多有效的方法来推断大脑连接。其中比较常用的是基于神经活动的同步相关性来推断的功能连接(Functional connectivity,FC),它是指空间远距离神经生理事件间的统计依赖性。另外一类重要的方法是有效连接(Effective connectivity,EC),它试图去揭示脑区间的有向信息传输机制;近年来,已经发展了许多探测有效连接的算法,基于数据驱动的Granger Causality(GC)就是强有效的工具之一。
     GC计算的一个主要问题在于如何处理多变量冗余和混淆信息;这个问题是GC应用于神经影像数据集的最大障碍,全文上下都围绕这一主线展开。本论文的工作就是致力于发展、运用和严格的验证GC算法,使其更加坚实有效地应用于神经影像数据集,进而最大限度的获取可靠的有向传输信息。此外,我们也将这些算法应用于认知任务或病患等特定问题的数据上,为理解脑功能及其异常机制提供一个新思路。
     本文主要包括三大部分的研究:
     第一部分,利用基于典型相关的因果算法重构小尺度动态网络(少量网络节点,100~102级别)。为了探测多变量/群组/模块间的信息交互,从个体到群组水平、多尺度地挖掘网络底层隐涵的丰富信息,本文提出一种典型相关GC算法,它避免了传统的自回归模型估计,消除了瞬时同步交互效应对于因果推断的影响。经过仿真数据的成功测试后,将其用于分析一位癫痫患者发作间期的脑电数据(同步记录的头皮和深部脑电图),分析结果合理地解释了癫痫发作时相关的临床症状(第二章)。
     生理信号往往表现出非线性动力学特征,它限制了上述线性典型相关GC算法的功效,在此,本文提出利用核函数技巧(将数据投射到更高维的特征空间),推广了典型相关GC算法,使之适合于估计非线性因果交互作用。同样的,在仿真数据上测试其可行性和有效性后,进一步将其运用到癫痫患者的颅内脑电图数据,重构出了既有线性又有非线性因果交互作用的时空连接网络,为探索癫痫发作时的信息传输路径提供一个新的检测手段(第三章)。
     第二部分,关注于处理中尺度网络(大量网络节点,102~103级别)重构时面临的冗余和维数灾难问题。这种网络尺度恰好对应了传统大脑皮层分割的尺度。而大多以功能磁共振成像构造的脑网络是基于分割区域内体素平均的BOLD(blood-oxygenation level-dependent)信号构建起来的;这些信号通常具有样本少、噪声高的特点。用这类信号重构大规模网络,标准的条件GC(conditional GC,CGC)不再适用,本文提出了利用基于携带驱动变量信息的原则来挑选条件变量的技术(即部分条件GC,partially conditioned GC,PCGC)。该方法成功地应用于仿真数据和高密度脑电图。
     此外,在BOLD时间序列上推断动态有向交互时,还面临另外一个关键问题:血液动力学(hemodynamic response function,HRF)混淆效应。针对这个问题,本文提出一种新颖的BOLD-fMRI信号盲去卷积技术(第四章),实现了在隐神经水平上推断区域间的因果交互作用。
     通过联合这两种方法(盲去卷积和PCGC),可以更加有效地推断静息态下的动态有向信息交互;分析结果显示是否去卷积将对大脑网络的局部拓扑特性产生影响。此外,分析结果还显示条件变量集会服从一个稳健的空间分布(具有模块性特征),且这种分布不受扫描时段(session)和重复时间(repetition time,TR,0.645s,1.4s和2.5s)的影响(第五章),为进一步将PCGC推广到体素水平构建有向网络奠定了基础。
     第三部分,大型(海量网络节点,104及以上级别)网络构建,该尺度与fMRI数据中体素的数量级相对应,是典型的海量数据构建复杂大型网络的实例。为此,本文提出一种基于社团划分的PCGC算法,结合去卷积方法,高效地构建出基于体素的隐神经水平有向网络。该算法不仅可以对条件变量降维,还消除了冗余性的影响。通过应用图论方法(如:度、中心性和聚类系数),实现了基于体素水平脑动态网络拓扑特征的刻画(第六章),开启了运用fMRI理解大脑内信息传输的新篇章。
     在搭建完不同尺度有向网络构建的理论之后,我们将其应用到利手的静息态功能磁共振成像数据上,探讨利手是如何塑造静息态人脑的。
The last decade has witnessed a continuous rise in studies of complex networks,which have now become an established paradigm to study complex systems, amongwhich the brain, with its balance between anatomical segregation and functionalintegration, is a most prominent example. Although initial efforts focused ondisentangling the intricate topological properties of complex networks, the interest hasnow shifted towards the study of dynamical processes at different temporal and spatialscales and the co-evolution of network structures with those processes.
     One of the big challenges to date is to understand the non-trivial topologicalorganization of the brain at the structural/anatomical and the functional level. Asidefrom structural connectivity, that typically corresponds to white matter tracts, severalmethods have been employed to infer connectivity in the brain. Functional connectivityis usually inferred on the basis of correlations among neural activity and defined asstatistical dependencies among remote neurophysiological events. Another importantfamily of methods aims to reveal directed information transfer between brain regions(effective connectivity). In recent years, many approaches have been proposed, amongwhich Granger Causality (GC) emerged as a powerful data driven method.
     My thesis work has been dedicated to the development, implementation andrigorous validation of approaches to make GC more solid and amenable to be applied toneuroimaging datasets in order to extract from them the maximum amount of reliableinformation on the directed information transfer among the variables. These approacheswere then extensively applied to data with the goal of answering specific questions andof providing a novel insight on brain function and malfunctioning.
     One of the main issues with GC is how to deal with the redundant and confoundinginformation arising in multivariate datasets. Addressing this issue was a constantconcern throughout all the project.
     In the first part, dynamical networks of moderate size (100~102nodes) werereconstructed by means of a canonical correlation approach to GC. This approach,capable to detect multivariate/groupwise/blockwise information interaction was appliedto simultaneously recorded scalp and depth electroencephalographic (EEG) data fromone epileptic patient during an interictal period (Chapter2).
     Then I extended the capability of canonical correlation to include the estimation ofnonlinear causal interaction using the kernel trick, which projects the data into a higherdimensional feature space and provides a convenient way for generalization of the linearcanonical correlation GC. After testing feasibility and effectiveness tested on simulateddata, the approach was applied to intracranial EEG data in epilepsy, resulting in animproved identification of the spatio-temporal causal connectivity network associated tothe disease (Chapter3).
     In the second part the issue of redundancy and curse of dimensionality wasaddressed for networks of medium size (102~103nodes). This is the typical size of theparcellation of the brain surface, so the natural target of this phase were datasets whosetime series corresponded to the blood-oxygenation level-dependent (BOLD) recorded infunctional magnetic resonance imaging (fMRI) and averaged across brain regions.These datasets are typically noisy and short. For networks of this size, standardconditional GC (CGC) is no longer effective. I applied a technique that identifies thevariables that share common information with each candidate driver to perform partiallyconditioned GC (PCGC). This approach was tested on simulated data and high densityEEG. Furthermore when evaluating dynamical directed interactions from BOLD timeseries, one is faced to another critical issue, namely the confounding effect ofhemodynamic response function (HRF). I addressed this problem by implementing anovel blind deconvolution technique for BOLD-fMRI signal (Chapter4). This jointapproach (deconvolution and PCGC) proved useful in retrieving dynamical interactionsin resting-state fMRI datasets. The results show that the distributions of conditioningvariable follow a stable spatial pattern, across different session and repetition time (TR,0.645s,1.4s and2.5s)(Chapter5).
     In the last part I addressed the reconstruction of large networks (from104nodesonwards). This is the typical number of voxels in a fMRI dataset. I developed anadditional strategy to reduce the number of conditioning variables in a faster and moreefficient way. With this approach it was possible to uncover the architecture of directednetworks at the voxel level and investigate its degree, betweenness and clusteringcoefficient hubs (Chapter6).
引文
[1] D. J. Watts, S. H. Strogatz. Collective dynamics of 'small-world' networks[J]. Nature,1998,393(6684):440-2
    [2] C. Park, S. Y. Kim, Y. H. Kim, et al. Comparison of the small-world topology betweenanatomical and functional connectivity in the human brain[J]. Physica A: Statistical Mechanicsand its Applications,2008,387(23):5958-5962
    [3] D. S. Bassett, E. Bullmore. Small-world brain networks[J]. Neuroscientist,2006,12(6):512-23
    [4] W. Liao, J. Ding, D. Marinazzo, et al. Small-world directed networks in the human brain:multivariate Granger causality analysis of resting-state fMRI[J]. Neuroimage,2011,54(4):2683-94
    [5] O. Sporns, J. D. Zwi. The small world of the cerebral cortex[J]. Neuroinformatics,2004,2(2):145-62
    [6] A. Fornito, A. Zalesky, E. T. Bullmore. Network scaling effects in graph analytic studies ofhuman resting-state FMRI data[J]. Front Syst Neurosci,2010,422
    [7] S. Achard, E. Bullmore. Efficiency and cost of economical brain functional networks[J]. PLoSComput Biol,2007,3(2): e17
    [8] O. Sporns. Network attributes for segregation and integration in the human brain[J]. Curr OpinNeurobiol,2013,23(2):162-71
    [9] K. Amunts, C. Lepage, L. Borgeat, et al. BigBrain: an ultrahigh-resolution3D human brainmodel[J]. Science,2013,340(6139):1472-5
    [10] K. J. Friston. Functional and effective connectivity in neuroimaging: a synthesis[J]. Hum BrainMapp,1994,2(1-2):56-78
    [11] K. J. Friston. Functional and effective connectivity: a review[J]. Brain Connect,2011,1(1):13-36
    [12] K. Friston, R. Moran, A. K. Seth. Analysing connectivity with Granger causality and dynamiccausal modelling[J]. Curr Opin Neurobiol,2013,23(2):172-8
    [13] G. S. Wig, B. L. Schlaggar, S. E. Petersen. Concepts and principles in the analysis of brainnetworks[J]. Ann N Y Acad Sci,2011,1224(1):126-46
    [14] O. Sporns. Making sense of brain network data[J]. Nat Methods,2013,10(6):491-3
    [15] S. L. Bressler, A. K. Seth. Wiener-Granger causality: a well established methodology[J].Neuroimage,2011,58(2):323-9
    [16] A. Mclntosh, F. Gonzalez‐Lima. Structural equation modeling and its application to networkanalysis in functional brain imaging[J]. Hum Brain Mapp,1994,2(1‐2):2-22
    [17] A. Roebroeck, E. Formisano, R. Goebel. Mapping directed influence over the brain usingGranger causality and fMRI[J]. Neuroimage,2005,25(1):230-42
    [18] M. Kaminski, K. Blinowska. A new method of the description of the information flow in thebrain structures[J]. Biol Cybern,1991,65(3):203-210
    [19] L. A. Baccalá, K. Sameshima. Partial directed coherence: a new concept in neural structuredetermination[J]. Biol Cybern,2001,84(6):463-474
    [20] V. Pavlovic, J. M. Rehg, T.-J. Cham, et al. A dynamic bayesian network approach to figuretracking using learned dynamic models[C]. in Computer Vision,1999. The Proceedings of theSeventh IEEE International Conference on,1999, pp.94-101
    [21] T. Schreiber. Measuring information transfer[J]. Phys Rev Lett,2000,85(2):461
    [22] K. J. Friston, L. Harrison, W. Penny. Dynamic causal modelling[J]. Neuroimage,2003,19(4):1273-1302
    [23] P. A. Valdes-Sosa, A. Roebroeck, J. Daunizeau, et al. Effective connectivity: influence,causality and biophysical modeling[J]. Neuroimage,2011,58(2):339-61
    [24] G. Nolte, A. Ziehe, V. V. Nikulin, et al. Robustly estimating the flow direction of information incomplex physical systems[J]. Phys Rev Lett,2008,100(23):234101
    [25] C. Buchel, J. T. Coull, K. J. Friston. The predictive value of changes in effective connectivityfor human learning[J]. Science,1999,283(5407):1538-41
    [26] J. B. Rowe, K. E. Stephan, K. Friston, et al. The prefrontal cortex shows context-specificchanges in effective connectivity to motor or visual cortex during the selection of action orcolour[J]. Cereb Cortex,2005,15(1):85-95
    [27] C. H. Fu, A. R. McIntosh, J. Kim, et al. Modulation of effective connectivity by cognitivedemand in phonological verbal fluency[J]. Neuroimage,2006,30(1):266-71
    [28] P. Fletcher, C. Buchel, O. Josephs, et al. Learning-related neuronal responses in prefrontalcortex studied with functional neuroimaging[J]. Cereb Cortex,1999,9(2):168-78
    [29] J. G. Craggs, D. D. Price, G. N. Verne, et al. Functional brain interactions that servecognitive-affective processing during pain and placebo analgesia[J]. Neuroimage,2007,38(4):720-9
    [30] G. Chen, D. R. Glen, Z. S. Saad, et al. Vector autoregression, structural equation modeling, andtheir synthesis in neuroimaging data analysis[J]. Comput Biol Med,2011,41(12):1142-1155
    [31] S. J. Kiebel, O. David, K. J. Friston. Dynamic causal modelling of evoked responses inEEG/MEG with lead field parameterization[J]. Neuroimage,2006,30(4):1273-84
    [32] K. J. Friston, A. Bastos, V. Litvak, et al. DCM for complex-valued data: Cross-spectra,coherence and phase-delays[J]. Neuroimage,2012,59(1):439-455
    [33] J. Daunizeau, K. J. Friston, S. J. Kiebel. Variational Bayesian identification and prediction ofstochastic nonlinear dynamic causal models[J]. Physica D,2009,238(21):2089-2118
    [34] B. Li, J. Daunizeau, K. E. Stephan, et al. Generalised filtering and stochastic DCM for fMRI[J].Neuroimage,2011,58(2):442-57
    [35] M. L. Seghier, K. J. Friston. Network discovery with large DCMs[J]. Neuroimage,2013,68181-91
    [36] S. M. Kay. Modern spectral estimation: Theory and application[M]. ed: Prentice Hall(Englewood Cliffs, NJ),1988
    [37] L. Barnett, A. Barrett, A. Seth. Granger causality and transfer entropy are equivalent forGaussian variables[J]. Phys Rev Lett,2009,103(23):238701
    [38] J. Geweke. Measurement of linear dependence and feedback between multiple time series[J].Journal of the American Statistical Association,1982,304-313
    [39] W. H. Greene. Econometric Analysis,5/e[M]: Pearson Education India,2003
    [40] J. F. Geweke. Measures of conditional linear dependence and feedback between time series[J].Journal of the American Statistical Association,1984,79(388):907-915
    [41] A. B. Barrett, A. K. Seth. Multivariate Granger causality and generalized variance[J]. Phys RevE,2010,81(4):041907
    [42] H. Akaike. A new look at the statistical model identification[J]. Automatic Control, IEEETransactions on,1974,19(6):716-723
    [43] G. Schwarz. Estimating the dimension of a model[J]. The annals of statistics,1978,6(2):461-464
    [44] M. Ding, G. Chen, S. L. Bressler. Granger causality: Basic theory and application toNeuroscience[M]. in Handbook of time series analysis, B. Schelter, et al.: Wiley-Vch,2006
    [45] Y. Chen, S. L. Bressler, M. Ding. Frequency decomposition of conditional Granger causalityand application to multivariate neural field potential data[J]. J Neurosci Methods,2006,150(2):228-37
    [46] A. Brovelli, M. Ding, A. Ledberg, et al. Beta oscillations in a large-scale sensorimotor corticalnetwork: directional influences revealed by Granger causality[J]. Proc Natl Acad Sci,2004,101(26):9849-54
    [47] M. Kamiński. Multichannel data analysis in biomedical research[M]. in Handbook of BrainConnectivity: Springer,2007,327-355
    [48] M. Eichler. On the evaluation of information flow in multivariate systems by the directedtransfer function[J]. Biol Cybern,2006,94(6):469-482
    [49] B. Schelter, M. Winterhalder, M. Eichler, et al. Testing for directed influences among neuralsignals using partial directed coherence[J]. J Neurosci Methods,2006,152(1):210-219
    [50] C. W. Granger, P. Newbold. Spurious regressions in econometrics[J]. Journal of Econometrics,1974,2(2):111-120
    [51] J. D. Hamilton. Time series analysis[M] vol.2: Cambridge Univ Press,1994
    [52] D. Kwiatkowski, P. C. Phillips, P. Schmidt, et al. Testing the null hypothesis of stationarityagainst the alternative of a unit root: How sure are we that economic time series have a unitroot?[J]. Journal of Econometrics,1992,54(1):159-178
    [53] M. Ding, S. L. Bressler, W. Yang, et al. Short-window spectral analysis of cortical event-relatedpotentials by adaptive multivariate autoregressive modeling: data preprocessing, modelvalidation, and variability assessment[J]. Biol Cybern,2000,83(1):35-45
    [54] Q. Luo, W. Lu, W. Cheng, et al. Spatio-temporal Granger causality: a new framework[J].Neuroimage,2013,79241-63
    [55] M. Dhamala, G. Rangarajan, M. Ding. Analyzing information flow in brain networks withnonparametric Granger causality[J]. Neuroimage,2008,41(2):354-362
    [56] W. Hesse, E. M ller, M. Arnold, et al. The use of time-variant EEG Granger causality forinspecting directed interdependencies of neural assemblies[J]. J Neurosci Methods,2003,124(1):27-44
    [57] M. Havlicek, J. Jan, M. Brazdil, et al. Dynamic Granger causality based on Kalman filter forevaluation of functional network connectivity in fMRI data[J]. Neuroimage,2010,53(1):65-77
    [58] W. A. Freiwald, P. Valdes, J. Bosch, et al. Testing non-linearity and directedness of interactionsbetween neural groups in the macaque inferotemporal cortex[J]. J Neurosci Methods,1999,94(1):105-119
    [59] D. Marinazzo, W. Liao, H. Chen, et al. Nonlinear connectivity by Granger causality[J].Neuroimage,2011,58(2):330-8
    [60] D. Marinazzo, M. Pellicoro, S. Stramaglia. Kernel method for nonlinear Granger causality[J].Phys Rev Lett,2008,100(14):144103
    [61] P. P. Mitra, B. Pesaran. Analysis of dynamic brain imaging data[J]. Biophysical journal,1999,76(2):691-708
    [62] A. G. Nedungadi, G. Rangarajan, N. Jain, et al. Analyzing multiple spike trains withnonparametric granger causality[J]. Journal of computational neuroscience,2009,27(1):55-64
    [63] A. Roebroeck, E. Formisano, R. Goebel. The identification of interacting networks in the brainusing fMRI: Model selection, causality and deconvolution[J]. Neuroimage,2011,58(2):296-302
    [64] J. Pearl. Causality: models, reasoning and inference[M] vol.29: Cambridge Univ Press,2000
    [65] S. Guo, A. K. Seth, K. M. Kendrick, et al. Partial Granger causality--eliminating exogenousinputs and latent variables[J]. J Neurosci Methods,2008,172(1):79-93
    [66] B. Roelstraete, Y. Rosseel. Does partial Granger causality really eliminate the influence ofexogenous inputs and latent variables?[J]. J Neurosci Methods,2012,206(1):73-7
    [67] S. Hu, G. Dai, G. A. Worrell, et al. Causality analysis of neural connectivity: criticalexamination of existing methods and advances of new methods[J]. Neural Networks, IEEETransactions on,2011,22(6):829-844
    [68] A. B. Barrett, L. Barnett. Granger causality is designed to measure effect, not mechanism[J].Front Neuroinform,2013,7
    [69] T. Ge, J. Feng, F. Grabenhorst, et al. Componential Granger causality, and its application toidentifying the source and mechanisms of the top–down biased activation that controlsattention to affective vs sensory processing[J]. Neuroimage,2012,59(2):1846-1858
    [70] G. Aguirre, E. Zarahn, M. D'esposito. The variability of human, BOLD hemodynamicresponses[J]. Neuroimage,1998,8(4):360-369
    [71] O. David, I. Guillemain, S. Saillet, et al. Identifying neural drivers with functional MRI: anelectrophysiological validation[J]. PLoS Biol,2008,6(12): e315
    [72] G. Deshpande, X. Hu. Investigating effective brain connectivity from fMRI data: past findingsand current issues with reference to Granger causality analysis[J]. Brain Connect,2012,2(5):235-45
    [73] G. Deshpande, K. Sathian, X. Hu. Effect of hemodynamic variability on Granger causalityanalysis of fMRI[J]. Neuroimage,2010,52(3):884-96
    [74] C. Chang, M. E. Thomason, G. H. Glover. Mapping and correction of vascular hemodynamiclatency in the BOLD signal[J]. Neuroimage,2008,43(1):90-102
    [75] V. A. Vakorin, O. O. Krakovska, R. Borowsky, et al. Inferring neural activity from BOLDsignals through nonlinear optimization[J]. Neuroimage,2007,38(2):248-260
    [76] S. L. Bressler, W. Tang, C. M. Sylvester, et al. Top-down control of human visual cortex byfrontal and parietal cortex in anticipatory visual spatial attention[J]. J Neurosci,2008,28(40):10056-10061
    [77] C. C. Ruff, J. Driver, S. Bestmann. Combining TMS and fMRI: from ‘virtual lesions’ tofunctional-network accounts of cognition[J]. Cortex,2009,45(9):1043-1049
    [78] D. Sridharan, D. J. Levitin, V. Menon. A critical role for the right fronto-insular cortex inswitching between central-executive and default-mode networks[J]. Proc Natl Acad Sci,2008,105(34):12569-12574
    [79] W. Liao, D. Mantini, Z. Zhang, et al. Evaluating the effective connectivity of resting statenetworks using conditional Granger causality[J]. Biol Cybern,2010,10257-69
    [80] P. A. Valdes-Sosa, J. M. Sanchez-Bornot, A. Lage-Castellanos, et al. Estimating brainfunctional connectivity with sparse multivariate autoregression[J]. Philos Trans R Soc Lond BBiol Sci,2005,360(1457):969-81
    [81] L. Astolfi, F. Cincotti, D. Mattia, et al. Comparison of different cortical connectivity estimatorsfor high‐resolution EEG recordings[J]. Hum Brain Mapp,2007,28(2):143-157
    [82] D. W. Gow, J. A. Segawa, S. P. Ahlfors, et al. Lexical influences on speech perception: aGranger causality analysis of MEG and EEG source estimates[J]. Neuroimage,2008,43(3):614-623
    [83] S. L. Bressler, C. G. Richter, Y. Chen, et al. Cortical functional network organization fromautoregressive modeling of local field potential oscillations[J]. Statistics in medicine,2007,26(21):3875-3885
    [84] C. M. Michel, M. M. Murray, G. Lantz, et al. EEG source imaging[J]. Clinical neurophysiology,2004,115(10):2195-2222
    [85] R. D. Pascual-Marqui. Review of methods for solving the EEG inverse problem[J].International journal of bioelectromagnetism,1999,1(1):75-86
    [86] Z. J. Koles. Trends in EEG source localization[J]. Electroencephalography and clinicalNeurophysiology,1998,106(2):127-137
    [87] E. Florin, J. Gross, J. Pfeifer, et al. The effect of filtering on Granger causality basedmultivariate causality measures[J]. Neuroimage,2010,50(2):577-588
    [88] L. Barnett, A. K. Seth. Behaviour of Granger causality under filtering: Theoretical invarianceand practical application[J]. J Neurosci Methods,2011,201(2):404-419
    [89] C. Buchel, K. J. Friston. Modulation of connectivity in visual pathways by attention: corticalinteractions evaluated with structural equation modelling and fMRI[J]. Cerebral cortex,1997,7(8):768
    [90] K. Friston. Causal modelling and brain connectivity in functional magnetic resonanceimaging[J]. PLoS Biol,2009,7(2): e33
    [91] J. R. Sato, P. A. Morettin, P. R. Arantes, et al. Wavelet based time-varying vectorautoregressive modelling[J]. Computational Statistics&Data Analysis,2007,51(12):5847-5866
    [92] A. Fujita, K. Kojima, A. G. Patriota, et al. A fast and robust statistical test based on likelihoodratio with Bartlett correction to identify Granger causality between gene sets[J]. Bioinformatics,2010,26(18):2349-51
    [93] G. Wu, X. Duan, W. Liao, et al. Kernel canonical-correlation Granger causality for multipletime series[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2011,83(4Pt1):041921
    [94] G. Deshpande, K. Sathian, X. Hu. Assessing and compensating for zero-lag correlation effectsin time-lagged Granger causality analysis of FMRI[J]. IEEE Trans Biomed Eng,2010,57(6):1446-56
    [95] L. Faes, G. Nollo. Extended causal modeling to assess Partial Directed Coherence in multipletime series with significant instantaneous interactions[J]. Biol Cybern,2010,103(5):387-400
    [96] D. Pierce, L. Haugh. Causality in temporal systems: Characterization and a survey[J]. Journalof Econometrics,1977,5(3):265-293
    [97] P. Otter. On Wiener-Granger causality, information and canonical correlation[J]. EconomicsLetters,1991,35(2):187-191
    [98] E. J. Hannan, B. G. Quinn. The determination of the order of an autoregression[J]. Journal ofthe Royal Statistical Society. Series B (Methodological),1979,190-195
    [99] S. Lemm, B. Blankertz, T. Dickhaus, et al. Introduction to machine learning for brainimaging[J]. Neuroimage,2011,56(2):387-399
    [100] B. Efron, R. Tibshirani. Improvements on cross-validation: the632+bootstrap method[J].Journal of the American Statistical Association,1997,92(438):548-560
    [101] J. R. Sato, A. Fujita, E. F. Cardoso, et al. Analyzing the connectivity between regions ofinterest: an approach based on cluster Granger causality for fMRI data analysis[J]. Neuroimage,2010,52(4):1444-55
    [102] N. H. Timm, J. E. Carlson. Part and bipartial canonical correlation analysis[J]. Psychometrika,1976,41(2):159-176
    [103] B. Efron, R. J. Tibshirani. An Introduction to the Bootstrap (Chapman&Hall/CRCMonographs on Statistics&Applied Probability)[J].1994,
    [104] Q. Sun, S. Zeng, Y. Liu, et al. A new method of feature fusion and its application in imagerecognition[J]. Pattern Recognition,2005,38(12):2437-2448
    [105] B. Schelter, J. Timmer, A. Schulze-Bonhage. Seizure prediction in epilepsy: from basicmechanisms to clinical applications[M]: Wiley. com,2008
    [106] C. Wilke, W. van Drongelen, M. Kohrman, et al. Neocortical seizure foci localization by meansof a directed transfer function method[J]. Epilepsia,2010,51(4):564-72
    [107] F. H. Lin, K. Hara, V. Solo, et al. Dynamic Granger-Geweke causality modeling withapplication to interictal spike propagation[J]. Hum Brain Mapp,2009,30(6):1877-86
    [108] P. J. Franaszczuk, G. K. Bergey. Application of the directed transfer function method to mesialand lateral onset temporal lobe seizures[J]. Brain topography,1998,11(1):13-21
    [109] K. Lehnertz, R. G. Andrzejak, J. Arnhold, et al. Its possible use for interictal focus localization,seizure anticipation, and prevention: Nonlinear EEG analysis in epilepsy[J]. Journal of ClinicalNeurophysiology,2001,18(3):209-222
    [110] A. V. Medvedev, A. M. Murro, K. J. Meador. Abnormal interictal gamma activity may manifesta seizure onset zone in temporal lobe epilepsy[J]. International journal of neural systems,2011,21(02):103-114
    [111] A. Kraskov, T. Kreuz, R. Q. Quiroga, et al. Comparison of two phase synchronization analysistechniques for interictal focus lateralization in mesial temporal lobe epilepsy[J]. Epilepsia,2002,43(7):48
    [112] W. Liao, Z. Zhang, Z. Pan, et al. Altered functional connectivity and small-world in mesialtemporal lobe epilepsy[J]. PLoS One,2010,5(1): e8525
    [113] L. Angelini, M. de Tommaso, D. Marinazzo, et al. Redundant variables and Grangercausality[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2010,81(3Pt2):037201
    [114] D. Marinazzo, W. Liao, M. Pellicoro, et al. Grouping time series by pairwise measures ofredundancy[J]. Physics Letters A,2010,374(39):4040-4044
    [115] C. Ladroue, S. Guo, K. Kendrick, et al. Beyond element-wise interactions: Defininggroup-to-group interactions for biological processes[J]. PLoS One,2009,4(9): e6899
    [116] X. Wang, Y. Chen, S. Bressler, et al. Granger causality between multiple interdependentneurobiological time series: Blockwise versus pairwise methods[J]. International journal ofneural systems,2007,17(2):71-78
    [117] X. Wang, Y. Chen, M. Ding. Estimating Granger causality after stimulus onset: a cautionarynote[J]. Neuroimage,2008,41(3):767-76
    [118] A. Barabasi, R. Crandall. Linked: The new science of networks[J]. American journal ofPhysics,2003,71409
    [119] M. Chavez, M. Valencia, V. Navarro, et al. Functional Modularity of Background Activities inNormal and Epileptic Brain Networks[J]. Phys Rev Lett,2010,104(11):118701
    [120] D. Fraiman, P. Balenzuela, J. Foss, et al. Ising-like dynamics in large-scale functional brainnetworks[J]. Phys Rev E,2009,79(6):061922
    [121] N. Ancona, D. Marinazzo, S. Stramaglia. Radial basis function approach to nonlinear Grangercausality of time series[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2004,70(5Pt2):056221
    [122] D. Marinazzo, M. Pellicoro, S. Stramaglia. Nonlinear parametric model for Granger causalityof time series[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2006,73(6Pt2):066216
    [123] D. Marinazzo, M. Pellicoro, S. Stramaglia. Kernel-Granger causality and the analysis ofdynamical networks[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2008,77(5Pt2):056215
    [124] B. Gourévitch, R. L. Bouquin-Jeannès, G. Faucon. Linear and nonlinear causality betweensignals: methods, examples and neurophysiological applications[J]. Biol Cybern,2006,95(4):349-369
    [125] G. R. Wu, F. Chen, D. Kang, et al. Multiscale causal connectivity analysis by canonicalcorrelation: theory and application to epileptic brain[J]. IEEE Trans Biomed Eng,2011,58(11):3088-96
    [126] D. Pierce. R2measures for time series[J]. Journal of the American Statistical Association,1979,74(368):901-910
    [127] M. Small, D. Yu, R. Harrison. Surrogate test for pseudoperiodic time series data[J]. Phys RevLett,2001,87(18):188101
    [128] P. Holme, B. Kim, C. Yoon, et al. Attack vulnerability of complex networks[J]. Phys Rev E,2002,65(5):56109
    [129] E. Leicht, M. Newman. Community structure in directed networks[J]. Phys Rev Lett,2008,100(11):118703
    [130] M. Palu, V. Komárek, Z. Hrní, et al. Synchronization as adjustment of information rates:Detection from bivariate time series[J]. Phys Rev E,2001,63(4):46211
    [131] E. Bullmore, O. Sporns. Complex brain networks: graph theoretical analysis of structural andfunctional systems[J]. Nature Reviews Neuroscience,2009,10(3):186-198
    [132] P. Hagmann, L. Cammoun, X. Gigandet, et al. Mapping the structural core of human cerebralcortex[J]. PLoS Biol,2008,6(7): e159
    [133] R. Salvador, J. Suckling, M. R. Coleman, et al. Neurophysiological architecture of functionalmagnetic resonance images of human brain[J]. Cereb Cortex,2005,15(9):1332-42
    [134] K. E. Stephan, A. Roebroeck. A short history of causal modeling of fMRI data[J]. Neuroimage,2012,62(2):856-63
    [135] S. Kadkhodaeian Bakhtiari, G. A. Hossein-Zadeh. Subspace-based Identification Algorithm forcharacterizing causal networks in resting brain[J]. Neuroimage,2012,60(2):1236-49
    [136] M. Havlicek, K. J. Friston, J. Jan, et al. Dynamic modeling of neuronal responses in fMRIusing cubature Kalman filtering[J]. Neuroimage,2011,56(4):2109-2128
    [137] S. Ryali, K. Supekar, T. Chen, et al. Multivariate dynamical systems models for estimatingcausal interactions in fMRI[J]. Neuroimage,2011,54(2):807-23
    [138]S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, et al. Network modelling methods for FMRI[J].Neuroimage,2011,54(2):875-91
    [139] J. J. Riera, J. Watanabe, I. Kazuki, et al. A state-space model of the hemodynamic approach:nonlinear filtering of BOLD signals[J]. Neuroimage,2004,21(2):547-67
    [140] K. J. Friston, N. Trujillo-Barreto, J. Daunizeau. DEM: a variational treatment of dynamicsystems[J]. Neuroimage,2008,41(3):849-85
    [141] D. A. Handwerker, J. Gonzalez-Castillo, M. D'Esposito, et al. The continuing challenge ofunderstanding and modeling hemodynamic variation in fMRI[J]. Neuroimage,2012,62(2):1017-23
    [142] R. B. Buxton, E. C. Wong, L. R. Frank. Dynamics of blood flow and oxygenation changesduring brain activation: the balloon model[J]. Magn Reson Med,1998,39(6):855-64
    [143] K. J. Friston, A. Mechelli, R. Turner, et al. Nonlinear responses in fMRI: the Balloon model,Volterra kernels, and other hemodynamics[J]. Neuroimage,2000,12(4):466-77
    [144]G. H. Glover. Deconvolution of impulse response in event-related BOLD fMRI[J]. Neuroimage,1999,9(4):416-29
    [145] D. Marinazzo, M. Pellicoro, S. Stramaglia. Causal information approach to partial conditioningin multivariate data sets[J]. Comput Math Methods Med,2012,2012303601
    [146] G. Deco, V. K. Jirsa. Ongoing cortical activity at rest: criticality, multistability, and ghostattractors[J]. J Neurosci,2012,32(10):3366-3375
    [147] N. Petridou, C. C. Gaudes, I. L. Dryden, et al. Periods of rest in fMRI contain individualspontaneous events which are related to slowly fluctuating spontaneous activity[J]. Hum BrainMapp,2012,34(6):1319-29
    [148] E. Tagliazucchi, P. Balenzuela, D. Fraiman, et al. Spontaneous BOLD event triggered averagesfor estimating functional connectivity at resting state[J]. Neuroscience letters,2011,488(2):158-163
    [149] E. Tagliazucchi, P. Balenzuela, D. Fraiman, et al. Criticality in large-scale brain FMRIdynamics unveiled by a novel point process analysis[J]. Front Physiol,2012,315
    [150] D. A. Feinberg, S. Moeller, S. M. Smith, et al. Multiplexed echo planar imaging for sub-secondwhole brain FMRI and fast diffusion imaging[J]. PLoS One,2010,5(12): e15710
    [151] Z. Zhang, W. Liao, H. Chen, et al. Altered functional-structural coupling of large-scale brainnetworks in idiopathic generalized epilepsy[J]. Brain,2011,134(Pt10):2912-28
    [152] M. Rubinov, O. Sporns. Complex network measures of brain connectivity: uses andinterpretations[J]. Neuroimage,2010,52(3):1059-69
    [153] W. Wen, W. Zhu, Y. He, et al. Discrete neuroanatomical networks are associated with specificcognitive abilities in old age[J]. J Neurosci,2011,31(4):1204-12
    [154] E. T. Bullmore, D. S. Bassett. Brain graphs: graphical models of the human brainconnectome[J]. Annu Rev Clin Psychol,2011,7113-40
    [155] A. T. Lee, G. H. Glover, C. H. Meyer. Discrimination of large venous vessels in time-coursespiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging[J]. MagnReson Med,1995,33(6):745-54
    [156] D. A. Handwerker, J. M. Ollinger, M. D'Esposito. Variation of BOLD hemodynamic responsesacross subjects and brain regions and their effects on statistical analyses[J]. Neuroimage,2004,21(4):1639-51
    [157] A. Zalesky, A. Fornito, I. H. Harding, et al. Whole-brain anatomical networks: does the choiceof nodes matter?[J]. Neuroimage,2010,50(3):970-983
    [158] G. Wu, S. Stramaglia, D. Marinazzo. Decomposition of the Transfer Entropy: PartialConditioning and Informative Clustering[M]. in Neural Information Processing. vol.7663, T.Huang, et al.: Springer Berlin Heidelberg,2012,226-233
    [159] G. Marrelec, H. Benali, P. Ciuciu, et al. Robust Bayesian estimation of the hemodynamicresponse function in event‐related BOLD fMRI using basic physiological information[J].Hum Brain Mapp,2003,19(1):1-17
    [160] K. Supekar, V. Menon. Developmental maturation of dynamic causal control signals inhigher-order cognition: a neurocognitive network model[J]. PLoS Comput Biol,2012,8(2):e1002374
    [161] V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, et al. Scale-free brain functional networks[J]. PhysRev Lett,2005,94(1):018102
    [162] N. K. Logothetis. What we can do and what we cannot do with fMRI[J]. Nature,2008,453(7197):869-878
    [163] H. Laufs, J. Daunizeau, D. Carmichael, et al. Recent advances in recordingelectrophysiological data simultaneously with magnetic resonance imaging[J]. Neuroimage,2008,40(2):515-528
    [164] T. R. Kn sche, M. Tittgemeyer. The role of long-range connectivity for the characterization ofthe functional–anatomical organization of the cortex[J]. Front Syst Neurosci,2011,5
    [165] R. M. Birn, K. Murphy, P. A. Bandettini. The effect of respiration variations on independentcomponent analysis results of resting state functional connectivity[J]. Hum Brain Mapp,2008,29(7):740-50
    [166] S. A. Huettel, A. W. Song, G. McCarthy. Functional magnetic resonance imaging[M] vol.1:Sinauer Associates Sunderland,2004
    [167] S. G. Kim, K. Hendrich, X. Hu, et al. Potential pitfalls of functional MRI using conventionalgradient‐recalled echo techniques[J]. NMR in Biomedicine,1994,7(1‐2):69-74
    [168] J. Hamilton, G. Chen, M. Thomason, et al. Investigating neural primacy in Major DepressiveDisorder: multivariate Granger causality analysis of resting-state fMRI time-series data[J].Molecular Psychiatry,2010,
    [169]J. Wang, L. Wang, Y. Zang, et al. Parcellation-dependent small-world brain functional networks:a resting-state fMRI study[J]. Hum Brain Mapp,2009,30(5):1511-23
    [170] R. Kus, M. Kaminski, K. J. Blinowska. Determination of EEG activity propagation: pair-wiseversus multichannel estimate[J]. IEEE Trans Biomed Eng,2004,51(9):1501-10
    [171] R. Goebel, A. Roebroeck, D. S. Kim, et al. Investigating directed cortical interactions intime-resolved fMRI data using vector autoregressive modeling and Granger causalitymapping[J]. Magn Reson Imaging,2003,21(10):1251-61
    [172] G. Deshpande, P. Santhanam, X. Hu. Instantaneous and causal connectivity in resting statebrain networks derived from functional MRI data[J]. Neuroimage,2011,54(2):1043-52
    [173] K. J. Friston, C. J. Price. Degeneracy and redundancy in cognitive anatomy[J]. Trends CognSci,2003,7(4):151-152
    [174] C. J. Price, K. J. Friston. Degeneracy and cognitive anatomy[J]. Trends Cogn Sci,2002,6(10):416-421
    [175] L. Faes, G. Nollo, A. Porta. Information-based detection of nonlinear Granger causality inmultivariate processes via a nonuniform embedding technique[J]. Phys Rev E,2011,83(5):051112
    [176] J. Runge, J. Heitzig, N. Marwan, et al. Quantifying causal coupling strength: A lag-specificmeasure for multivariate time series related to transfer entropy[J]. Phys Rev E,2012,86(6):061121
    [177] K. Hlavácková-Schindler. Equivalence of granger causality and transfer entropy: Ageneralization[J]. Applied Mathematical Sciences,2011,5(73):3637-3648
    [178] D. Hartman, J. Hlinka, M. Palus, et al. The role of nonlinearity in computing graph-theoreticalproperties of resting-state functional magnetic resonance imaging brain networks[J]. Chaos,2011,21(1):013119
    [179] J. Hlinka, M. Palu, M. Vejmelka, et al. Functional connectivity in resting-state fMRI: Is linearcorrelation sufficient?[J]. Neuroimage,2011,54(3):2218-2225
    [180] P. Ritter, M. Schirner, A. R. McIntosh, et al. The Virtual Brain Integrates ComputationalModeling and Multimodal Neuroimaging[J]. Brain Connect,2013,3(2):121-145
    [181] R. A. Stefanescu, V. K. Jirsa. A low dimensional description of globally coupled heterogeneousneural networks of excitatory and inhibitory neurons[J]. PLoS Comput Biol,2008,4(11):e1000219
    [182] G. R. Wu, W. Liao, S. Stramaglia, et al. A blind deconvolution approach to recover effectiveconnectivity brain networks from resting state fMRI data[J]. Med Image Anal,2013,17(3):365-74
    [183] B. T. Yeo, F. M. Krienen, J. Sepulcre, et al. The organization of the human cerebral cortexestimated by intrinsic functional connectivity[J]. Journal of neurophysiology,2011,106(3):1125-1165
    [184] A. L. Goldberger, L. A. Amaral, L. Glass, et al. Physiobank, physiotoolkit, and physionetcomponents of a new research resource for complex physiologic signals[J]. Circulation,2000,101(23): e215-e220
    [185] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, et al. Fast unfolding of communities in largenetworks[J]. Journal of Statistical Mechanics: Theory and Experiment,2008,2008(10):P10008
    [186] P. Hagmann, M. Kurant, X. Gigandet, et al. Mapping human whole-brain structural networkswith diffusion MRI[J]. PLoS One,2007,2(7): e597
    [187] Y. He, Z. Chen, G. Gong, et al. Neuronal networks in Alzheimer's disease[J]. Neuroscientist,2009,15(4):333-350
    [188] D. Meunier, S. Achard, A. Morcom, et al. Age-related changes in modular organization ofhuman brain functional networks[J]. Neuroimage,2009,44(3):715-23
    [189] J. R. Andrews-Hanna, J. S. Reidler, J. Sepulcre, et al. Functional-anatomic fractionation of thebrain's default network[J]. Neuron,2010,65(4):550-62
    [190]J. R. Andrews-Hanna. The brain's default network and its adaptive role in internal mentation[J].Neuroscientist,2011,doi:10.1177/1073858411403316
    [191] C. Yan, Y. He. Driving and driven architectures of directed small-world human brain functionalnetworks[J]. PLoS One,2011,6(8): e23460
    [192] Y. Y. Liu, J. J. Slotine, A. L. Barabasi. Controllability of complex networks[J]. Nature,2011,473(7346):167-73
    [193] J. Richiardi, H. Eryilmaz, S. Schwartz, et al. Decoding brain states from fMRI connectivitygraphs[J]. Neuroimage,2011,56(2):616-26
    [194] R. L. Buckner, J. Sepulcre, T. Talukdar, et al. Cortical hubs revealed by intrinsic functionalconnectivity: mapping, assessment of stability, and relation to Alzheimer's disease[J]. JNeurosci,2009,29(6):1860-73
    [195] M. W. Cole, S. Pathak, W. Schneider. Identifying the brain's most globally connectedregions[J]. Neuroimage,2010,49(4):3132-48
    [196] S. Hayasaka, P. J. Laurienti. Comparison of characteristics between region-and voxel-basednetwork analyses in resting-state fMRI data[J]. Neuroimage,2010,50(2):499-508
    [197] D. Tomasi, N. D. Volkow. Functional connectivity density mapping[J]. Proc Natl Acad Sci,2010,107(21):9885-9890
    [198] J. D. Power, A. L. Cohen, S. M. Nelson, et al. Functional network organization of the humanbrain[J]. Neuron,2011,72(4):665-78
    [199] X. N. Zuo, R. Ehmke, M. Mennes, et al. Network centrality in the human functionalconnectome[J]. Cereb Cortex,2012,22(8):1862-75
    [200] K. Friston. Dynamic causal modeling and Granger causality Comments on: the identificationof interacting networks in the brain using fMRI: model selection, causality anddeconvolution[J]. Neuroimage,2011,58(2):303-5; author reply310-1
    [201] J. D. Power, K. A. Barnes, A. Z. Snyder, et al. Spurious but systematic correlations infunctional connectivity MRI networks arise from subject motion[J]. Neuroimage,2012,59(3):2142-54
    [202] T. D. Satterthwaite, D. H. Wolf, J. Loughead, et al. Impact of in-scanner head motion onmultiple measures of functional connectivity: relevance for studies of neurodevelopment inyouth[J]. Neuroimage,2012,60(1):623-32
    [203] K. R. Van Dijk, M. R. Sabuncu, R. L. Buckner. The influence of head motion on intrinsicfunctional connectivity MRI[J]. Neuroimage,2012,59(1):431-8
    [204] J. Carp. Optimizing the order of operations for movement scrubbing: Comment on Power etal[J]. Neuroimage,2013,76436-8
    [205] N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, et al. Automated anatomical labeling ofactivations in SPM using a macroscopic anatomical parcellation of the MNI MRIsingle-subject brain[J]. Neuroimage,2002,15(1):273-89
    [206] M. Rubinov, O. Sporns. Weight-conserving characterization of complex functional brainnetworks[J]. Neuroimage,2011,56(4):2068-79
    [207]M. E. Newman. Modularity and community structure in networks[J]. Proc Natl Acad Sci,2006,103(23):8577-82
    [208] Q. Jiao, G. Lu, Z. Zhang, et al. Granger causal influence predicts BOLD activity levels in thedefault mode network[J]. Hum Brain Mapp,2011,32(1):154-61
    [209] L. Tian, J. Wang, C. Yan, et al. Hemisphere-and gender-related differences in small-world brainnetworks: a resting-state functional MRI study[J]. Neuroimage,2011,54(1):191-202
    [210] D. Meunier, R. Lambiotte, A. Fornito, et al. Hierarchical modularity in human brain functionalnetworks[J]. Front Neuroinform,2009,337
    [211] J. Sepulcre, M. R. Sabuncu, T. B. Yeo, et al. Stepwise connectivity of the modal cortex revealsthe multimodal organization of the human brain[J]. J Neurosci,2012,32(31):10649-61
    [212] G. Wu, W. Liao, H. Chen, et al. Recovering directed networks in neuroimaging datasets usingpartially conditioned Granger causality[J]. Brain Connect,2013,3(3):294-301
    [213] M. P. van den Heuvel, O. Sporns. Rich-club organization of the human connectome[J]. JNeurosci,2011,31(44):15775-86
    [214] D. Tomasi, N. D. Volkow. Association between functional connectivity hubs and brainnetworks[J]. Cerebral cortex,2011,21(9):2003-2013
    [215] Y. He, J. Wang, L. Wang, et al. Uncovering intrinsic modular organization of spontaneous brainactivity in humans[J]. PLoS One,2009,4(4): e5226
    [216] K. E. Joyce, P. J. Laurienti, J. H. Burdette, et al. A new measure of centrality for brainnetworks[J]. PLoS One,2010,5(8): e12200
    [217] G. Lohmann, D. S. Margulies, A. Horstmann, et al. Eigenvector centrality mapping foranalyzing connectivity patterns in fMRI data of the human brain[J]. PLoS One,2010,5(4):e10232
    [218] M. P. van den Heuvel, R. C. Mandl, C. J. Stam, et al. Aberrant frontal and temporal complexnetwork structure in schizophrenia: a graph theoretical analysis[J]. J Neurosci,2010,30(47):15915-26
    [219] A. M. Wink, J. C. de Munck, Y. D. van der Werf, et al. Fast eigenvector centrality mapping ofvoxel-wise connectivity in functional magnetic resonance imaging: implementation, validation,and interpretation[J]. Brain Connect,2012,2(5):265-74
    [220] R. Garg, G. A. Cecchi, A. R. Rao. Full-brain auto-regressive modeling (FARM) using fMRI[J].Neuroimage,2011,58(2):416-41
    [221] W. Tang, S. L. Bressler, C. M. Sylvester, et al. Measuring Granger Causality between CorticalRegions from Voxelwise fMRI BOLD Signals with LASSO[J]. PLoS Comput Biol,2012,8(5):e1002513
    [222] M. N. Moussa, M. R. Steen, P. J. Laurienti, et al. Consistency of network modules inresting-state FMRI connectome data[J]. PLoS One,2012,7(8): e44428
    [223] D. Casasanto. Embodiment of abstract concepts: good and bad in right-and left-handers[J]. JExp Psychol Gen,2009,138(3):351-67
    [224] P.-Y. Hervé, L. Zago, L. Petit, et al. Revisiting human hemispheric specialization withneuroimaging.[J]. Trends Cogn Sci,2013,1769-80
    [225] Q. Cai, L. Van der Haegen, M. Brysbaert. Complementary hemispheric specialization forlanguage production and visuospatial attention[J]. Proc Natl Acad Sci,2013,110(4): E322-30
    [226] S. G. Kim, J. Ashe, K. Hendrich, et al. Functional magnetic resonance imaging of motor cortex:hemispheric asymmetry and handedness[J]. Science,1993,261(5121):615-7
    [227] H. Liu, S. M. Stufflebeam, J. Sepulcre, et al. Evidence from intrinsic activity that asymmetry ofthe human brain is controlled by multiple factors[J]. Proc Natl Acad Sci,2009,106(48):20499-20503
    [228] M. Annett. Handedness and brain asymmetry: The right shift theory[J].2002,
    [229] M. C. Corballis, G. Badzakova-Trajkov, I. S. H berling. Right hand, left brain: genetic andevolutionary bases of cerebral asymmetries for language and manual action[J]. WileyInterdisciplinary Reviews: Cognitive Science,2012,31-17
    [230] D. Casasanto, E. G. Chrysikou. When left is "right". Motor fluency shapes abstract concepts[J].Psychol Sci,2011,22(4):419-22
    [231] D. Casasanto. Different Bodies, Different Minds The Body Specificity of Language andThought[J]. Current Directions in Psychological Science,2011,20(6):378-383
    [232] G. Brookshire, D. Casasanto. Motivation and motor control: hemispheric specialization forapproach motivation reverses with handedness[J]. PLoS One,2012,7(4): e36036
    [233] R. M. Willems, I. Toni, P. Hagoort, et al. Body-specific motor imagery of hand actions: neuralevidence from right-and left-handers[J]. Front Hum Neurosci,2009,339
    [234] R. M. Willems, P. Hagoort, D. Casasanto. Body-specific representations of action verbs: neuralevidence from right-and left-handers[J]. Psychol Sci,2010,21(1):67-74
    [235] R. M. Willems, P. Hagoort. Hand preference influences neural correlates of actionobservation[J]. Brain Res,2009,126990-104
    [236] Y. Ostby, K. B. Walhovd, C. K. Tamnes, et al. Mental time travel and default-mode networkfunctional connectivity in the developing brain[J]. Proc Natl Acad Sci,2012,109(42):16800-4
    [237] M. E. Raichle. Two views of brain function[J]. Trends Cogn Sci,2010,14(4):180-90
    [238] D. A. Gusnard, M. E. Raichle. Searching for a baseline: functional imaging and the restinghuman brain[J]. Nat Rev Neurosci,2001,2(10):685-94
    [239] K. Sakreida, C. Scorolli, M. M. Menz, et al. Are abstract action words embodied? An fMRIinvestigation at the interface between language and motor cognition[J]. Front Hum Neurosci,2013,7125
    [240] T. T. Brunye, A. Gardony, C. R. Mahoney, et al. Body-specific representations of spatiallocation[J]. Cognition,2012,123(2):229-39
    [241] R. C. Oldfield. The assessment and analysis of handedness: the Edinburgh inventory[J].Neuropsychologia,1971,997-113
    [242] M. D. Fox, A. Z. Snyder, J. L. Vincent, et al. The human brain is intrinsically organized intodynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci,2005,102(27):9673-9678
    [243] X. Duan, W. Liao, D. Liang, et al. Large-scale brain networks in board game experts: insightsfrom a domain-related task and task-free resting state[J]. PLoS One,2012,7(3): e32532
    [244] K. R. Van Dijk, T. Hedden, A. Venkataraman, et al. Intrinsic functional connectivity as a toolfor human connectomics: theory, properties, and optimization[J]. Journal of neurophysiology,2010,103(1):297-321
    [245] D. Tomasi, N. D. Volkow. Resting functional connectivity of language networks:characterization and reproducibility[J]. Mol Psychiatry,2012,17(8):841-54
    [246] M. A. Lindquist, T. D. Wager. Validity and power in hemodynamic response modeling: acomparison study and a new approach[J]. Hum Brain Mapp,2007,28764-784
    [247] O. Sporns. Networks of the Brain[M]: The MIT Press,2011
    [248] J. Chumbley, K. Worsley, G. Flandin, et al. Topological FDR for neuroimaging[J]. Neuroimage,2010,49(4):3057-3064
    [249] M. A. Mayka, D. M. Corcos, S. E. Leurgans, et al. Three-dimensional locations and boundariesof motor and premotor cortices as defined by functional brain imaging: a meta-analysis[J].Neuroimage,2006,31(4):1453-1474
    [250] G. Buccino, F. Binkofski, G. R. Fink, et al. Action observation activates premotor and parietalareas in a somatotopic manner: an fMRI study[J]. Eur J Neurosci,2001,13(2):400-4
    [251] F. Binkofski, G. Buccino, S. Posse, et al. A fronto-parietal circuit for object manipulation inman: evidence from an fMRI-study[J]. Eur J Neurosci,1999,11(9):3276-86
    [252] R. Salmelin, J. Kujala. Neural representation of language: activation versus long-rangeconnectivity[J]. Trends Cogn Sci,2006,10519-525
    [253] J. R. Ding, W. Liao, Z. Zhang, et al. Topological fractionation of resting-state networks[J].PLoS One,2011,6(10): e26596
    [254] A. T. Baria, A. Mansour, L. Huang, et al. Linking human brain local activity fluctuations tostructural and functional network architectures[J]. Neuroimage,2013,73144-55
    [255] N. K. Logothetis, J. Pauls, M. Augath, et al. Neurophysiological investigation of the basis ofthe fMRI signal[J]. Nature,2001,412(6843):150-7
    [256] X. Liu, J. H. Duyn. Time-varying functional network information extracted from briefinstances of spontaneous brain activity[J]. Proc Natl Acad Sci,2013,110(11):4392-7
    [257] B. Davis, J. Jovicich, V. Iacovella, et al. Functional and Developmental Significance ofAmplitude Variance Asymmetry in the BOLD Resting-State Signal[J]. Cereb Cortex,2013,Inpress
    [258] G. Rizzolatti, L. Craighero. The mirror-neuron system[J]. Annu Rev Neurosci,2004,27169-92
    [259] M. Stoeckel, B. Weder, F. Binkofski, et al. Left and right superior parietal lobule in tactileobject discrimination[J]. European Journal of Neuroscience,2004,19(4):1067-1072
    [260] D. M. Wolpert, S. J. Goodbody, M. Husain. Maintaining internal representations: the role ofthe human superior parietal lobe[J]. Nat Neurosci,1998,1(6):529-33
    [261] E. A. Allen, E. Damaraju, S. M. Plis, et al. Tracking Whole-Brain Connectivity Dynamics inthe Resting State[J]. Cereb Cortex,2012,In press
    [262] H. J. Park, K. Friston. Structural and functional brain networks: from connections tocognition[J]. Science,2013,342(6158):1238411
    [263] F. Pulvermuller. How neurons make meaning: brain mechanisms for embodied andabstract-symbolic semantics[J]. Trends Cogn Sci,2013,17(9):458-70
    [264] S. Abel, W. Huber, C. Weiller, et al. The influence of handedness on hemispheric interactionduring word production: insights from effective connectivity analysis[J]. Brain Connect,2011,1219-231
    [265] G. R. Wu, S. Stramaglia, H. Chen, et al. Mapping the voxel-wise effective connectome inresting state FMRI[J]. PLoS One,2013,8(9): e73670
    [266] T. P. Zanto, A. Gazzaley. Fronto-parietal network: flexible hub of cognitive control[J]. TrendsCogn Sci,2013,17(12):602-3
    [267] R. Ptak. The frontoparietal attention network of the human brain: action, saliency, and apriority map of the environment[J]. Neuroscientist,2012,18(5):502-15
    [268] M. Dapretto, M. S. Davies, J. H. Pfeifer, et al. Understanding emotions in others: mirrorneuron dysfunction in children with autism spectrum disorders[J]. Nat Neurosci,2006,9(1):28-30
    [269] K. Hugdahl, R. Westerhausen. The two halves of the brain: Information processing in thecerebral hemispheres[M]: MIT Press,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700