用户名: 密码: 验证码:
组织工程化骨修复人工关节周围骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     Branemark于20世纪60年代提出了骨整合的概念,即在光镜水平下正常的改建骨和假体之间无软组织,假体与骨组织直接接触,其承受的负荷能通过直接接触持续不断地传递,并分散到骨组织中。骨整合被认为是人工关节置换术后的理想状态。
     生物固定性假体要获得满意的远期效果,依赖于假体骨组织间的紧密接触、良好的骨长入和一定的骨生长时间。然而许多人工关节置换术或翻修术患者常合并有假体周围骨缺损,为恢复骨性结构并重建骨的稳定性,骨移植已成为修复骨缺损的一个必要手段。临床上根据骨缺损的大小、性质,可应用自体骨移植、异体骨移植治疗。但由于自体骨移植可提供的骨量有限,移植骨在形态、大小和数量上难以满足缺损处的要求,特别是巨大的或特殊部位骨缺损的修复,故其应用常常受到限制。1984年,Sloof等首先报告应用异体颗粒骨代替自体骨,打压植骨修复髋臼骨缺损。1993年,Ling等用同样的技术行股骨骨缺损的修复重建,从此该项技术被广泛的应用于人工关节置换术及翻修术中。但由于冻干的异体骨无成骨细胞,骨诱导活性低,新骨爬行替代及塑性的时间长,有移植骨吸收、塌陷、假体松动等并发症的可能。
     上世纪八十年代兴起的骨组织工程学为骨缺损的修复提供了一个全新的思路和方法。组织工程涉及三个要素:即种子细胞、生物活性因子、支架材料。组织工程技术通过获取具有成骨活性的组织,经分离、培养、扩增,诱导为成骨细胞,并在体外与可吸收的支架材料复合回植于体内,依靠种子细胞的成骨作用及生物材料的降解吸收,最终形成骨组织。应用组织工程化骨修复长骨节段性骨缺损、颅骨缺损已有较多的报告,而应用组织工程化骨修复人工关节周围骨缺损,并观察其对假体骨界面骨整合的研究目前国内外尚未见文献报告。
     目的:
     1.建立骨髓间充质干细胞(MSCs)的分离、培养、骨向诱导方法;
     2.体外骨髓MSCs与CHA(CHA)复合构建组织工程化骨,观察其修复植入体周围松质骨骨缺损的的效果。
     3.观察组织工程化骨修复植入体周围骨缺损对植入体-骨界面骨整合的影响。
     4.研究BMP促进组织工程化骨修复人工关节周围骨缺损,提高假体-骨界面骨接触的能力。
     方法:
     1.采用Ficoll(1.073g/ml)密度梯度离心加贴壁培养法分离兔骨髓MSCs,并培养、扩增;将第4代骨髓MSCs应用骨诱导培养液(10-8mol/L地塞米松+10mmol/L甘油磷酸钠+ 50mg/L维生素C)培养,骨向诱导。
     2.诱导后的成骨细胞应用细胞形态学、细胞活力检测、细胞生长及增殖曲线、ALP活性检测、矿化结节茜素红染色、I型胶原免疫组化与ALP鉴定。
     3.于兔左侧股骨髁制作一0.6×1.2cm的穿透性松质骨骨缺损,植入钛合金(Ti-6Al-4V)植入体于骨缺损的中央,在体外将同种异体骨髓MSCs与CHA复合构建组织工程化骨,修复植入体周围骨缺损,同法右侧骨缺损处仅植入CHA为对照组,术后4、8、12周行X射线检查、生物力学测试、放射性核素骨扫描、脱钙骨组织学HE染色,观察其骨缺损修复效果。
     4.并于术后4、8、12周行X射线检查、剖面观察、植入体剪切强度测定、植入体表面扫描电镜、植入体骨界面能谱分析、不脱钙骨组织学Van Gieson苦味酸-品红染色及图像分析系统计算植入体骨接触率,观察组织工程化骨对植入体-骨界面骨整合的影响。
     5.行犬人工全髋关节置换术,制作股骨骨缺损模型,随机分为三组,分别用rhBMP-2+自体骨髓MSCs +CHA、CHA+自体骨髓MSCs、CHA修复骨缺损,术后3个月处死动物,行X射线检查、生物力学测试、不脱钙骨组织学Van Gieson苦味酸-品红染色及图像分析系统分析计算假体骨接触率。
     结果:
     1.应用密度梯度离心结合贴壁培养法成功的分离、培养、扩增兔骨髓MSCs,培养3天后细胞的形态由圆形转为梭形;MSCs生长曲线分为生长潜伏期、对数生长期和平台期;MSCs表面标志物SH3呈阳性。
     2.骨诱导后细胞培养5-8天,细胞形态逐渐变为多角形,呈现聚集生长。诱导后细胞ALP活性较未诱导组显著性增高。骨向诱导后第三代细胞ALP染色、I型胶原免疫组化染色均呈阳性,茜素红染色可见典型的矿化结节。
     3.体外构建组织工程化骨修复植入体周围松质骨缺损结果:术后4、8、12周大体观察与剖面观察,实验组随时间的延长可见骨修复。X线表现为CHA颗粒吸收,被新生骨取代。生物力学结果示术后12周股骨髁最大压力载荷、载荷/应变比值均较对照组高,最大应变位移较对照组低(P<0.01)。放射性核素骨扫描实验组不同时间点ROI平均计数均较对照组高,有显著性差异(P<0.01)。实验组术后8周内ROI平均计数为快速增长期,术后8周开始进入缓慢增长期,12周达到峰值。组织学观察,实验组术后4周植入区内CHA颗粒之间有岛状新生骨组织;术后8周植入区内可见支架材料部分吸收,遗留空间被新生骨组织取代,骨缺损基本得到修复;术后12周可见明显编织骨、板层骨及骨小梁形成,CHA大部分吸收,但仍可见到未吸收的HA颗粒。对照组术后4、8周无新生骨,术后12周有少量的新生骨。
     4.组织工程化骨对植入体-骨界面骨整合的影响:术后4、8、12周大体观察与剖面观察,见实验组随时间的延长骨缺损得到修复,植入体周围无间隙。X线检查见CHA颗粒吸收,被新生骨取代,植入体周围为新生骨,植入体位置良好,而对照组植入体周围主要为高密度的CHA颗粒。生物力学结果示不同时间点植入体骨界面剪切强度较对照组增高(P<0.01)。扫描电镜观察,可见实验组植入体表面孔隙内无定形物质随时间的变化而逐渐增加。能谱分析术后4周实验组Ca、P元素百分含量较对照组增高,8、12周Ca元素百分含量较对照组高(P<0.05),P元素百分含量与对照组比较无显著性差异;Ca/P比值随时间的延长逐渐增高,于术后12周达2.02(P<0.01)。不脱钙骨组织学观察,术后4周对照组植入体-骨界面为厚而疏松的软组织,实验组界面为结缔组织纤维膜,新生骨偶见;术后8周对照组植入体-骨界面为结缔组织纤维膜,厚薄不一,界面较松,周围可见少量新生骨组织,实验组界面有新骨沉积,植入体表面有部分点状骨接触;术后12周对照组植入体-骨界面为结缔组织纤维膜,界面有少量点状骨接触,实验组界面主要为骨组织,部分界面可见连续性骨接触,甚至呈环形包绕。术后4周对照组与实验组植入体骨接触率为0,术后8周、12周植入体骨接触率均高于对照组(P<0.01)。
     5. rhBMP-2促进组织工程化骨修复假体周围骨缺损及假体-骨界面骨整合:术后3个月X线表现BMP组新骨生成明显,CHA颗粒完全吸收,假体稳定;细胞组有大量的新骨形成,但仍有CHA颗粒影,假体稳定;对照组新骨生成不明显,假体周围有透亮带。对照组、细胞组、BMP组假体骨界面剪切强度无显著性差异。不脱钙骨组织学观察,BMP组假体骨界面为骨组织充填,部分界面可见连续性骨接触,仅见少量纤维组织,新生骨以成熟的板层骨为主,与假体结合紧密。细胞组假体骨界面主要为骨组织充填,可见较多的骨接触,有部分纤维结缔组织。对照组假体骨界面为纤维结缔组织,边缘有少量编织骨,骨接触较少。图形分析计算对照组、细胞组、BMP组假体界面骨接触率(%)分别为15.47±8.05、38.78±19.40、67.23±18.36(P<0.01)。
     结论:
     1.本研究成功的分离、培养了兔骨髓MSCs,经骨向诱导后表达高水平的ALP活性与I型胶原,并能矿化细胞外基质,证实已分化为成熟的成骨细胞。
     2.骨髓MSCs骨向诱导后与CHA复合可修复植入体周围松质骨骨缺损,移植物血管化、骨代谢活性前8周为快速发展阶段,8-12周进入缓慢发展渐趋成熟阶段。
     3.骨髓MSCs骨向诱导后与CHA复合修复植入体周围骨缺损,促进新骨生成,改善植入体-骨界面骨整合的作用。
     4.植入体骨界面能谱分析示随着时间的延长Ca、P元素百分比含量有增高趋势,Ca/P比值随着时间的延长逐渐接近正常骨组织,表明早期为新生骨形成阶段,逐渐转为骨改建与成熟阶段。
     5. BMP促进组织工程化骨修复人工关节周围骨缺损,改善早期假体骨界面骨整合率。
Background:
     In the 1960s, Branemark proposed the conception of osseointegration that there is no soft tissue between rebuilding bone and prosthesis under microscope, that bone contacts tightly with prosthesis, and that the loading taken on by prosthesis can pass and disperse constantly into bone by the bone-prosthesis contact. Osseointegration is regarded as the ideal state after arthroplasty.
     Long-time satisfactory result of biological prosthesis replacement depends on the tight bone- prosthesis contact, favorable bone growth and bone growing time. Many patients who undergo an operation for prosthesis replacement or revision often suffer from bone defect around prosthesis. Bone grafts become a necessary method to recover the construction and stability of bone. According to the size and property of the bone defect, we usually adopt auto graft or allograft to treat bone defects in clinic. Due to the shape, size and quantity of bone, auto graft can not achieve the request of bone defect, especially of gigantic or special bone defect. The use of auto graft often is limited. Since Sloof etc firstly reported that bone defect of acetabular can be repaired by packing bone graft with variant granulation bone in 1984 and Ling etc used the same technique to treat bone defect of femur in 1993, the technique has been widely used in the operation for prosthesis replacement or revision. Because variant bone has no osteoblasts and much lower activity of bone induction, to achieve real creeping, substiution and remolding of new bone needs much more time. Allograft usually has many complications, such as absorption, collapse of grafting bone, and asceptic loosening of prosthesis.
     In the 1980s, the emergence of tissue engineering provides us a brand-new thought and method in repairing bone defect. Tissue engineering has three important elements, namely seed cell, bioactivity factor, and scaffold material. Although there are many reports on repair of segmental defect of long bone and skull bone defect by use of tissue engineering bone, untill now any reports about repairing periprosthetic bone defect with tissue engineering bone and the effects of tissue engineering bone on osseointegration of the bone-impant interface have not been found in articles at home and abroad.
     Aim:
     1. To establish method of abstraction, cultivation and bone induction of mesenchymal stem cell (MSCs).
     2. To construct the tissue engineering bone with MSCs and coral hydroxyapatite (CHA) in vitro, and observe the effects on repair of bone defect around implant.
     3. To observe the effects of tissue engineering bone on osseointegration of the bone-implant interface.
     4. To study the capability of BMP to boost tissue engineering bone to repair periprosthetic bone defect, promote bone growth around prosthesis and the osseointegration of the bone-prosthesis interface.
     Method:
     1. BMSCs were segregated by Ficol(l1.073g/ml)density gradient centrifugation and the adherent culture method, then cultivated and multiplied. The 4th generation MSCs were induced by bone induction culture fluid (10-8mol/L DEX+10mmol/L Sodium Glycerophosphate + 50mg/L Vitamin C).
     2. Osteoblasts derived from BMSCs were verified by cell morphology, cell vigor detection, cell growth curve, ALP activity examination, alizarin Bordeaux dyeing of mineralization nodes , immunohistochemistry of collagen I and Gomori dyeing of ALP.
     3. A penetrating transverse bone defect (0.6cm×1.2cm) was created in bilateral femoral condyles respectively in rabbits. The titanium alloy implants were implanted in centre of bone defects. Tissue engineering bone constructed with osteblasts induced from allogeneic induced BMSCs and CHA in vitro was embedded into defect around the impant in left as experimental group and only CHA was embedded into the defect in right as control group. The effects on repairing bone defect around implant were studied by X-ray examination, biomechanical examination, radionuclide bone imaging by ECT, decalcificated bone histology with HE dyeing.
     4. The osseointegration of the bone-implant interface was observed by X-ray examination, section observation, push-out test of implant, scanning electron microscope, spectrum analysis, undecalcified bone histology with Van Gieson carbazotic acid–solferino dyeing, bone-to-implant contact calculated by datum from image analysis.
     5. Total hip replacement with femoral bone defects was operated in right hip of dog. Animals were divided to three groups, called BMP group, cell group and CHA group The bone defects were imlpanted at random by the compound of rhBMP-2 and tissue engineering bone, tissue engineering bone and CHA respectively. Animals sacrificed at three months after operation. The effects of BMP on osseointegration of the bone-prosthesis interface and repairing bone defect around prosthesis were studied by X-ray examination, biomechanical examination, undecalcified bone histology with Van Gieson carbazotic acid–solferino dyeing as well as bone-to- prosthesis contact calculated by datum from image analysis.
     Results:
     1. BMSCs were segregated, cultivated and multiplied successfully by way of density gradient centrifugation and adherent culture. The round shape of cells turned to fusiform after culture for three days. Growth curve of BMSCs was divided into detention phase, logarithmic growth phase and platform phase. The surface market SH3 of BMSCs took on positive.
     2. The shape of cells cultivated in bone induction culture fluid turned to polygon gradually. Cells began to growt in cluster after culture for 5-8 days. ALP activity was significantly higher in experimental group than that in control group(P<0.01). Both collegan I immunohistochemistry and ALP Gomori dyeing presented positive and alizarin Bordeaux dyeing of the 3th generation BMSCs after bone induction showed typical mineral nodus .
     3. Cancelous bone defect was repaired by tissue engineering bone constructed in vitro. As time going by, bone repair was observed in experimental group by the way of general observation and section observation at 4th, 8th and 12th week postoperatively. Biomechanical results showed that both the maximum pressure load and ratio of load to straining in experimental group were significantly higher than that in control group; The maximum strain- displacement in experimental group was lower than that in control group(P<0.01). Radionuclide bone imaging showed that mean of ROI in experimental group increased significantly higher than that in control group at different time points. Mean of ROI increased at quicker epacme within 8 weeks and began to increase at slower epacme at 8th week and achieved peak amplitude at 12th week postoperately. Histology study demonstrated that little new bone around CHA granulation in experimental group was found at 4th week; Scaffold materials were absorbed partially and replaced by new bone tissue, and bone defects were repaired basically by some new bone which rebuild maturely in partial domain in experimental group at 8th week; The obvious woven bone, lamellar bone and bone trabecula with blood sinus were found, but unabsorbed CHA granulation still existed in experimental group at 12th week. Little new bone around CHA granulation in controll group was found at 8th and12th week.
     4. The effects of tissue engneering bone on osseointegration of the bone-implant interface were observed. As time going by, the implants were embedded well by new bone in experimental group in general observation at 8th and 12th week postoperatively. X-ray showed that CHA granulations were absorbed and replaced by new bone and that the position of implant surrounded by new bone was good in experimental group; Gaps around implants in control group were found. Biomechanical examination showed that the shear-strength of bone-implant intreface in experimental group was significantly higher than that in control group at different time points. Scanning electron microscope notified that amount of amorphous material on pores of the implant surface increased gradually with time going by in experimental group. The percent content of calcium and phosphate was significantly higher in experimental group than that in control group at 4th week postoperatively; The percent content of calcium was significantely higher in experimental group than that in control group, but the percent content of phosphate increased unsignificantely at 8th, 12th week; The ratio calcium of and phosphate increased gradually with time going by and reached to 2.02 at 12th week postoperatively(P<0.01). Histology study: (1) At 4th week postoperatively, the thick and lax soft tissue on the implant surface and CHA granulation without new bone were found in control group; In experimental group the connective tissue membrane with little new bone on the implant surface was presented. (2) At 8th week postoperatively, uneven loosening connective tissue membrane with little new bone on the implant surface was found in control group; New bone formation with point bone-implant contact at interface existed in experimental group. (3) At 12th week postoperatively, the connective tissue fibrous membrane with little point bone-implant contact was presented in control group; In experimental group bone tissue with continuous and encircled bone-implant contact was found at the interface. The bone-to-implant contact (BIC) was zero both in experimental group and control group at 4th week postoperatively. The bone-to-implant contact in experimental group and control group was 15.36±3.57%, 6.09±1.46% at 8th week, and 46.54±6.89%, 17.70±6.32% at 12th week respectively. The difference between two groups had statistical sense.
     5. Repair of bone defect around prosthesis and the effects of rhBMP-2 and tissue engineering bone on osseointegration of the bone-prosthesis interface were observed. X-ray study: Lots of new bone with stable femoral prosthesis was found and CHA granulation absorbed completely in BMP group. Although massive new bone formed with stable prosthesis, the shape of CHA granulation still was presented in cell group; New bone formation was not obvious with radiolucent zone around prosthesis in CHA group. Biomechanical study: The shear-strength of bone-implant interface was 1.868±0.351, 1.269±0.432, 0.588±0.226 respectively in BMP group, cell group and CHA group; The difference had no statistical significance. Histology study: New bone tissue mainly with mature lamellar bone and little fibrous tissue and continuous bone-prosthesis contact at the interface were found in BMP group; New bone tissue partially with fibrous connective tissue and point bone-prosthesis contact at the interface were presented in cell group; Fibrous connective tissue with little lamellar bone and verge and slight bone- prosthesis contact were presented in HA group. Image analysis: The bone-to-implant contact(BIC) was 67.23±18.36、38.78±19.40、15.47±8.05 respectively in BMP group, cell group and control group(P<0.01).
     Conclusion:
     1. BMSCs can be segregated and cultivated successfully. Cells express high level of ALP activity and collagen I and capability of mineralizing intracellular matrix after bone induction. This demonstrates that BMSCs have differentiated to mature osteoblasts.
     2. Cancellous bone defect around the implant can be repaired by tissue engineering bone constructed with BMSCs and CHA.Vascularization and bone metabolic activity of bone graft is at stage of quick development within 8 weeks and enter into stage of ripeness and slow development at period of 8th to 12th week. CHA granulation still chould be found at 12th week in histology.
     3. Tissue engineering bone constructed with BMSCs andCHA can repair the bone defect around implant and promote the osseointegration on the bone-implant interface.
     4. Microanalysis of implant surface shows that percent contents of calcium and phosphate have the trend to increase and the ratio of calcium to phosphate gradually approaches the data of normal bone tissue with time going by in experimental period. This demonstrates that earlier period is the stage of new bone formation and gradually turns into stage of bone rebuilding and ripeness.
     5. BMP improves the efects of tissue engineering bone on the repair of bone defect around prosthesis and the osseointegration on the bone-prosthesis interface.
引文
1. Slaets E, Carmeliet G, Naert I, et al. Early cellular responses in cortical bone healing around unloaded titanium implants: an animal study [J]. J Periodontol, 2006 ;77(6):1015-24.
    2. Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptides premote exclusive interactions with osteoblasts [J]. Biomaterials, 2002;23(19):3937-42.
    3. Bruder SP, Fox BS. Tissue engineering of bone. Cell based strategies [J]. Clin Orthop Relat Res, 1999,(367 Suppl):S68-83.
    4. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues [J].Science, 1997, 276(5309): 1-4.
    5. Jorgensen C, Noel D, Aparrilly F, et al. Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis [J]. Ann Rheum Dis, 2001, 60(4):305-9.
    6. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect[J]. Tissue Eng, 1997,3:173-85.
    7. Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defect [J]. J Bone Joint Surg Am, 1998, 80(7):985-96.
    8. Shang Q, Wang Z, Liu W, et al. Tissue-engineered bone repair of sheep cranial defect with autologous bone marrow [J]. J Craniofac Surg, 2001,12(6):586-93.
    9. Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a noval cell-mediated gene therapy[J]. J Gene Med, 1999,1(2):121-33.
    10. Azar NM, Cui Q, Wang GJ, et al. Growth factor delivery by cloned pluripotential cell from bone marrow strom potentiates bone repair [J]. Trans Orthop Res Soc, 1999, 24:113-8.
    11.李亚非,姚建华,常红星,等.组织工程方法异体骨复合物修复关节置换时骨缺损[J].中国矫形外科杂志,2003,11(22):1520-22.
    12.严孟亭,汤亭亭,朱振安,等.骨形态发生蛋白-2基因治疗对假体-骨界面影响的研究[J].中华医学杂志,2005,85(2):1521-1525.
    13. Bragdon CR, Doherty AM, Rubash L, et al. The efficacy of BMP-2 to induce bone ingrowth in a total hip replacement model[J]. Clin Orthop, 2003, 417:50-61.
    14. Koempel JA, Patt BS, O’Grady K, et al.The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implant with bone [J]. J Biomed Mater Rea, 1998, 41:359-363.
    15.张煜,范卫民,马益民.骨形态发生蛋白对兔人工关节周围骨长入的影响[J].江苏医药,2005,31(8):591-60.
    16.王岩,王松涛,崔健,等.重组人骨形态发生蛋白-2用于人工关节生物固定方法的研究[J].中华外科杂志,2004,42(4): 240-43.
    1. Bruder SP, Fox BS. Tissue engineering of bone. Cell based strategies [J]. Clin Orthop Relat Res, 1999,(367 Suppl):S68-83.
    2. Grundel RE, Chapman MW, Yee T, et al. Autogenic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna [J]. Clin Orthop Relat Res, 1991, (266):244-58.
    3. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers [J]. Cell Tissue Kinet, 1987, 20(3):263-72.
    4. Gage FH. Mammalian neural stem cells [J]. Science, 2000, 287(5457):1433-8.
    5. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284(5411):143-7.
    6. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues [J].Science, 1997, 276(5309): 1-4.
    7.白晓春.细胞培养的常用检测技术.裴国献,魏宽海,金丹.主编:组织工程学实验技术.北京:人民军医出版社. 2006, 20-44.
    8.孙念政,沈柏均.胎盘来源间充质干细胞诱导分化为成骨细胞的实验研究[J].山东大学学报(医学版), 2006,44(9):954-59.
    9.金光鑫,吴德全.脐带血间充质干细胞研究进展[J].国际移植与血液净化杂志, 2006,4(5):45-48.
    10.张本斯,王凡,邓力,等.大鼠骨髓间充质干细胞的分离纯化与初步鉴定[J].中国组织化学与细胞化学杂志, 2003,12(2):161-65.
    11. Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry [J]. Blood, 1997, 90(9):3471-81.
    12. Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma [J]. Lab Invest, 1999, 79(4):449-57.
    13. Oreffo R, Virdi AS, Triffitt JT. Retrovinal marking of human bone marrow fibroblasts;in vitro expansion and localization in calvarial sites after subcutaneous transplantation in vivo [J]. J Cell Physiol, 2001, 186(2):201-9.
    14. Minguell JJ, Erices A, Conget P. Mesenchymal stem cell[J]. Exp Biol Med, 2001, 226(6):507-20.
    15. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cell in cultures of plastic-adherent cells from human bone marrow [J]. Proc Nalt Acad Sci USA, 2000, 97(7):3213-8.
    16. Martin DR, Cox NR, Hathcock TL, et al. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow[J]. Exp Hematol, 2002, 30(8):879-86.
    17. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethason and and IL-1 alpha [J]. J Cell Physiol, 1996, 166(3):582-92.
    18. Tuan RS. Biology of developmental and regenerative skeletogenesis [J]. Clin Orthop Relat Res, 2004, (427S):S105-17.
    19. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesemchymal cells are detected by monoclonal antibodies [J]. Bone, 1992, 13(1):69-80.
    20. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture [J]. Leukemia, 2003, 17(1):160-70.
    21. Fibbe WE. Mesenchymal stem cell. A potential source for skeletal repair [J]. Ann Reheuma Disea, 2002, 61(SII):29-31.
    22. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging [J]. Exp Hemato, 2004, 32(5):414-25.
    23. Barry F, Boyntoon R, Haynesworth S, et al. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognized an epitope on endoglin (CD105) [J]. Biochem Biophys Res Commun, 1999, 265(1):134-9.
    24. Barry F, Boynton R, Murphy M, et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells [J]. Biochem Biophys Res Commun, 2001, 289(2):519-24.
    25. Bruder SP, Horowitz MC, Mosca JD, et al. Monoclonal antibodies reactive with osteogenic cell surface antigen [J]. Bone, 1997, 21(3):225-35.
    26. Gronthos S, Graves SE, Ohta S, et al. The STRO-1 fraction of adult human bone marrow contains the osteogenic precursors [J]. Blood, 1994, 84(12):4164-73.
    27. Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-βsignaling [J]. Nature, 1996, 383(6602):691-6.
    28. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells [J]. Gene, 2006, 366(1):51-57.
    29. Ducy P, Zhang R, Geoffr oy V, et al. Osf2/Cbfa1: a transcriptional activactor of osteoblast differentiation [J]. Cell, 1997, (5):747-54.
    30. Mauney JR, Volioch V, Kaplan DL. Matrix-mediated retention of adiopogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion [J].Biomatreials, 2005, 26(31):6167-75.
    31. Jorgensen C, Noel D, Aparrilly F, et al. Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis [J]. Ann Rheum Dis, 2001,60(4):305-9.
    32. Jorjumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCS) and stromal cells[J]. J Physiol, 1988, 176(1):186-92.
    33. Kon E, Maraglia A, Corsi A, et al. Autologus bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones[J]. J Biomed Mater Res, 2000, 49(3):328-337.
    34. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect [J]. Tissue Eng, 1997, 3:173-85.
    35. Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defect [J]. J Bone Joint Surg Am, 1998, 80(7):985-96.
    36. Shang Q, Wang Z, Liu W, et al. Tissue-engineered bone repair of sheep cranial defect with autologous bone marrow [J]. J Craniofac Surg, 2001, 12(6):586-93.
    37.祝联,崔磊,王敏,等.应用珊瑚及骨髓基质干细胞复合物修复股骨缺损的实验研究[J].中华骨科杂志,2003,23(8):483-8.
    38.周健,戴克戎,汤亭亭.复合骨髓间充质干细胞生物陶瓷修复兔松质骨缺损[J].临床骨科杂志, 2003,6(2):97-102.
    39. Mosca JD, Hendricks JK, Buyaner D, et al. Mesenchymal stem cells as vehicles for genedelivery [J]. Clin Orthop Related Res, 2000, (379S):S71-90.
    40. Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a noval cell-mediated gene therapy[J]. J Gene Med, 1999,1(2):121-33.
    41. Azar NM, Cui Q, Wang GJ, et al. Growth factor delivery by cloned pluripotential cell from bone marrow strom potentiates bone repair [J]. Trans Orthop Res Soc, 1999, 24:113-8.
    42. Mandel I, Yoo JU, Johnstone B. Gene delivery to mesenchymal cells [J]. Tans Orthop Res Soc, 1999, 24:112-7.
    43. Mason JM, Breitbart AS, Barcia M, et al. Cartilage and bone regeneration using gene-enhanced tissue engineering [J]. Clin Orthop, 2000, (379 Supp 1):171-8.
    44. Katayama R, Wakitani N, Tsumaki N, et al. Repair of articular cartilage defects in rabbits using CDMP-1 gene-transfected autologous mesenchymal cells derived from bone marrow[J]. Reheumatology (Oxford), 2004, 43(8):980-5.
    45. Gagel RF, Cote GJ. Molecular diagnosis of bone and mineral disorders. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Editted by Favus MJ. Philadelphia: Lippincott Williams & Wilkins. 1999:174-9.
    46. Horwitz E, Prockop D, Fitzpatrick L, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta[J]. Nat Med, 1999, 5(3):309-13
    1. Urist MR, McLean FC. Osteogenic potency and new bone formation by induction in transplants to the anterior chamber of the eye [J]. J Bone Jiont Surg (Am), 1952, 34(3):443-70.
    2. Urist MR. Bone: formation by autoinduction [J]. Science, 1965, 150:893-89.
    3. Urist MR, Silveman BF, Buring K, et al. The bone induction principle [J]. Clin Orthop, 1967, 53:243-83.
    4. Bruder SP, Fox BS. Tissue engineering of bone. Cell based strategies [J]. Clin Orthop Relat Res, 1999,(367 Suppl):S68-83.
    5.张贝利,张伟滨,邓廉夫.同种异体骨移植研究进展.国外医学骨科学分册, 2005, 26(3):164-167.
    6.陈滨.组织工程骨的构建.裴国献,魏宽海,金丹.主编:组织工程学实验技术.北京:人民军医出版社.2006, 233-40.
    7.葛宝丰,张军华,张功林.骨折愈合及其影响.胥少汀,葛宝丰.主编:实用骨科学(第三版).北京:人民卫生出版社.2005,330-47.
    8.窦强兵,孔荣,朱六龙,等.同种异体间充质干细胞复合纤维蛋白修复骨缺损[J].中国矫形外科杂志,2006,14(10):766-68.
    9.周健,戴克戎,汤亭亭.复合骨髓间充质干细胞生物陶瓷修复兔松质骨缺损[J].临床骨科杂志,2003,6(2):97-101.
    10.严孟宁,汤亭亭,朱振安,等.骨形态发生蛋白-2基因治疗对假体-骨界面影响的实验研究[J].中华医学杂志, 2005,85(22):1521-25.
    11. Arinzen TL, Peter SJ, Archambault MP, et al. Allogeneic mensenchymal stem cells regenerate bone in a critical-sized canine segmental defect [J]. J Bone Jiont Surg, 2003, 85(10):1927-1935.
    12. Holmes RE, Hagler HK. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study [J]. Plast Reconstr Surg, 1988, 81(5):662-71.
    13. Daculsi G, Passuti N, Martin S, et al. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study [J]. J Biomed Mater Res, 1990, 24(3):379-96.
    14. Kon E, Maraglia A, Corsi A, et al. Autologus bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones[J]. J Biomed Mater Res, 2000, 49(3):328-337.
    15. Shang Q, Wang Z, Liu W, et al. Tissue-engineered bone repair of sheep cranial defect with autologous bone marrow [J]. J Craniofac Surg, 2001, 12(6):586-93.
    16. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange [J]. Nature, 1974, 247:220-2.
    17.袁捷,殷德民,王敏,等.犬骨髓基质干细胞复合CHA皮下成骨的实验研究[J].中国口腔颌面外科杂志,2005,3(3):207-11.
    18.陈滨,裴国献,王珂,等.组织工程骨修复山羊负重骨大段骨缺损的长期观察[J].南方医科大学学报,2006,26(6):770-3.
    19. Thomson RC, Yaszemski MJ, Power JM, et al. Hydroxyapatite fiber reinforced poly (α-hydroxyester) foams for bone regeneration [J]. Biomaterials, 1998, 19(21):1935-9.
    20. Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering [J]. Biomaterials, 2000, 21(23):2347-59.
    21. Bakos D, Soldan M, Hermadez-Fuentes. Hydroxpapatite collagen hyaluronic acid composite [J]. Biomaterials, 1999, 20(2):191-5.
    22. Holmberg S, Thorngren KG. Preoperative 99mTc-MDP scintimetry of femoral neck fractures [J]. Acta Orthop Scand, 1984, 55(4):430-5.
    23. SUN Mo- yi, DING Hong - cai, MAO Tian - qiu, et al. Radionuclide observation on composite grafts of allogeneic bonematrix gelatin and partially deproteinized xenogeneic bone [J]. Orthop J Chin, 2003,11(12):837-839.
    24. Smeele LE, Hoekstra OS, Winters HA, et al. Clinical effectiveness of 99Tcm-diphosphonate scintigraphy of revascularized iliac crest flaps [J]. Int J Oral Maxillofac Surg, 1996, 25(5):366-9.
    25.杨志明,樊征夫,解慧琪,等.组织工程化人工骨血管化研究[J].中华显微外科杂志, 2002,25(2):119-22.
    26.林红,方涛林,戴文达,等.放射性核素骨显像评价血管化组织工程骨修复兔长段骨缺损[J].中国临床医学,2007,14(3):416-19.
    27.吴雪晖,谢肇,许建中,等.放射性骨显像在组织工程骨修复骨缺损实验中的应用[J].重庆医学,2007,36(9):777-79.
    28. Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-limphocyte proliferation induced by cellular or nonsppeciafic stimuli [J]. Blood, 2000, 99(10):3838-3843.
    29. Bartholomew A, Sturgeon C, Siatskas M, et al. Mensenchymal stem cells suppress limphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol, 2002, 30(1):42-48.
    30. Tsuchida H, Hashimoto J, Crawford E, et al. Engineered allogeneic mensenchymal stem cells repair femental defect in rats [J]. J Orthop Res, 2003, 21(1):44-53.
    31.阳富春,杨志明,周悦婷,等.猕猴组织工程骨异体植入修复骨缺损T淋巴细胞亚群的检测[J].中华实验外科杂志, 2004,21(1):12-14.
    1. Slaets E, Carmeliet G, Naert I, et al. Early cellular responses in cortical bone healing around unloaded titanium implants: an animal study [J]. J Periodontol, 2006, 77(6):1015-24.
    2. Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone mrrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect [J]. Tissue Eng, 1997,3:173-85.
    3. Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defect [J]. J Bone Joint Surg Am, 1998, 80(7):985-96.
    4. Shang Q, Wang Z, Liu W, et al. Tissue-engineered bone repair of sheep cranial defect with autologous bone marrow [J]. J Craniofac Surg, 2001, 12(6):586-93.
    5.祝联,崔磊,王敏,等.应用珊瑚及骨髓基质干细胞复合物修复股骨缺损的实验研究[J].中华骨科杂志,2003,23(8):483-8.
    6. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont, 1998 ,11(5):391-401.
    7. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials, 1999,20(23-24):2311-21.
    8. Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptides premote exclusive interactions with osteoblasts. Biomaterials, 2002 ;23(19):3937-42.
    9. Razzouk S, Brunn JC, Qin C, et al. Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion [J]. Bone, 2002;30(1):40-7.
    10. Barber TA, Golledge SL, Castner DG, et al. Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro [J]. J Biomed Mater Res A, 2003;64(1):38-47.
    11.薛恩兴,徐华梓,彭磊.自体骨髓细胞增强多孔钛碳灰石涂层植入物在兔体内的早期骨整合[J].浙江创伤外科,2007,12(1):3-7.
    12. Breusch SJ, Aldinger PR, Thomsen M, et al. Fixation priciples in total hip arthroplasty. Part I: femroal component [J]. Unfallchirurg, 2000, 103(3):918-931.
    13. Frosch KH, Barvencik F, Lohmann CH, et al. Migration, matrix production and lamellar bone formation of human osteoblat-like cells in porous titanium implants coated by hydroxyapatite [J]. Cells Tissues Org, 2002,170(1):214-227.
    14. Tohma Y, Tanaka Y, Ohgushi H, et al. Early bone in-growth ability of alumina ceramic implants loaded with tissue-engineered bone [J]. J Orthop Res , 2006; 24(4):595-603.
    15. Lan J, Wang Z, Wang Y, et al. The effect of combination of recombinant human bone morphogenetic protein-2 and basic fibroblast growth factor or insulin-like growth factor-I on dental implant osseointegration by confocal laser scanning microscopy [J]. J Periodontol, 2006;77(3):357-63.
    16.梅兴华. rhBMP-2rhbFGF和rhBMP-2rhIGF-I对牙假体周围新骨形成的影响[J].北京口腔医学, 2006;14(3):167-69.
    17.赵晋龙,何黎升,刘宝林,等.钛假体与单纯珊瑚及复合BMP珊瑚代用品结合的实验研究[J].口腔颌面外科杂志, 2003;13(3):193-95.
    18. Soballet K, Hanson ES, Brockstedt RH. Hydorxyapatite coating converts fibrous tissue to bone around loaded implants [J]. J Bone Jiont Surg Br, 1993, 75(2):270-8.
    19. Xi Q, Ma CM, Cao G, et al.Scaning electron microscope study of osteoblast cultivated with coral in vitro [J]. Modern Rehab, 2001, 5(1):62-63.
    20. Damien CJ, Ricci JL, Christel P. Formation of a calcium phosphate-rich layer on absorbable calcium carbon graft substitutes [J]. Calcif Tissue Int, 1994,55 (1):151-158.
    21.陈勤,李世普,合季平,等.多孔β-TCP生物陶瓷骨内植入后的X射线能谱分析[J].生物化学与生物物理学报,1999,31(4):409-414.
    22. Lee IS, Whang CN, Lee GH, et al. Effect of ion beam assist on the information of calcium phosphate film [J],Nuclear Instruments and Methods in physics Research [B],2003,206:522-26.
    23. Johansson C, Laussmaa J, Ask M, ey al. Ultrastructure differences of the interface zone between bone and Ti6Al4V or commercially pure titanium [J]. J Biomed Eng, 1989,11 (1):3-7.
    24.董强,丁中鹃,梁星,等.两种钛种植体骨界面SEM观察和电子探针元素分析[J].口腔颌面修复学杂志,2005, 6(3):176-78.
    25.赵红宝,白薇,崔福斋,等.应用IBAD方法制备纯钛表面多孔TCP/HA涂层材料的微观分析[J].上海口腔医学,2004,23(5):385-88.
    26. Legeros RZ, Craig RG. Strategies to affect bone remodeling osteointegration [J]. J Bone Miner Res, 1993, 8(2):583-96.
    27. Geraledo Gionvanni, Lugero Ms, Guzzo ML, et al. Histomorphometric evaluation of titanium implants in osteoporotic rabbits [J]. Implant Dentistry, 2000,9(4):303-309.
    28. Klawitter JJ, Weinstein AM. An evaluation of porous alumina ceramic dental implants [J]. J Oral Implantol, 1980, 9(1):64-66.
    29. Bobyn JD, Pilliar RM, Cameron HU, et al.The effect of porous surface configuration on the tensile strength of fixation of implants by bone ingrowth [J]. Clin Orthop Relat Res, 1980, 150(1):263-67.
    30. Grassi S, Piattelli A, Ferrari DS, et al. Histologic evaluation of human bone integration on machined and sandblasted acid-etched titanium surfaces in type IV bone [J]. J Oral Implantol, 2007;33(1):8-12.
    31. Borsari V, Fini M, Giavaresi G, et al. Osteointegration of titanium and hydroxyapatite rough surfaces in healthy and compromised cortical and trabecular bone: in vivo comparative study on young, aged, and estrogen-deficient sheep. J Orthop Res, 2007;25(9):1250-60.
    1.胡稷杰,金丹,金大地,等.负载BMP的新型组织工程骨的构建及骨缺损的修复实验[J].第一军医大学学报,2005, 25(11):1369-1372.
    2.陈克明,葛宝丰,刘兴炎,等.骨髓间充质干细胞复合骨形态发生蛋白和纤维蛋白修复节段性骨缺损[J].骨与关节损伤杂志,2004,19(12):820-822.
    3. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells [J]. Gene, 2006, 366(1):51-57.
    4. Blom AW, Cunningham JL, Hughes G, et al. The compatibility of ceramic bone graft substitutes as allograft extenders for use in impaction grafting of the femur [J]. J Bone Joint Surg (Br),2005,87:421-25.
    5. Ducy P, Zhang R, Geoffr oy V, et al. Osf2/Cbfa1: a transcriptional activactor of osteoblast differentiation. Cell, 1997, (5):747-54.
    6. Blokhuis TJ, den Boer FC, Bramer JA, et al. Biomechnical and histological aspects of fracture healing, stimulated with ostogenic protein-1. Biomaterial, 2001, 22:725-730.
    7.何爱珊,廖威明,王迎军,等.生物活性梯度HA涂层人工关节的生物力学研究[J].中国矫形外科杂志, 2006;14(15):1166-68.
    8.王岩,王松涛,崔健,等.重组人骨形态发生蛋白-2用于人工关节生物固定方法的研究[J].中华外科杂志,2004,42(4):240-43.
    9.张煜,范卫民,马益民.骨形态发生蛋白对兔人工关节周围骨长入的影响[J].江苏医药,2005,31(8):591-60.
    10.廖湘凌,陈绍维,李声伟,等.复合牛骨形成蛋白多孔中空种植体成骨效应的研究[J].华西口腔医学杂志, 2003,21(6):428-31.
    11.梅兴华. rhBMP-2rhbFGF和rhBMP-2rhIGF-I对牙植入体周围新骨形成的影响[J].北京口腔医学, 2006;14(3):167-69.
    12. Lan J, Wang Z, Wang Y, et al. The effect of combination of recombinant human bone morphogenetic protein-2 and basic fibroblast growth factor or insulin-like growth factor-I on dental implant osseointegration by confocal laser scanning microscopy [J]. J Periodontol, 2006;77(3):357-63.
    13. Sachse A, Wagner A, Keller M, et al. Osteointegration of hydroxyapatite-titaniumimplants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep [J]. Bone, 2005; 37(5):699-710.
    14. Becker J, Kirsch A, Schwarz F, et al. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs [J]. Clin Oral Investig, 2006;10(3):217-24.
    15. Hassan AH, Evans CA, Zaki AM, et al. Use of bone morphogenetic protein-2 and dentin matrix protin-1 to enhance the osteointegration of the implant system [J]. Connect Tissue Res, 2003, 44:30-41.
    16. Sykaras N, Triplett RG, Nunn ME, et al. Effect of recombinant human bone morphogenetic protein-2 on bone regeneration and osteointegration of dental implants [J]. Clin Oral Implants Res, 2001, 12:339-49.
    17. Esenwein SA, Esenwein S, Herr G, et al. Osteogenetic activity of BMP-3 coated titanium specimens of deifferent surface texture at the orthotopic implant bed of giant rabbits [J]. Chirurg, 2001, 72:1360-68.
    18.彭磊,胡蕰玉,徐华梓,等.活性人工骨填充修复兔涂层多孔钛周围骨缺损的生物固定效果[J].中华创伤杂志,2006,22(6):447-50.
    19.赵晋龙,何黎升,刘宝林,等.钛植入体与单纯珊瑚及复合BMP珊瑚代用品结合的实验研究[J].口腔颌面外科杂志, 2003;13(3):193-95.
    20. Bragdon CR, Doherty AM, Rubash HE, et al. The efficacy of BMP-2 to induce bone ingrowth in a total hip replacement model [J]. Clin Orthop, 2003, 417:50-61.
    21. Koempel JA, Patt BS, O’Grady K, et al.The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implant with bone [J]. J Biomed Mater Res, 1998, 41:359-363.
    22. Tohma Y, Tanaka Y, Ohgushi H, et al. Early bone in-growth ability of alumina ceramic implants loaded with tissue-engineered bone [J]. J Orthop Res , 2006; 24(4):595-603.
    23.严孟亭,汤亭亭,朱振安,等.骨形态发生蛋白-2基因治疗对假体-骨界面影响的研究[J].中华医学杂志,2005,85(2):1521-1525.
    24. van der Donk S, Buma P,Slooff ML, et al. Histologic and mechanical evaluation of impaction grafting for femoral component revision in patients [J]. Clin Orthop, 2002, 396:131-141.
    1.郭艾,王志义,李强,等.全髋关节置换术后的中远期疗效[J].中华创伤骨科杂志,2005,11(7):1021-1024.
    2. Duyck J, Vandamme K, Geris L, et al. The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants [J]. Arch Oral Biol, 2006, 51(1):1-9.
    3.王野平,李望云.假体-骨组织界面微动磨损机理的实验研究[J].医用生物力学, 2003,18(1):23-27.
    4.涂文,袁强华.不同表面假体对骨整合的影响[J].实用临床医学, 2006,6(4):138-42.
    5.胡航.假体表面粗糙度及其对假体骨界面生物学特性影响的研究进展[J].国外医学口腔医学分册, 2004,3(31):204-206.
    6. Shalabi MM, Gortemaker A, Van't Hof MA, et al. Implant surface roughness and bone healing: a systematic review [J]. J Dent Res, 2006,85(6):496-500.
    7. Schneider GB, Perinpanayagam H, Clegg M, et al. Implant surface roughness affects osteoblast gene expression [J]. J Dent Res, 2003,82(5):372-6.
    8. Colnot C, Romero DM, Huang S, et al. Molecular analysis of healing at a bone-implant interface [J]. J Dent Res, 2007,86(9):862-7.
    9. Marchisio M, Di Carmine M, Pagone R, et al. Implant surface roughness influences osteoclast proliferation and differentiation [J]. J Biomed Mater Res B Appl Biomater , 2005,75(2):251-6.
    10. Kapanen A, Kinnunen A, Ryhanen J, et al. TGF-beta1 secretion of ROS-17/2.8 cultures on NiTi implant material [J]. Biomaterials, 2002,23(16):3341-6.
    11. Baschong W, Jaquiery C, Martin I, et al. Surface-induced modulation of human mesenchymal progenitor cells. An in vitro model for early implant integration [J]. Schweiz Monatsschr Zahnmed, 2007, 117(9):906-10.
    12. Sollazzo V, Pezzetti F, Scarano A, et al. Anatase coating improves implant osseointegration in vivo [J]. J Craniofac Surg, 2007,18(4):806-10.
    13. Franchi M, Bacchelli B, Giavaresi G, et al. Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis in sheep [J]. J Periodontol, 2007,78(5):879-88.
    14.李德华,刘宝林,吴军正,等.改良喷砂表面影响牙假体骨结合形式的体外实验研究[J].现代口腔医学杂志, 2002,16(5):391-92.
    15. Ogawa T, Nishimura I. Genes differentially expressed in titanium implant healing [J]. J Dent Res, 2006,85(6):566-70.
    16. Klokkevold PR, Johnson P, Dadgostari S, et al. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit [J]. Clin Oral Implants Res, 2001,12(4):350-7.
    17. Oates TW, Valderrama P, Bischof M, et al. Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study [J]. Int J Oral Maxillofac Implants, 2007,22(5):755-60.
    18. [18] Grassi S, Piattelli A, Ferrari DS, et al. Histologic evaluation of human bone integration on machined and sandblasted acid-etched titanium surfaces in type IV bone [J]. J Oral Implantol, 2007,33(1):8-12.
    19. Giordano C, Sandrini E, Busini V, et al. A new chemical etching process to improve endosseous implant osseointegration: in vitro evaluation on human osteoblast-like cells [J]. Int J Artif Organs, 2006,29(8):772-80.
    20. Romanos G, Crespi R, Barone A, et al. Osteoblast attachment on titanium disks after laser irradiation [J]. Int J Oral Maxillofac Implants, 2006, 21(2):232-6.
    21. Kim YD, Kim SS, Hwang DS, et al. Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats [J]. Lasers Surg Med, 2007, 39(5):441-50.
    22. Jakse N, Payer M, Tangl S, et al. Influence of low-level laser treatment on bone regeneration and osseointegration of dental implants following sinus augmentation. An experimental study on sheep [J]. Clin Oral Implants Res, 2007,18(4):517-24.
    23. Khadra M. The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies [J]. Swed Dent J Suppl, 2005, (172):1-63.
    24. Salina S, Maiorana C, Iezzi G, et al. Histological evaluation, in rabbit tibiae, of osseointegration of mini-implants in sites prepared with Er: YAG laser versus sites prepared with traditional burs [J]. J Long Term Eff Med Implants, 2006,16(2):145-56.
    25. Kesler G, Romanos G, Koren R. Use of Er: YAG laser to improve osseointegration of titanium alloy implants--a comparison of bone healing [J]. Int J Oral Maxillofac Implants, 2006,21(3):375-9.
    26. [26]张树标,朱健,刘江峰,等. He-Ne激光影响纯钛假体骨性愈合的实验研究[J].中国口腔种植学杂志, 2001,6(1):4-6.
    27. Giordano C, Chiesa R, Sandrini E, et al. Physical and biological characterizations of a novel multiphase anodic spark deposition coating to enhance implant osseointegration [J]. J Mater Sci Mater Med, 2005, 16(12):1221-9.
    28. Takemoto M, Fujibayashi S, Neo M, et al. Mechanical properties and osteoconductivity of porous bioactive titanium[J]. Biomaterials, 2005, 26(30):6014-23.
    29. Xue W, Liu X, Zheng X, et al. In vivo evaluation of plasma-sprayed titanium coating after alkali modification [J]. Biomaterials, 2005,26(16):3029-37.
    30. Orsini G, Assenza B, Scarano A, et al. Surface analysis of machined versus sandblasted and acid-etched titanium implants [J]. Int J Oral Maxillofac Implants, 2000 ,15(6):779-84.
    31. Hamdan M, Blanco L, Khraisat A, et al. Influence of titanium surface chargeon fibroblast adhesion [J]. Clin Implant Dent Relat Res, 2006,8(1):32-8.
    32.贾国栋.金属基底牙假体表面陶瓷类涂层的材料学研究进展[J].口腔颌面外科杂志, 2004,1(14):74-78.
    33.何爱珊,廖威明,王迎军,等.生物活性梯度HA涂层人工关节的生物力学研究[J].中国矫形外科杂志, 2006,14(15):1166-68.
    34. Nilsson KG, Henricson A, Norgren B, et al. Uncemented HA-coated implant is the optimum fixation for TKA in the young patient [J]. Clin Orthop Relat Res , 2006, 448:129-39.
    35. Simunek A, Kopecka D, Cierny M, et al. A six-year study of hydroxyapatite-coated root-form dental implants [J]. West Indian Med J, 2005, 54(6):393-7.
    36. Reikeras O, Johansson CB, Sundfeldt M. Hydroxyapatite enhances long-term fixation of titanium implants [J]. J Long Term Eff Med Implants, 2006,16(2):165-73.
    37. Trisi P, Keith DJ, Rocco S. Human histologic and histomorphometric analyses of hydroxyapatite-coated implants after 10 years of function: a case report [J]. Int J Oral Maxillofac Implants, 2005,20(1):124-30.
    38. Iezzi G, Scarano A, Petrone G, et al. Two human hydroxyapatite-coated dental implants retrieved after a 14-year loading period: a histologic and histomorphometric case report [J]. J Periodontol, 2007,78(5):940-7.
    39. Borsari V, Fini M, Giavaresi G, et al. Osteointegration of titanium and hydroxyapatiterough surfaces in healthy and compromised cortical and trabecular bone: in vivo comparative study on young, aged, and estrogen-deficient sheep [J]. J Orthop Res, 2007,25(9):1250-60.
    40.赵宝红,白薇,崔福斋,等.应用IBAD方法制备纯钛表面多孔TCP/HA涂层材料的微观分析[J].上海口腔医学, 2004,13(5):385-88.
    41.杨成,东耀峻,孟丽娥,等.假体磷酸钙溶胶表涂与早期骨整合研究[J].中华实验外科杂志, 2005,22(7):837-38.
    42. Gineste L, Gineste M, Ranz X, et al. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs [J]. J Biomed Mater Res, 1999,48(3):224-34.
    43. Lee SH, Kim HW, Lee EJ, et al. Hydroxyapatite-TiO2 hybrid coating on Ti implants [J]. J Biomater Appl, 2006,20(3):195-208.
    44. Lynn AK, DuQuesnay DL. Hydroxyapatite-coated Ti-6Al-4V part 2: the effects of post-deposition heat treatment at low temperatures [J]. Biomaterials, 2002 , 23(9):1947-53.
    45.阮世红,武剑,董旭东.氟磷灰石涂层氮化硅假体的动物实验研究[J].中国口腔种植学杂志, 2005,10(1):5-8.
    46. Lin CM, Yen SK. Characterization and bond strength of electrolytic HA/TiO2 double layers for orthopaedic applications [J]. J Mater Sci Mater Med, 2005,16(10):889-97.
    47. Smith LJ, Swaim JS, Yao C, et al. Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium for orthopedic applications [J]. Int J Nanomedicine, 2007, 2(3):493-9.
    48.樊洪,陈治清,杨连举.钛假体复合硫酸软骨素A对骨愈合的影响[J].口腔颌面修复学杂志, 2003,4(4):205-08.
    49. Areva S, Aaritalo V, Tuusa S, et al. Sol-Gel-derived TiO2-SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response [J]. J Mater Sci Mater Med, 2007,18(8):1633-42.
    50. Ohtsu N, Sato K, Yanagawa A, et al. CaTiO(3) coating on titanium for biomaterial application--optimum thickness and tissue response [J]. J Biomed Mater Res A, 2007,82(2):304-15.
    51. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces[J]. Int J Prosthodont, 2006,19(4):319-28.
    52. Sul YT, Jeong Y, Johansson C, et al. Oxidized, bioactive implants are rapidly and strongly integrated in bone. Part 1-experimental implants [J]. Clin Oral Implants Res, 2006,17(5):521-6.
    53.马威,刘宝林,熊信柏,等.钛假体表面微弧氧化处理后的生物力学及组织形态学研究[J].现代口腔医学杂志, 2005,19(2):36-9。
    54. Goene RJ, Testori T, Trisi P. Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae [J]. Int J Periodontics Restorative Dent, 2007,27(3):211-9.
    55. Auernheimer J, Zukowski D, Dahmen C, et al. Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides [J]. Chembiochem, 2005,6(11):2034-40.
    56. Schuler M, Owen GR, Hamilton DW, et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study [J]. Biomaterials, 2006,27(21):4003-15.
    57. Bernhardt R, van den Dolder J, Bierbaum S, et al. Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR muCT and histology [J]. Biomaterials, 2005,26(16):3009-19.
    58. Reyes CD, Petrie TA, Burns KL, et al. Biomolecular surface coating to enhance orthopaedic tissue healing and integration [J]. Biomaterials, 2007, 28(21):3228-35.
    59. Barber TA, Ho JE, De Ranieri A, et al. Peri-implant bone formation and implant integration strength of peptide-modified p (AAM-co-EG/AAC) interpenetrating polymer network-coated titanium implants [J]. J Biomed Mater Res A, 2007,80(2):306-20.
    60. Liu Y, de Groot K, Hunziker EB. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model [J]. Bone, 2005,36(5):745-57.
    61. Santin M, Rhys-Williams W, O'Reilly J, et al. Calcium-binding phospholipids as a coating material for implant osteointegration[J]. J R Soc Interface,2006,3(7):277-81.
    62. Schmidmaier G, Wildemann B, Lubberstedt M, et al. IGF-I and TGF-beta 1 incorporated in a poly (D,L-lactide) implant coating stimulates osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation in cell culture[J]. J Biomed Mater Res( B Appl Biomater), 2003, 65(1):157-62.
    63. Wildemann B, Lubberstedt M, Haas NP, et al. IGF-I and TGF-beta 1 incorporated in a poly (D,L-lactide) implant coating maintain their activity over long-term storage-cell culture studies on primary human osteoblast-like cells[J]. Biomaterials, 2004 ,25(17):3639-44.
    64. Anitua EA. Enhancement of osseointegration by generating a dynamic implant surface [J]. J Oral Implantol, 2006,32(2):72-6.
    65. Sachse A, Wagner A, Keller M, et al. Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep [J]. Bone, 2005, 37(5):699-710.
    66. Becker J, Kirsch A, Schwarz F, et al. Bone apposition to titanium implants biocoated with recombinant human bone morphogenetic protein-2 (rhBMP-2). A pilot study in dogs [J]. Clin Oral Investig, 2006,10(3):217-24.
    67. Broderick E, Infanger S, Turner TM, et al. Depressed bone mineralization following high dose TGF-beta1 application in an orthopedic implant model [J]. Calcif Tissue Int, 2005,76(5):379-84.
    68.黄岚峰,孙树东,刘建国,等.兔骨髓间质干细胞的成骨诱导及鉴定[J].吉林大学学报(医学版), 2003,29(6):738-41.
    69.李树春,陈钢,李文革,等.兔骨髓基质细胞的体外分离培养及诱导成骨的实验研究[J].中国实验诊断学, 2007,11(4):511-14.
    70.殷晓雪,陈仲强,郭昭庆,等.人骨髓间充质干细胞定向诱导分化为成骨细胞及其鉴定[J].中国修复重建外科杂志, 2004,18(2):88-91.
    71. Tohma Y, Tanaka Y, Ohgushi H, et al. Early bone in-growth ability of alumina ceramic implants loaded with tissue-engineered bone [J]. J Orthop Res , 2006, 24(4):595-603.
    72.曹颖光,王戎,宋珂,等.转化生长因子-β1基因治疗对假体周骨质疏松的影响[J].华西口腔医学杂志, 2007,25(4):335-38.
    73.王荣,刘华松,张敏,等.骨髓基质细胞及诱导后成骨细胞在钛合金表面粘附率的研究[J].北京口腔医学, 2006,14(2):88-91.
    74. Zhou B, Cao YG, Yuan YX. [The evolvement of the theory of dental implant-bone interface] [J]. Zhonghua Yi Shi Za Zhi, 2004,34(3):170-2.
    75. Slaets E, Carmeliet G, Naert I, et al. Early cellular responses in cortical bone healing around unloaded titanium implants: an animal study [J]. J Periodontol, 2006 ,77(6):1015-24.
    76. Nakada H, Sakae T, LeGeros RZ, et al. Early tissue response to modified implant surfaces using back scattered imaging [J]. Implant Dent, 2007,16(3):281-9.
    77. Davies JE. Mechanisms of endosseous integration [J]. Int J Prosthodont, 1998,11(5):391-401.
    78. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface [J]. Biomaterials, 1999,20(23-24):2311-21.
    79. Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts [J]. Biomaterials, 2002,23(19):3937-42.
    80. Duong LT, Lakkakorpi P, Nakamura I, et al. Integrins and signaling in osteoclast function [J]. Matrix Biol, 2000,19(2):97-105.
    81. Barber TA, Golledge SL, Castner DG, et al. Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro [J]. J Biomed Mater Res A, 2003,64(1):38-47.
    82. Dettin M, Conconi MT, Gambaretto R, et al. Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials [J]. J Biomed Mater Res, 2002,60(3):466-71.
    83. Chicurel ME, Singer RH, Meyer CJ, et al. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions [J]. Nature, 1998,392(6677):730-3.
    84. Razzouk S, Brunn JC, Qin C, et al. Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion [J]. Bone, 2002,30(1):40-7.
    85. Jakobsen SS, Larsen A, Stoltenberg M, et al. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages[J]. Eur Cell Mater, 2007,14:45-54. discussion 54-5.
    86. Georgiopoulos B, Kalioras K, Provatidis C, et al. The effects of implant length and diameter prior to and after osseointegration: a 2-D finite element analysis [J]. J Oral Implantol, 2007,33(5):243-56.
    87. Meijer GJ, Cune MS, van Dooren M, et al. A comparative study of flexible (Polyactive) versus rigid (hydroxylapatite) permucosal dental implants. I. Clinical aspects [J]. J Oral Rehabil, 1997,24(2):85-92.
    88. Koreny T, Tunyogi-Csapo M, Gal I, et al. The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis [J]. Arthritis Rheum, 2006,54(10):3221-32.
    89.张立海,张其清.骨组织工程中成骨细胞与细胞因子的研究[J].中国医学科学院学报, 2001,23(6):631-37.
    90. Lamberg A, Schmidmaier G, Soballe K, et al. Locally delivered TGF-beta1 and IGF-1 enhance the fixation of titanium implants: a study in dogs [J]. Acta Orthop, 2006,77(5):799-805.
    91.梅兴华. rhBMP-2rhbFGF和rhBMP-2rhIGF-I对牙假体周围新骨形成的影响[J].北京口腔医学, 2006,14(3):167-69.
    92. Zhang H, Aronow MS, Gronowicz GA. Transforming growth factor-beta 1 (TGF-beta1) prevents the age-dependent decrease in bone formation in human osteoblast/implant cultures [J]. J Biomed Mater Res A, 2005,75(1):98-105.
    93.严孟亭,汤亭亭,朱振安,等.骨形态发生蛋白-2基因治疗对假体-骨界面影响的研究[J].中华医学杂志,2005,85(2):1521-25.
    94. Lan J, Wang Z, Wang Y, et al. The effect of combination of recombinant human bone morphogenetic protein-2 and basic fibroblast growth factor or insulin-like growth factor-I on dental implant osseointegration by confocal laser scanning microscopy [J]. J Periodontol, 2006,77(3):357-63.
    95.赵晋龙,何黎升,刘宝林,等.钛假体与单纯珊瑚及复合BMP珊瑚代用品结合的实验研究[J].口腔颌面外科杂志, 2003,13(3):193-95.
    96.牟明威,张新,徐莘香,等.假体四种表面处理的体内植入实验[J].中华骨科杂志, 2004,24(3):179-83.
    97. Feloutzis A, Lang NP, Tonetti MS, et al. IL-1 gene polymorphism and smoking as risk factors for peri-implant bone loss in a well-maintained population [J]. Clin Oral Implants Res, 2003,14(1):10-7.
    98. Jansson H, Hamberg K, De Bruyn H, et al. Clinical consequences of IL-1 genotype on early implant failures in patients under periodontal maintenance [J]. Clin Implant Dent Relat Res, 2005,7(1):51-9.
    99. Lin YH, Huang P, Lu X, et al. The relationship between IL-1 gene polymorphism and marginal bone loss around dental implants [J]. J Oral Maxillofac Surg, 2007,65(11):2340-4.
    100.Schmidt C, Steinbach G, Decking R, et al. IL-6 and PGE2 release by human osteoblastson implant materials [J]. Biomaterials, 2003,24(23):4191-6.
    101.Smith MV, Lee MJ, Islam AS, et al. Inhibition of the PI3K-Akt signaling pathway reduces tumor necrosis factor-alpha production in response to titanium particles in vitro [J]. J Bone Joint Surg Am, 2007,89(5):1019-27.
    102.Qian Y, Zeng BF, Zhang XL, et al. Substance P augments PGE2 and IL-6 production in titanium particles-stimulated fibroblasts from hip periprosthetic membrane[J]. J Biomed Mater Res A, 2007,83(2):401-6.
    103.Jensen TB, Overgaard S, Lind M, et al. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs [J]. J Bone Joint Surg Br, 2007,89(1):121-6.
    104.Holding CA, Findlay DM, Stamenkov R, et al. The correlation of RANK, RANKL and TNF-alpha expression with bone loss volume and polyethylene wear debris around hip implants [J]. Biomaterials, 2006,27(30):5212-9.
    105.Tresguerres IF, Blanco L, Clemente C, et al. Effects of local administration of growth hormone in peri-implant bone: an experimental study with implants in rabbit tibiae [J]. Int J Oral Maxillofac Implants, 2003,18(6):807-11.
    106.Liu YR, Xue M, Qian YF. [The research on GH composite material of artificial bone implant in animal] [J]. Shanghai Kou Qiang Yi Xue, 1998,7 (2):70-2.
    107.Giro G, Sakakura CE, Goncalves D, et al. Effect of 17beta-estradiol and alendronate on the removal torque of osseointegrated titanium implants in ovariectomized rats [J]. J Periodontol, 2007,78(7):1316-21.
    108.戚孟春,周秀青,刘猛,等.雌激素对骨质疏松时假体骨愈合的影响Ⅱ骨计量学和电镜观察[J].中国口腔种植学杂志, 2002,7(3):107-07.
    109.李晓红,任辉,唐卫峰.雌激素及钙剂对去势大鼠假体界面骨愈合影响的相关研究[J].中国口腔种植学杂志, 2006,11(4):151-54.
    110.Nosaka Y, Tachi Y, Shimpuku H, et al. Association of calcitonin receptor gene polymorphism with early marginal bone loss around endosseous implants [J]. Int J Oral Maxillofac Implants, 2002,17(1):38-43.
    111.Cho P, Schneider GB, Kellogg B, et al. Effect of glucocorticoid-induced osteoporotic-like conditions on osteoblast cell attachment to implant surface microtopographies [J]. Implant Dent, 2006,15(4):377-85.
    112.Gabet Y, Muller R, Levy J, et al. Parathyroid hormone 1-34 enhances titanium implantanchorage in low-density trabecular bone: a correlative micro-computed tomographic and biomechanical analysis [J]. Bone, 2006,39(2):276-82.
    113.Dayer R, Badoud I, Rizzoli R, et al. Defective implant osseointegration under protein undernutrition: prevention by PTH or pamidronate [J]. J Bone Miner Res, 2007,22(10):1526-33.
    114.Millett PJ, Allen MJ, Bostrom MP. Effects of alendronate on particle-induced osteolysis in a rat model [J]. J Bone Joint Surg Am, 2002,84-A(2):236-49.
    115.Nehme A, Maalouf G, Tricoire JL, et al. [Effect of alendronate on periprosthetic bone loss after cemented primary total hip arthroplasty: a prospective randomized study] [J]. Rev Chir Orthop Reparatrice Appar Mot, 2003,89(7):593-8.
    116.Nishioka T, Yagi S, Mitsuhashi T, et al. Alendronate inhibits periprosthetic bone loss around uncemented femoral components [J]. J Bone Miner Metab, 2007,25(3):179-83.
    117.Chacon GE, Stine EA, Larsen PE, et al. Effect of alendronate on endosseous implant integration: an in vivo study in rabbits [J]. J Oral Maxillofac Surg, 2006,64(7):1005-9.
    118.Bragdon CR, Doherty AM, Jasty M, et al. Effect of oral alendronate on net bone ingrowth into canine cementless total hips [J]. J Arthroplasty, 2005,20(2):258-63.
    119.陈海军,刘宝林.补锌对假体骨整合率影响的实验研究[J].使用口腔医学杂志,2002,18(4):332-34.
    120.Drinias V, Granstrom G, Tjellstrom A. High age at the time of implant installation is correlated with increased loss of osseointegrated impants in the temporal bone [J]. Clin Impant Dent Relat Res, 2007, 9(2):94-9.
    121.Moriya K, Maruo Y, Minagi S. Does rotational strain at screw tightening affect the attainment or maintenance of osseointegration? [J]. Clin Oral Implants Res, 2006,17(4):451-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700