用户名: 密码: 验证码:
Ti6Al4V高速火焰喷涂仿生生物涂层制备及特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物涂层设计模仿人骨结构、功能和成分,采用高速火焰喷涂方法,将底层和表层材料复合,获得Ti6Al4V表面仿生生物涂层,即人工骨涂层材料。涂层的线膨胀系数、孔隙度、生物活性、涂层晶粒尺寸、骨性结合均实现梯度变化,底层和工作层皆具有人工骨功能。
     喷涂材料底层以钛为主,添加底釉生物玻璃(G),工作层粉体为HA,添加生物活性玻璃(BG),研究粉体粒度和添加剂加入量对涂层特性的影响。采用机械拉伸法测定涂层结合强度;基于掠入射X射线衍射方法测量涂层的宏观残余应力;在模拟体液环境下,对涂层进行极化曲线测定,研究涂层腐蚀行为;采用TG-DSC研究粉体和涂层析晶、分解和晶化处理温度,计算粉体的析晶活化能;通过XRD、SEM、TEM、AFM等手段研究涂层组织结构和界面特性;采用体外模拟研究底层和工作层表面类骨磷灰石的生长及涂层材料与成骨细胞的生物学行为;以犬为种植对象研究种植体的骨性连接行为。
     生物涂层的结合强度受喷涂粉体粒度、G和BG添加量、晶化处理工艺影响。其中,80wt.%Ti-20wt.%G底层,80wt.%HA-20wt.%BG为工作层,晶化处理后涂层结合强度分别为52MPa和33MPa,达到口腔种植体要求的标准。喷涂生物涂层产生残余压应力,压应力的大小与喷涂材料及材料的粒子尺寸有关。压应力的原因主要是喷射冲击残余应力。通过G和BG调整涂层线膨胀系数,使涂层的热应力下降。涂层断裂形式为层片剥离、粒子内部开裂和粒子间断裂。
     生物涂层组织结构和界面特征受喷涂送粉方式、G和BG粒度、添加量、晶化处理影响。在Ti粉中添加20wt.%的G,Ti/G复合析晶活化能高于单体G;在HA中加入20 wt.%的BG, HA/BG复合,使析晶活化能进一步降低。涂层经晶化处理后,在Ti6Al4V基体与底层界面结合处存在3μm左右过渡带,伴随有微米和纳米粒子析出,使基体与喷涂界面接触部位通过氧化、扩散和玻璃浸润实现冶金结合。Ti/G底层有R-TiO2、A-TiO2、Na2Ti6O13相沿涂层裂纹处析出,起到愈合作用。HA/BG工作层也同时析出纳米级和微米级的HA和Na2Ca(PO4)F,增加了表层的生物活性。
     在体外模拟环境下对涂层表面类骨磷灰石的生长规律研究得出,Ti/G涂层中TiO2能够为类骨磷灰石提供成核位置形成针状纳米级类骨磷灰石(CHA)。工作层中BG的加入使涂层表面溶解倾向加大,有利于磷灰石的生长。以8Ti2G为底层,8H2B为工作层形成的生物复合涂层具有抗电化学腐蚀能力,而且对成骨细胞的生物学行为无干扰、无抑制,能促进成骨细胞的黏附、生长。以犬为种植对象,种植体的骨性结合能力为8H2B>HA>8Ti2G。8H2B中由于BG活性高、溶解快,使涂层和体液中Ca-P向界面迁移,形成微孔为成骨细胞向涂层中生长提供通道和生长空间,利于在种植材料表面形成CHA,达到生物化学键合,从而增加种植体初期稳定性。
High velocity flame spraying was adopted in this study to prepare biocoating on Ti6Al4V substrate. Bio-coating was designed on the basis of simulating the structure, the function and the chemical composition of the natural bone. Ti6Al4V with a surface biomemtic coating, i.e., coating materials of artificial bone, in which a bottom layer and a surface layer were integrated, was prepared by high velocity flame spraying. The coating has characteristics of gradient change of linear expansion coefficient, controlled porosity, bioactivity and crystal size. Both the bottom layer and the working layer have the function of artificial bone, insuring the service life and the stability of implant at initial stage.
    
     The coating material for the bottom layer was mainly pure titanium powder with addition of glaze glass (G). The coating material for the working layer was mainly HA powder with doped bioactive glass (BG). Effects of the powder size and the additive content on the characteristics of the coatings were investigated. The bonding strength of the coatings was tested by tensile testing. The residual macro-stress in the coatings was characterized by grazing incidence X-ray diffraction. Polarization curves were measured to study the corrosion behavior of the coatings in simulated body fluid (SBF) environment. By the use of TG-DSC, crystallization, docomposition and heat treatment temperature of the powder and coatings were determined. The crystallization activation energies of powders were also calculated. The microstructure and the interface characteristics of the coatings were examined by means of XRD, SEM, TEM and AFM. The growth of bone-like apatite on the surface of coatings and the biological behavior of coating materials and osteoblast were investigated in vitro. The osseointegration behavior on the implants inserted into dogs was studied in vivo.
     The bonding strength of biocoating was affected by the granularity of the spraying powder, the addition content of G and BG, and the crystallization process. The bonding strength of the bottom layer (80wt.%Ti-20wt.%G) and the working layer(80 wt.% HA-20wt.%BG), were 52MPa and 33MPa, respectively, meeting the standard requirements for dental implants. The residual compressive stress in the coatings has relationship to the sprayed materials and the particle size. The spraying impact stress plays an important role in the generation of the residual stress. The addition of G and BG powder adjusts the linear coefficient of thermal expansion and reduces the heat stress in the coating. The fracture modes are manly spalling, and breaking in and between particles.
     Powder feeding mode, granularity and additive content of the powder and crystallization treatment affect the structural and interfacial characteristics of the coatings. The crystallization dynamic calculation shows that G and BG materials have a low active energy of crystallization. The addition of 20 wt.% G into Ti increases the activation energy of pure G. The addition of 20 wt.% BG into HA reduces the crystallization activation energy further. After crystallization treatment, there exists a transitional zone with 3μm in width, in which microsize and nanosize particles were precipitated, at the interface between substrate and the bottom layer, achievingthe metallurgical bonding between the substrate and the coating through oxidation, diffusion reaction and glass soakage. Anatase TiO2, rutile TiO2, and Na2Ti6O13 were precipitated in cracks in Ti/G bottom layer, healing up the cracks. The bioactivity of the coating surface was increased by the precipitation of HA and Na2Ca(PO4) with size from nanometer to micron.
     The study on the growth of bone-like apatite in vitro shows that TiO2 in bottom glaze glass can provide nucleation site for apatite, and bone-like apatite with needle-like shape can be formed. BG in the working layer increases the dissolution trend of the coating, contributing to the growth of apatite. The coating, with 8Ti2G as bottom layer and 8H2B as working layer, has electrochemical corrosion resistance. Both 8Ti2G and 8H2B have no disturbance and inhibition for the biological behavior of osteoblasts, and can facilitate osteoblasts attachment and proliferation. The osseointegration ability of dog’s implant was followed by 8H2B>HA>8Ti2G. BG in 8H2B shows the high activity and the fast dissolution, making Ca.and P ions migrating towards interface. Then, the micropores were formed, providing the channels and spaces for osteoblasts, which contributs to the formation of CHA on the implant materials surface. Therefore, a chemical bonding can be formed, increasing the stability of the implants at initial stage.
引文
1 俞耀庭,张兴栋. 生物医用材料. 天津大学出版社, 2000:2-15
    2 崔福斋,李艳,李恒德. 国内外生物医用材料产业分析.新材料产业,2005(5):48-52
    3 张兴栋. 如何应对生物医用材料产业挑战. 新材料产业,2005(12):1-7
    4 S. Radin, P. Ducheyne. The Effect of Plasma Sprayed Induced Changes in the Characteristics on the in Vitro Stability of Calcium Phosphate Ceramics. Mater Sci: Mater Med, 1990, 1:119-24
    5 C.P.A.T. Klein, P. Patka, H.B.M. Van der lubbe, J.G.C. Wolke, K. de Groot. Plasma Sprayed Coating of Tetracalcium Phosphate, Hydroxyapatite, and α-TCP on Titanium Alloy: An Interfacial Study. J. Biomed. Mater. Res., 1991, 25:53-65
    6 H. Hase. Bilateral Open Laminoplasty using Ceramic Laminas for Cervical Myelopathy. Spine. 1991, 16(11):1269-76
    7 成令忠. 组织学与胚胎学. 人民卫生出版社, 1993:89-93
    8 L.L. Hench, J. Wilson. Surface-active Biomaterls. Science. 1984, 226:630-636
    9 J.K. West, Z.B. Fu, Y.C. Cheng. L.L. Hench. Non-Cryst Solids. 1990,
    121:51-55
    10 山口乔, 柳田博明, 牧岛亮男, 青木秀希. 生物陶瓷. 化学工业出版社, 1992: 68-76
    11 J. L. Lacout. Calcium Phosphate as Bioceramics in Biomaterials: Hard Tissue Repair and Replacement. Elsevier, 1992: 81-95
    12 B. Ocardi, U.E. Pazzaglia, C. Gabbi, B. Profilo. Thermal Behaviour of Hydroxyapatite Intended for Medical Applications. Biomaterials. 1993, 14: 437-441
    13 E. Pauhiu, T.K. Chaki. Sintering Behaviour and Mechanical Properties of Hydroxyapatite and Dicalcium Phosphate. Mate Sci: Mater Med, 1993, 3(2): 150-158
    14 P.V. Riboud. Composition and Stability of Apatites in the System CaO-P2O5-Iron Oxide-H2O at High Temperature. Ann Chim, 1973, 8: 381-390
    15 J. Zhou, X. Zhang, J. Chen, S. Zeng, K. de Groot. High Temperature Characterisitics of Synthetic Hydroxyapatite. Mater Sci: Mater Med, 1993, 4: 83-85
    16 J. Chen, W. Tong, C. Yang, J. Feng, X. Zhang. Effect of Atmosphere on Phase Transformation in Plasma-Sprayed Hydroxyapatite Coatings during Heat Treatment. Biomed Mater Res. 1997, 43:15-20
    17 L.L. Hench. Bioceramics. From Concept to Clinic.America Ceramic Society, 1991, 74(7): 14871-1510
    18 P. Ducheyne, S. Radin, L. King. The Effect of Calcium Phosphate Ceramic Composition and Structure on in Vitro Behavior. I. Dissolution. Biomed Mater Res. 1993, 27:1:25
    19 G. Daculsi. Biphasic Calcium Phosphate Concept Applied to Artificial Bone, Implant Coating and Injectable Substitute. Biomaterials. 1998, 19:1473-1478
    20 K. de Groot, R. Geesink, C. P. Klein, P. Serekian. Plasma Sprayed Coatings of Hydroxylapatite. Biomedical Materials Research. 1987, 21:1375-1381
    21 Y.C. Tsui, C. Doyle, T.W. Clyne. Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates, Part2: Optimisation of Coating Properties. Biomaterials. 1998, 19:2031-2043
    22 J. Weng, Q. Liu, J.G. C. Wolke, X.D. Zhang, K. De Groot. Formation and Characteristics of the Apatite Layer on Plasma-Sprayed Hydroxyapatite Coatings in Simulated Body Fluid. Biomaterials. 1997, 18(15): 1027-1035
    23 P. Ducheyne, S. Radin, L. King. The Effect of Calcium Phosphate Ceramic Composition and Structure on in Vitro Behavior. Dissolution. Biomed Mater Res. 1993, 27:25-34
    24 C. Zhang. Elastic and Plastic Behavior of Plasma Sprayed Hydroxyapatite Coating on a Ti6A14V Substrate. Biomaterials. 2001, 22:1357-1363
    25 B.C. Bunker, P.C. Rieke, B.J. Tarasevich. Ceramic Thin-Film Formation on Functionalized Interface through Biomimetic Processing. Science, 1994, 264:48-55
    26 C. Slotte, D. Lundren, P.M. Burgos. Placement of Autogeneic Bone Chips or Bovine Born Mineral in Guided Bone Augmentation: A Rabbit Skull Study. Int Oral Maxillofac Implants. 2003, 18(6):795-806
    27 B.H. Choi. Periodontal Ligament Formation around Titanium Implant usingCultured Periodontal Ligament Cells: A Pilot Study. Int Oral Maxillofac Implant. 2000, 15(2):193-196
    28 R.G. Craig , R.Z. Geros. Early Events Associated with Periodontal Connective Tissue Attachment Formation on Titanium and Hydroxyapatite Surfaces. Biomed Mater Res. 1999, 47(4):585-594
    29 P.I. Branemark, B.O. Hansson, R. Adell. Osseointegrated Implants in the Treatment of the Edentulous Jaw. Experience from a 10-Year Period. Scand Plast Reconstr Surg. 1977, 16:1-132
    30 American Academy of Implant Dentistry. Glossary of Implant Terms. Oral Implant,1986, 12(2):284-294
    31 J. Weng, Q. Liu, J.G.C. Wolke, X.D. Zhang, K. de Groot. Formation and Characteristics of the Apatite Layer on Plasma-Sprayed Hydroxyapatite Coatings in Simulated Body Fluid. Biomaterials. 1997, 18(15): 1027-1035
    32 陈安玉.口腔种植学.四川科学技术出版社, 1991, 41-52
    33 J.F. Kay. Bioactive Surface Coating: Cause for Encouragement and Caution. Oral Implantol. 1988, 14(1):43-54
    34 E.P. Lautenschlager, P. Monaghan. Titanium and Titanium Alloys as Dental Materials. Int. Dent. 1993, 43: 245-253
    35 陈治清. 口腔材料学 (第二版) . 人民卫生出版社, 2001: 67-169
    36 吕宇鹏, 朱瑞富, 马泉生, 李士同, 李木森, 雷廷权. 医用钛及钛合金种植体材料的研究进展. 中国口腔种植学杂志. 2000, 5(1): 43-49
    37 K. de Groot, R.G.T. Geesink, C.P. Klein, P. Serekian. Plasma Spraved Coatings of Hydroxylapatite. Biomed Mater Res. 1987, 21:1375-1380
    38 C. Zhang. Elastic and Plastic Behavior of Plasma-Sprayed Droxyapatite Coating on A Ti6A14V Substrate. Biomaterials. 2001, 22:1357-1363
    39 B.C. Bunker, P.C. Rieke, B.J. Tarasevich, A.A. Campbell, G.E. Fryxell, G.L. Graff, L. Song, J. Liu, J.W. Virden, G.L. Mcvay. Ceramic Thin-film Formation on Functionalized Interface through Biomimetic Processing. Science. 1994, 264:48-55
    40 Y.P. Lu, G.Y. Xiao, S.T. Li. Microstructural Inhomogeneity in Plasma-Sprayed Hydroxyapatite Coatings and Effect of Post-Heat Treatment.Applied Surface Science. 2006. 252:2412-2421
    41 J. Cizek, K.A. Khor, Z. Prochazka. Influence of Spraying Conditions onThermal and Velocity Properties of Plasma Sprayed Hydroxyapatite.Materials Science and Engineering C. 2007. (27):340-344
    42 邓迟,张亚平,高家诚.激光熔覆生物陶瓷涂层和界面的研究.应用激光. 2006, 26(1):21-23
    43 张亚平,高家诚,文静,王勇. 钛基激光涂覆生物陶瓷涂层的生物相容性.中国生物医学工程学报. 2002, 21(3):242-245
    44 H. Kim, R.P. Camata, S. Lee. Crystallographic Texture in Pulsed Laser Deposited Hydroxyapatite Bioceramic Coatings. Acta Materialia. 2007,55:131-139
    45 S. Dyshlovenko, C. Pierlot, L Pawlowski. Experimental Design of Plasma Spraying and Laser Treatment of Hydroxyapatite Coatings. Surface & Coatings Technology. 2006, 201: 2054-2060
    46 李旭东, 翁杰, 王培禄, 赵纯培, 张兴栋. 离子束技术沉积羟基磷灰石薄膜的结构及溶解性能. 无机材料学报, 1998, 13(4):541-546
    47 王昌祥, 陈治清.离子束辅助沉积技术制备 HA/TI 植入材料的设计.生物医学工程学杂志. 1999, 16(2):140-142
    48 Y.C. Jung, C.H. Han, I.S. Lee. Effects of Ion Beam-Assisted Deposition of Hydroxyapatite on the Osseointegration of Endosseous Implants in Rabbit Tibiae. Int Oral Maxillofac Implants. 2001, 16(6):809-818
    49 张建民,冯祖德,林昌健.电化学方法制备磷酸钙生物陶瓷镀层.中国陶瓷. 1998,34(5):38-40
    50 M. Shirkhanzadeh. Calcium Phosphate Coatings Prepared by Electrostallization from Aqueous Electrolytes. Mater. Sci: Mater. in Medicine, 1995, 6:90-93
    51 M. Shirkhanzadeh, Bioactibe Calcium Phosphate Coatings Prepared by Electrodeposition. Mat. Sci: Mat. in Medicine. 1994, 5:219-224
    52 刘芳, 李志友, 周科朝, 黄伯云, 刘咏, 韩金鸽. 低 Ca/P 比溶液电沉积羟基磷灰石涂层.中南工业大学学报. 2002, 33(1):63-66
    53 张玉梅,付涛, 李浩, 徐可为.电结晶磷酸钙生物涂层表面复合蛋白质方法的研究.硅酸盐学报. 2000, 28(4):379-384
    54 Y.Y. Zhang, J. Tao, Y.C. Pang, W. Wang, T. Wang. Electrochemical Deposition of Hydroxyapatite Coatings on Titanium. Trans. Nonferrous Met. Soc. China. 2006, 16:633-637
    55 贺永信, 顾云峰, 曹海萍, 常程康, 毛大立. 羟基磷灰石涂层种植体骨愈合的实验研究. 上海口腔医学, 2002, 11(4):335-339
    56 E. Milella, F. Cosentino, A. Licciulli, C. Massaro. Preparation and Characterization of Ttania/Hydroxyapatite Composite Coatings Obtained by Sol-Gel Process. Biomaterials. 2001, 22:1425-1431
    57 P.A. Ramires, A. Romito, F. Cosentino, E. Milella. The Influence of Titania/Hydroxyapatite Composite Coatings on in Vitro Osteoblasts Behaviour. Biomaterials. 2001, 22: 1467-1474
    58 W.Z. Yang, C.X. Zhou, B. Xiao. Bioactivity of Sol-Gel Derived Patite/Wollastonite Porous Bioactive Glass-Ceramic. Chinese Journal of Clinical Ehabilitation. 2006, 10(9):185-187
    59 黄平, 徐可为, 憨勇. 富含钙磷的多孔氧化钛膜及其生物活化机理.硅酸盐学报. 2004, 32 (12):1449-1454
    60 J. Schreckenbach, F. Schlottig, M. Textor, N.D. Spencer, G. Marx. Characterization of Anodic Spark-Converted Titanium Surfaces for Biomedical Applications. Mater. Sci. Mater. Med. 1999,10: 453
    61 憨勇, 徐可为. 微弧氧化生成含钙磷氧化钛生物薄膜的结构. 无机材料学报. 2001, 16(5):951-956
    62 F. Liu,Y. Song,F.P Wang. Hydroxyapatite Precipitation on Ti by Microarc Oxidation and Hydrothermal Treatment. Functional Material. 2006, 37(1):127-135
    63 M. Gaona, R.S. Lima, B.R. Marple. Nanostructured Titania/Hydroxyapatite Composite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spraying.Materials Science and Engineering. 2007, 458:141-149
    64 H. Li, K. A. Khor, R. Kuma. Characterization of Hydroxyapatite/Nano-Zirconia Composite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spray Process. Surface and Coatings Technology. 2004, 182:227-236
    65 R.S. Lima, K.A. Khor, H. Li, P. Cheang. HVOF Spraying of Nanostructured Hydroxyapatite for Biomedical Applications. Materials Science and Engineering, 2005, A396:181-187
    66 Y.J. Xu,M.X. Xu, C.X. Cui. Preparation of K2Ti6O13W Coating on Ti alloy and Its Bioactivity. Functional Material. 2005, 36(9):1467-1471
    67 D.Y. Lin, Y.T. Zhao, Z. Zhang. Preparation of Hydroxyapatite CoatingDeposited on the Titanium Alloy Surface with Magnetron Sputtering Technique. Chinese Journal of Clinical Rehabilitatic. 2006, 10(33):155-157
    68 K.Yamashita, E. Yonehara, X.F Ding. Electrophoretic Coating of Multilayered Apatite Composite on Alumina Ceramics. Biomed. Mater. Res. 1998, 43:46-53
    69 M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell. Solution Ripening of Hydroxyapatite Nanoparticles: Effects on Electrophoretic Deposition. Biomed. Mater. Res. 1999, 45:1l-19
    70 周友龙,黄楠,张继春.爆炸法制备钛基体羟基磷灰石涂层试验研究.西南交通大学学报. 2002, 37(1):49-52
    71 张春燕,程祥荣.羟基磷灰石涂层种植体失败的主要原因及其处理方法. 口腔颌面修复学杂志. 2002, 3(3):192-194
    72 宁成云,王迎军,陈晓峰, 赵娜如.梯度结构羟基磷灰石生物活性涂层的性能.材料研究学报. 2006, 20(1):69-72
    73 W. Pompe, H. Worch, M. Epple. Functionally Graded Materials for Biomedical Applications. Materials Science and Engineering. 2003, A362:40-60
    74 K.A. Khor,Y.W. GV,C.H. Qvek, P. Cheang. Plasma Spraying of Functionally Graded Hydroxyapatite/Ti-6Al-4VCoating. Surface and Coatings Technology. 2003, 168:195-201
    75 X. Zheng, M. Huang, C. Ding. Bond Strength of Plasma Hydroxyapatite/Ti Composite Coatings. Biomaterials. 2000, 21(8):841-849
    76 K.R. Roop, M. Wang. Functionally Graded Bioactive Coatings of Hydroxyapatite/Titanium Oxide Composite System. Materials Letters. 2002, 55(3):133-137
    77 V.V. Silva, F.S. Lamciras, R.Z. Domingues.Microstructural and Mechanical Study of Zirconia-Hydroxyapatite (ZH) Composite Ceramics for Biomedical Applications. Compositcs Science and Technology. 2001,61(2):301-310
    78 M.P. Ferraz, F.J. Monteiro, J.D. Santos. CaO-P2O5 Glass Hydroxyapatite Double-Layer Plasma-Sprayed Coating in Vitro Bioactivity Evaluation. Biomed Mater Res. 1999, 45: 376-383
    79 E.Verne, C.F. Valles, C.V. Brovarone, S.Spriano. Double-layer Glass-ceramic Coatings on Ti6Al4V for Dental Implants. Journal of the European CeramicSociety. 2004, 24(9):2699-2705
    80 X.Y. Liu, C.X. Ding. Study on Plasma Sprayed Bioactive Wollastonite Coatings. Journal of the Graduate School of the Chinese Academy of Sciences. 2005, 22(4):518-523
    81 J.C. Gao, Y.P. Zhang, J.Wen, Y. Wang. Laser Surface Coating of RE bioceramic Layer on TC4 .Trans Nonferrous Met. Soc. 2000, 10(4):477-480
    82 B.Y Chou, E. Chang. Plasma-sprayed Hydroxyapatite Coating on Titanium Alloy with ZrO2 Second Phase and ZrO2 Intermediate Layer. Surface and Coatings Technology. 2002, 153:84-92
    83 D. Lamy, A.C. Pierrc, R.B. Heimann. Hydroxyapatite Coatings with a Bond Coat of Biomedical Implants by Plasma Projection. Mater Res. 1996, 11:680-686
    84 陈晓明, 李志刚, 闫玉华, 李世普, 贺建华, 王燕. 钛合金人工关节柄烧结复合生物活性玻璃陶瓷涂层的研究. 中国生物医学工程学报. 2001, 2(1):28-32
    85 曹阳, 林强, 杨蓓蓓, 张志涛, 李劲, 王赵, 文峰, 卢凌彬, 张兴栋. 等离子喷涂羟基磷灰石涂层的结构与成份和力学性能研究. 现代制造工程. 2005, (2):17-19
    86 Y.C. Yang, B.Y. Chou. Bonding Strength Investigation of Plasma-Sprayed HA Coatings on Alumina Substrate with Porcelain Intermediate Layer. Materials Chemistry&Physics. 2007, 104:312-319
    87 胡光宇,李华东,李展春, 羟磷灰石涂层钛合金植入材料的理化参数、生物相容性及其力学特征. 中国临床康复. 2004, 8(23):4877-4880
    88 O.S. Yildirim, B. Aksakal, H. Celik, Y. Vangolu and A. Okur. An Investigation of the Effects of Hydroxyapatite Coatings on the Fixation Strength of Cortical Screws. Medical Engineering & Physics. 2005, 27:221-228
    89 刘渊,曾绍先.羟基磷灰石烧结涂层种植体和纯钛种植体的对比实验研究. 实用口腔医学杂志. 1994, 10(4):272-276
    90 毛大立,曹海萍,常程康,顾云峰.羟基磷灰石涂层的骨结合行为.上海交通大学学报. 2003, 37(2):264-268
    91 J. M. Spivak, N. C. Blumenthal, J. L. Ricci, and H. Alexander, A New Canine Model to Evaluate the Biological Response of Intramedullary Bone toImplant Materials and Surfaces. Biomed Mater Res. 1990, 24(9):1121-1149
    92 Y.L. Chang, C.M. Stanford, J.S. Wefel, J.C. Keller. Osteoblastic Cell Attachment to Hydroxyapatite-coated Implant Surfaces in Vitro. Int Oral Maxillofac Implants. 1999, 14(2):239-247
    93 廖湘凌.生物活性种植牙的研究进展.中国口腔种植学杂志. 1999, 4(2):99-93
    94 顾卫明,黄炳堂,孙荆,钱伟君,戴其昌, 鲍贤鸿. 生物玻璃涂层植入材料的动物实验研究.无机材料学报. 1999, 14(4):640-644
    95 孙荆, 黄炳堂, 钱伟君, 孙荆, 黄炳堂, 钱伟君, 顾伟民, 鲍贤鸿, 戴其昌. Si-Ca-P-Mg 系生物活性玻璃涂层的种植行为.无机材料学报. 1994, 9(1):49-54
    96 K. Yamada, K. Imamura, H. Itoh, H. Iwata, S. Maruno. Bone Bonding Behavior of the Hydroxyapatite Containing Glass-Titanium Composite Prepared by the Cullet Method. Biomaterials. 2001, 22: 2207-2214
    97 马维, 潘文霞, 张文宏, 吴承康. 热喷涂涂层中残余应力分析和检测研究进展.力学进展. 2002, 32(1):41-56
    98 Y.C Yang, E. Chang. Measurements of Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy. Surface and Coatings Technology. 2005, 190:122-131
    99 Y.C. Yang. Influence of Residual Stress on Bonding Strength of the Plasma-Sprayed hydroxyapatite Coating after the Vacuum Heat Treatment. Surface and Coatings Technology. 2007, 201:7187-7193
    100 Y. C. Yang, E. Chang. Influence of Residual Stress on Bonding Strength and Fracture of Plasma-Sprayed Hydroxyapatite Coatings on Ti–6Al–4V Substrate Biomaterials. 2001, 22:1827-1836
    101 A.K. Lynn, D. L. DuQuesnay. Hydroxyapatite-coated Ti–6Al–4V: Part 1: the Effect of Coating Thickness on Mechanical Gatigue Behaviour. Biomaterials. 2002, 23:1937-1946
    102 刘德祖, 臧鸿声, 赵定鳞. 人鼠颅骨成骨细胞体外培养形成钙化结节的光镜电镜研究. 第二军医大学学报. 1995, 16(5):466
    103 王东胜, 路正刚. 塑料包埋技术在口腔硬组织切片技术中的应用研究.现代口腔医学杂志. 2003, 17(3):256-257
    104 陈加印. 亚音速喷涂及其应用. 机械工人(热加工). 2003, 9:27-28
    105 师昌绪. 材料科学与工程手册.化学工业出版社. 2004:12-20
    106 韩涛, 王勇, 陈玉华, 孟强. 氧化铈对玻璃涂层与金属基体密着性的影响. 石油大学学报(自然科学版). 2002, 26(5): 68-70
    107 邵规贤, 文彬, 闻瑞昌. 搪瓷学. 轻工业出版社. 1983:85-87
    108 E. Lugscheider, M. Knepper. Engineering Aspects of the Coating Production for Medical Applications. Advances in Biomaterials. 1992, 10:159-163
    109 H. W. Denissen, W. Kalk, H. M. Nieuport, C. Mangano, J. C. Maltha. Preparation Induced Stability of Bioactive Apatite Coatings. Pro-sthodontics. 1991, 4(5): 432-439
    110 阮世红, 武剑, 董旭东. 氟磷灰石涂层氮化硅种植体的动物实验研究. 中国口腔种植学杂志. 2005, 10(1):5-8
    111 B. C. Wang, E. Chang, T. M. Lee, C. Y Yang. Changes in Phases and Crystal-unity of Plasma Sprayed Hydroxyapatite Coatings under Heat treatment: A Quantitative Study. Biomedical Materials Research. 1995, 29(12):1483-1492
    112 陈国华, 刘新宇. 含 Bi2O3 的 MgO-Al2O3-SiO2 玻璃核化与晶化动力学研究. 玻璃与搪瓷. 2003, 31(4):15-18
    113 Y. K. Lee, S. Y. Choi. Controlled Nucleation and Crystallization in Fe2O3-CaO-SiO2 Glass. Journal of Materials Science. 1997, 32:431-436
    114 赵宏生, 周万城, 李艳青. P2O5-PbBr2-PbF2 系玻璃抗析晶能力的研究. 材料科学与工艺. 2003, 11(3):39-44
    115 M. Sales, J. Alarcon. Crystallization of Sol-gel-derived Glass Ceramic Powders in the CaO-MgO-Al2O3-SiO2 System. Journal of Materials Science. 1994, 29:5153-5157
    116 张培新, 林荣毅, 闫加强. SiO2-Al2O3-CaO-Fe2O3 系微晶玻璃的晶化过程. 中国有色金属学报. 2000, 10(5):752-756
    117. 李长久, 王豫跃,武涛,大森明. 表面熔融粒子结构对超音速喷涂涂层结合性能的影响. 西安交通大学学报. 2001, 35(1):51-56
    118. J. Weng, X. Liu, X. Zhang, K. de Groot. Integrity and Thermal Decomposition of Apatite in Coatings Influenced by underlying Titanium during Plasma Spraying and Post-heat-treatment. Biomedical Materials Research. 1999, 30:5-11
    119. Y. L. Chang, D. Lew, J. B. Park, J. C. Keller. Biomechanical and Morphome-tric Analysis of Hydroxyapatite-coated Implants with VaryingCrystallinity. Oral Maxillofacial Surgery. 1999, 57(9):1096-1108
    120. 库吉诺夫. 等离子涂层. 科学出版社, 1981:51-79
    121. 李京龙,李长久.等离子喷涂熔滴的瞬时碰撞压力研究.西安交通大学学报. 2001, 35(1):51-56
    122. 杨帆. 锆钛酸铅薄膜结构表征与残余应力分析.哈尔滨工业大学博士论文, 2006.
    123. X. Y. Jiang, J. Matejicek, L. Prchlik, A. Kulkarni, A. Vaidya. Role of Thermal Spray Processing Method on the Microstructure, Residual Stress and Properties of Coatings an Integrated Study for Ni-5 wt.%Al Bond Coats. Materials Science and Engineering. 2004, A364:216-231
    124. X.C. Zhang, H.D. Wang.Thermo-mechanical Integrity of Coatings with Residual Stresses [A].Fracture Mechanics 2004-Symposium of Environment Effects on Fracture and Damage, 2004:225-240
    125. S. Kuroda, T.W. Clyne. The Quenching Stress in Thermally Sprayed Coatings. Thin Solid Films. 1991, 200:49-66
    126. 郭天文. 口腔科用钛理论和技术. 人民军医出版社, 2005:8-44
    127. 顾其胜,侯春林,徐政. 实用生物医用材料学. 上海科学技术出版社, 2005:9-110
    128. 姜祎,徐滨士,王海斗. 热喷涂层残余应力的来源及其失效形式. 金属热处理. 2007,32(1):25-27
    129. R. C. Weast. CRC Handbook of Chemistry and Physics.1989-1990. CRC Press Inc: D-90.
    130. Y. Zuo, Y.B. Li, J. Wei, Y.G. Yan, Influence of Ethylene Glycol on the Formation of Calcium Phosphate Nanocrystals. Journal of Materials Science & Technology. 2003, 19(6):628-630
    131. H.B. Wen, J.R. Wijn, F.Z. Cui, K. D. Groot. Preparation of Calcium Phosphate Coatings on Titanium Implant Materials by Simple Hemistry. Biomed Mater Res. 1998, 41:227-236
    132. H.B. Wen, J.C. Wolke, J.R. Wijn, Q. Liu, F.Z. Cui, K. D. Groot. Fast Precipitation of Calcium Phosphate Layers on Titanium Induced by Simple Chemical Treatments. Biomater. 1997, 18:1471-1478
    132 P.T. Cillehei. Scanning Probe Microscope. Anal Them. 2000, 72(12):189-196
    133 L. A. Bottomley. Scanning Probe Microscope. Anal Them. 1996, 69(12):185-230
    134 O.S. KanekoR, S. Hara. Atomic Force Microscopy Coupled with An Optical Microscope. Ultramicroscopy. 1992,42:15-42
    135 宁佳, 王德佳, 黄文旵. 硼硅酸盐生物玻璃的制备及其体外生物活性和降解性. 硅酸盐学报. 2006, 34(11):1326-1330
    136 丁传贤,薛卫昌,刘宣勇.等离子喷涂人工骨涂层材料.中国有色金属学报. 2004, 14(1):306-310
    137 S. Tao, H. Ji, C. Ding. Effect of Vapor Flame Treatment on Plasma Sprayed Hydroxyapatite Coatings. J Biomed Mater Res. 2000, 52: 572-575
    138 X. Liu, C. Ding. Thermal Properties and Microstructure of a Plasma Sprayed Wollastonite Coating. J. Thermal Spray Technol. 2002, 11:375-379
    139 X. Liu, S. Tao, C. Ding. Bioactivity of Plasma Sprayed Dicalcium Silicate Coating. Biomaterials. 2002, 23:963-968
    140 D. Lamy, A.C. Pierrc, R. B. Heimann. Hydroxyapatite Coatings with a Bond Coat of Biomedical Implants by Plasma Projection. J Mater. Res. 1996, 11: 680-686
    141 X. Zhen, M. Huang, C. Ding. Bond Strength of Plasmasprayed Hydroxyapatite/Ti Composite Coatings. Biomaterials. 2000, 21:841- 849
    142 P. L.Silva, J. D. Santos, F. J. Monteiro.Adhesion and Microstructural Characterization of Plasma Sprayed Hydroxyapatite/glass Ceramics Coatings onto Ti6Al4V Substrates. Surface and Coatings Technology. 1998, 102:191-196
    143 E. Chang, W.J. Chang, B. Wang. Plasma Spraying of Zirconia Reinforced Hydroxyapatite Composite Coatingson Titanium. J Mater Sci: Mater Med. 1997, 8:193-200
    144 裘松波, 曹风华, 孙占波. 动电位极化技术在口腔修复材料腐蚀测定中的应用. 第三军医大学学报. 2001, 23(2):227-229
    145 J.C. Wataha. Biocompatibility of Dental casting alloy. J. Prosthet. Dent. 2000, 83(2):223-234
    146 Z. Cai, S.G.Vermilyea, W.A. Brantlery. In Vitro Corrosion Resistance of High Palladium Dental Casting Alloys. Dent Mater. 1999,15(3):202-210
    147 J. G. Gerstorfer. In Vitro Corrosion Measurements of Dental Alloy. J. Dent. 1994,22(4):247-251
    148 S. Canay, N. Hersek, A. Culha. Evalutation of Titanium in Oral Condition and its Electro-Chemical Corrosion Behaviour. OralRehabil. 1998, 25(10):759-764
    149 刘水辉, 张佩芬.金属腐蚀学原理.航空工业出版社. 1993:88-89
    150 高英茂, 徐昌芬.组织学与胚胎学.人民卫生出版社. 2001:30-33
    151 T.A. Owen, M. Aronow, V. Shalhoub. Progressive Development of the Rat Osteoblast Phenotype in Vitro: Reciprocal Relationships in Expression of Genes Associated with Osteoblast Proliferation and Differentiation During Formation of the Bone Extracellular Matrix. Cell Physiol. 1990,143:420-430
    152 L.R. Mccabe, T.J.Last, M. Lynch. Expression of Cell Growth and Bone Phenotypic Genes during the Cell Cycle of Normal Diploid Osteoblasts and Osteosarcoma Cells.Cell Biochem. 1994,56:274-282
    153 W.A. Peck, S.J. Birge, S.A. Fedak. Bone Cells: Biochemical and Biological Studies after Enzymatic Isolation. Sicence.1964,146:1476-1477
    154 G. L. Wong, D.V. Cohn. Target Cells in Bone for Parathormone and Calcitonin are Different: Enrichment for Each Cell Type by Sequential Digestion of Mouse Calvaria and Selective Adhesion to Polymeric Surfaces. Proc.Matl.Acad.Sci. 1975, 72(8):3167-3171
    155 黄永光, 陈治清. 硬组织替代材料对成骨细胞骨钙蛋白和ALP平的影响. 华西口腔医学杂志. 2000, 18(3):192-194
    156 董宇启, 曹聪, 董英海.等离子喷涂硅灰石涂层对体外培养成骨细胞的影响.上海第二医科大学学报. 2005, 25(9):906-908
    157 陈晖,赵士芳,王树人.羟基磷灰石涂层种植体硬组织切片的组织学观察.浙江大学学报(医学版). 1999, 28(4):174-175
    158 L.L.Hench. Bioactive Materials: The Potential for Tissue Regeneretion. J. Biomed. Mater. Res. 1998, 14:511-518
    159 T. Kokubo. Bioactivity of Glasses and Glass Ceramics in Reed Healthcare Communications, Leiderdorp, The Netherlands, 1992:31-46
    160 杜瑞林, 常江, 倪似愚. 58S生物玻璃陶瓷的力学性能及体外生物活性. 硅酸盐学报,2005,33(5):650-654

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700