用户名: 密码: 验证码:
人工光合作用相关分子电催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解决能源危机与环境污染的出路在于利用和开发可再生能源。人工光合作用是一种重要的可再生能源利用方式,可将太阳能转化为便于储运的化学燃料。在基于水分解制氢的人工光合作用研究中,分子电催化备受关注,其目标是模拟生物体内的酶催化过程,以有机金属配合物为催化剂,通过电化学或光电化学的方式将水分解为H2和02。本论文工作开展与人工光合作用相关的分子电催化研究,目标反应包括水氧化反应(WOR)、氢析出反应(HER)和氧还原反应(ORR)。我们设计并合成了27种有机金属配合物分子催化剂,研究其在有机介质和水溶液中的电催化行为;将优选的分子催化剂与无机氧化物半导体光电极相结合,探索其光电化学应用。取得的主要研究进展如下:
     1.半夹心Ru配合物的水氧化电催化
     水氧化反应(WOR)动力学缓慢,是制约水分解效率的关键因素。针对目前WOR分子催化剂普遍效率不高且较少应用于光电解水的现状,我们设计并合成5种准四面体构型的五甲基环戊二烯基Ru配合物分子(Rp*-L),通过改变L配体调控配合物的电子构型和中心Ru的电荷密度。此类分子催化剂可在碱性电解液中催化WOR,但对于水溶性Rp*-L分子,其催化活性越高自身越容易发生水解。我们优选出催化活性及稳定性俱佳的Cp*Ru(PPh3)2Cl]C1分子(Rp*-P2),通过吸附的方式将其固定在电极表面进行WOR电催化研究。结合差分电化学质谱(DEMS)研究表明,Rp*-P2/Au表面析出O2仅需350mV极化,是目前WOR分子催化剂中超电势最小的一种。
     2.多吡啶Ru配合物的水氧化光电催化
     上述Rp*-P2分子催化剂虽然具有较好的WOR催化活性,但与α-Fe2O3光阳极结合后,仍无法实现稳定的WOR光电催化。为解决这一问题,我们合成了具有较高抗氧化性且可以共价成键方式修饰到α-Fe2O3表面的准八面体多吡啶Ru配合物[Ru(tpy)(dcbpy)Cl]Cl (Rt-dcb)和环金属化Ru配合物[Ru(tpy)(pba)Cl](Rt-pba)。此类新型“分子催化剂/半导体”复合光阳极不存在传统“无机催化剂/半导体”光阳极的晶界电阻,且分子催化剂与半导体之间可通过异质结效应促进光生电荷分离,使WOR平台光电流密度显著提高。此外,环金属化配位场使Ruv中间态更易获得,增强了WOR催化活性。与未修饰催化剂的α-Fe2O3光阳极相比,Rt-pba/α-Fe2O3电极在光照下起波电势从0.9V负移至0.7V (vs. RHE),1.23V下光电流增大约140%。
     3.多吡啶Ni、Co配合物的水还原电催化
     水还原氢析出反应的分子电催化是一个备受关注的课题,目前多数HER分子催化剂只能用于非水体系的有机弱酸还原析氢。我们研究了一类多吡啶Ni、 Co配合物,从11种候选分子中筛选出6种可以在酸性到弱碱性水溶液中稳定催化HER的分子,包括[Ni(tpy)2](BF4)2、[Ni(tpy)(bpy)Cl]CK、[Co(tpy)(bpy)Cl]Cl、[Co(tpy)(dmbpy)Cl]Cl、[Co(tpy)(dcbpy)Cl]Cl和[Co(tpy)(phen)Cl]Cl。在非水体系中,这些分子催化有机弱酸还原析氢的TOF值在110~280s-1之间,优于常见的钴肟催化剂。在水溶液中,Co配合物的催化活性远高于相同结构的Ni配合物,且随配体拉电子能力的增强而进一步提高,HER起波超电势约500mV,与文献中为数不多可直接催化水还原HER的分子催化剂性能相当。
     4.多吡啶Co配合物的水还原光电催化
     如何将分子催化剂高载量地固定到电极表面一直是分子电催化研究的一个难题,我们发现一种利用邻二氮菲(phen)还原电聚合将[Co(tpy)(phen)Cl]Cl分子高载量固定至电极表面的方法。差分电化学质谱(DEMS)研究表明,这种聚[Co(tpy)(phen)Cl]Cl电极(PCo)在pH=3缓冲溶液中的析氢超电势仅370mV,极化470mV时TOF接近10s-1, TON不低于2.2x106,是目前报道的最好的HER分子催化剂之一。采用XPS等表征发现,PCo电极的活性中心仍然为Co配合物,并非Co金属或氧化物。将[Co(tpy)(phen)Cl]Cl聚合到Cu20光阴极表面,首次实现了分子催化剂与p型半导体相结合的光电化学水还原析氢。此PCo/Cu2O光阴极性质稳定,可在0V (vs. RHE)光照条件下长时间工作,HER光电流比Cu20电极增大50%以上。
     5.多吡啶Cu配合物的氧还原电催化
     氧还原反应(ORR)的分子电催化研究多基于Fe、Co卟啉和酞菁类化合物,但Cu在很多催化ORR的生物酶中都扮演着重要的角色。我们设计合成了7种Cu配合物分子:[Cu(bpy)2](ClO4)2、[Cu(dcbpy)2](ClO4)2、[Cu(bpy)3](ClO4)2、[Cu(tpy)(ClO4)](ClO4)、[Cu(tpy)(bpy)(H2O)](ClO4)2、[Cu(tpy)(dcbpy)(H2O)](ClO4)2和[Cu(tpy)2](ClO4)2。这些分子均能溶解于水溶液中催化ORR,其催化活性主要受生成Cu1中间体的热力学电势的影响,分子结构的影响并不显著。催化剂浓度较低时ORR以2e途径进行,随着催化剂浓度的提高反应电子数增大。从实验现象判断,此类Cu分子在催化ORR过程中可能主要起到氧化还原穿梭电对的作用,内球型的催化作用似乎不显著。
Exploiting sustainable energy is a key to rescuing the approaching crisis of energy and environment. As an important technology of sustainable energy, artificial photosynthesis aims at converting the solar energy into chemical energies, which are storable and transportable. In the study of artificial photosynthesis based on water splitting, tremendous research efforts have been devoted to the molecular electrocatalysis, in which organometallic complexes are employed as the catalyst to mimic the biocatalytic process of enzyme, and the water molecules are split electrochemically or photoelectrochemically into H2and O2. The theme of the present work is molecular electrocatalysis for reactions relevant to artificial photosynthesis, including the water oxidation reaction (WOR), the hydrogen evolution reaction (HER), and the oxygen reduction reaction (ORR). In this work, about27organometallic complexes were synthesized and studied; according to their electrochemical and catalytic behaviors in organic and aqueous media, high-performance molecules were screened and integrated with metal-oxide photoelectrodes for photoelectrochemical study. Major achievements of this research are summarized as follows:
     1. Half-sandwich Ru complexes for electrocatalysis of WOR
     At present, most molecular catalysts for the WOR are still inefficient and have rarely been applied in photoelectrochemical water splitting. We synthesized5types of pseudo-tetrahedral Ru complexes ([Cp*RuL2X]n+, abbreviated as Rp*-L) with different electronic configuration in ligand and different charge density at the Ru site. All the molecules are catalytic toward the WOR in basic media, but for those soluble in aqueous solutions, the more active in catalysis the less resistant to the hydrolysis. The [Cp*Ru(PPh3)2Cl]Cl molecule (Rp*-P2), which is relatively active and stable, was fixed onto the electrode surface for heterogeneous catalysis of WOR. Only with350mV in potential polarization, O2can be detected on the Rp*-P2/Au electrode surface by using differential electrochemical mass spectrometry (DEMS). This is among the best molecular catalysts for WOR reported thus far.
     2. Polypyridyl cyclometalated Ru complexes for photoelectrocatalysis of WOR
     To enhance the stability of molecular catalyst for photoelectrolysis, we synthesized pseudo-octahedral Ru complexes [Ru(tpy)(dcbpy)Cl]Cl (Rt-dcb) and [Ru(tpy)(pba)Cl](Rt-pba) which are oxidation tolerant and can be bound onto the surface of a-Fe2O3. Unlike the traditional "inorganic catalyst/semiconductor" contact, such a "molecular catalyst/semiconductor" interface is free from any grain boundary, and an electronic heterojunction can also be formed in between. These features have benefited the separation of the light-induced charges and thus increased the plateau photocurrent density. Due to the employment of electron-donating C-∧N ligand in Rt-pba, the active Ruv intermediate is more accessible, resulting in an enhanced catalytic activity toward the WOR. Specifically, upon bonding Rt-pba onto the a-Fe2O3surface, the onset potential of photoelectrolysis has shifted from0.9V to0.7V (vs. RHE) and the photocurrent at1.23V increased by ca.140%.
     3. Polypyridyl Ni and Co complexes for electrocatalysis of HER
     The molecular electrocatalysis for HER is a very active field in recent years, however, most molecular catalysts can only be used in organic media for the electroreduction of organic acid. We investigated a series of polypyridyl Ni and Co complexes, and6molecules, including [Ni(tpy)2](BF4)2,[Ni(tpy)(bpy)Cl]Cl,[Co(tpy)(bpy)Cl]Cl,[Co(tpy)(dmbpy)Cl]Cl,[Co(tpy)(dcbpy)Cl]Cl, and [Co(tpy)(phen)Cl]Cl, were found to be able to catalyze the HER in aqueous solutions, ranging from acid to weak base. In organic system, the turnover frequency (TOF) of the HER catalyzed by these molecules is about110~289s-1, greater than that of the traditional cobaloxime catalyst. In aqueous electrolytes, the catalytic activity of polypyridyl Co is much higher than that of the Ni molecules, and can even be increased by using stronger electron-withdrawing ligands. The overpotential of the HER is about500mV, comparable to the best record in the literature.
     4. Polypyridyl Co complex for photoelectrocatalysis of HER
     Among the challenges in molecular electrocatalysis is how to increase the catalyst loading on electrode surface. We found that, through the electrochemical polymerization of the1,10-phenanthroline (phen) ligand, the [Co(tpy)(phen)Cl]Cl catalyst can be fabricated on the electrode surface with a very high loading. The DEMS measurements showed that, on such a poly-[Co(tpy)(phen)Cl]Cl electrode (PCo), the overpotential of HER is only370mV in a buffer solution of pH=3, with the TOF being10s-1and a TON of ca.2.2×106, which is among the best molecular catalysts thus found for HER. Characterized by XPS, the active site in PCo was found to be still in molecular state, rather than in metallic or oxide states. By polymerizing the [Co(tpy)(phen)Cl]Cl onto a Cu2O photocathode, we have realized, for the first time, a molecular catalyst/p-type semiconductor photocathode for the HER, which can stably work at0V (vs. RHE) under illumination, with a HER photocurrent increased by50%, in comparison to that on a bare CU2O photocathode.
     5. Polypyridyl Cu complexes for electrocatalysis of ORR
     The ORR catalyzed by Fe and Co porphyrine or phthalocyanine has been intensively studied in comparison to Cu complexes, though the latter is known to play a key role in relevant biocatalytic process. We synthesized7types of polypyridyl Cu complexes, including [Cu(bpy)2](C104)2,[Cu(dcbpy)2](C104)2,[Cu(bpy)3](C104)2,[Cu(tpy)(C104)](ClO4),[Cu(tpy)(bpy)(H20)](ClO4)2,[Cu(tpy)(dcbpy)(H20)](ClO4)2, and [Cu(tpy)2](C104)2, and used them to catalyze the ORR in aqueous solutions. It turned out that the catalytic activity of these molecules toward the ORR was majorly affected by the electrode potential of the CuⅢ/Ⅰ couple, rather than the electronic property of the ligands. The reaction electron number of the ORR was2at low [Cu] and increases with the [Cu], indicating that the studied Cu complexes seemed to act as a redox shuttle for the ORR, rather than a catalyst of inner-sphere reaction.
引文
[1]World population, Wikipedia, http://en.wikipedia.org/wiki/Worldjpopulation.
    [2]S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature,2012, 488,294.
    [3]Munich Re. Topics Geo. http://www.munichre.com/publications/302-07225en.pdf.
    [4]Technology Roadmap - Nuclear Energy, International Energy Agency, http://www.iea.org/papers/2010/nuclear_roadmap.pdf (International Energy Agency,2010).
    [5]C. Ruhl, Energy in 2011 - disruption and continuity BP Statistical Review of World Energy, http://www.bp.com/sectiongenericarticle800.do?categoryId=9037130&contentld=7068669 (BP, 2012).
    [6]Statistical Review of World Energy. http://bp.com/statisticalreview2012. (BP,2012).
    [7]可再生能源,中国新能源网,http://www.china-nengyuan.com.
    [8]R. J. Cogdell, T. H. P. Brotosudarmo, A. T. Gardiner, P. M. Sanchez, L. Cronin, Artificial photosynthesis - solar fuels:current status and future prospects, Biofuels,2010,1,861.
    [9]我国发展太阳能发电技术产业的思考,中国新能源的网,http://www.newenergy.org.cn/html/0087/790818772_2.html.
    [10]温家宝总理在第五届世界尘来能源峰会上的讲话,中国新能源网,http://www.china-nengyuan.com/news/29039.html.
    [11]风能,百度百科,http://baike.baidu.com/view/66258.htm.
    [12]未来趋势:风力发电装备制造业前景光明,中国新能源网,http://www.newenergy.org.cn/Html/01011/11111037033_1.html.
    [13]生物质能,维基百科(中文),http://zh.wikipedia.org/wiki/%E7%94%9F%E7%89%A9%E8%B4%A8.
    [14]X.G. Zhu, S.P. Long, D.R. Ort, What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology,2008,19,153.
    [15]浅议可再生能源的开发利用,人民网,http://people.weather.com.cn/climate/qhbhyw/08/1470028_2.shtml.
    [16]世界水能资源开发概况,英大网,http://www.indaa.com.cn/zt/zgsd/zgsd_sjsd/200908/t20090831210498.html.
    [17]三峡水电站,百度百科,http://baike.baidu.eom/view/51765.htm.
    [18]可再生能源,百度百科,http://baike.baidu.com/view/9292.htm.
    [19]K. Rajashwar, R. McConnell, S. Licht, Solar Hydrogen Generation toward a renewable energy future, Springer Science+Business Media,2008, Chapter1, p.11.
    [20]J. A. Turner, M.C. Williams, K. Rajeshwar, The Electrochemical Society Interface, Fall 2004, p.24.
    [21]太阳能,百度百科,http://baike.baidu.com/view/21294.htm.
    [22]SunShot Vision Study, US Department of Energy, http://wwwl.eere.energy.gov/solar/pdfs/47927.pdf (US Department of Energy,2012).
    [23]The History of Hydrogen, National Hydrogen Association; United States Department of Energy, hydrogenassociation.org.
    [24]Hydrogen Fuel Cells, esp.ucsd.edu/forum/fall05/Fuel_Cells.ppt
    [25]D. Gust, T. A. Moore, Mimicking photosynthesis, Science,1989,244,35.
    [26]T. J. Meyer, Chemical approaches to artificial photosynthesis, Accounts of Chemical Research, 1989,22,163.
    [27]A. Kay, M. Graetzel, Artificial photosynthesis.1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem.,1993,97,6212.
    [28]A. J. Bard, M. A. Fox, Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen, Accounts of Chemical Research,1995,28,141.
    [29]V. Balzani, A. Credi, M. Venturi, Photochemical conversion of solar energy, ChemSusChem,2008, 7,26.
    [30]D. Gust, T. A. Moore, A. L. Moore, Solar Fuels via Artificial Photosynthesis, Accounts of Chemical Research,2009,42,1890.
    [31]N. S. Lewis, D. G. Nocera, Powering the planet:chemical challenges in solar energy utilization, Proceedings of the National Academy of Sciences U. S. A.,2007,104,20142.
    [32]H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review, Prog. Nat. Sci.,2009,19,291.
    [33]H. B. Gray, Powering the planet with solar fuel, Nat. Chem.,2009,1,7.
    [34]D. Gust, T. A. Moore, A. L. Moore, Solar Fuels via Artificial Photosynthesis, Accounts of Chemical Research,2009,42,1890.
    [35]G. Centi, S. Perathoner, Towards Solar Fuels from Water and CO2, ChemSusChem,2010,3,195.
    [36]Y. Amao, Solar Fuel Production Based on the Artificial Photosynthesis System, ChemCatChem, 2011,3,458.
    [37]L. Hammarstrom, J. R. Winkler, H. B. Gray, S. Styring, Shedding light on solar fuel efficiencies, Science,2011,333,288.
    [38]W. Song, Z. Chen, M. K. Brennaman, J. J. Concepcion, A. O. T. Patrocinio, N. Y. M. Iha, T. J. Meyer, Making solar fuels by artificial photosynthesis, Pure and Applied Chemistry,2011,83, 749.
    [39]T. S. Teets, D. G. Nocera, Photocatalytic hydrogen production, Chemical Communications,2011, 47,9268.
    [40]T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites, Chemistry of Materials, 1997,9,1063.
    [41]M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, Cu2O as a photocatalyst for overall water splitting under visible light irradiation, Chemical Communications,1998,357.
    [42]A. Kudo, H. Kato, S. Nakagawa, Water Splitting into H2 and 02 on New Sr2M2O7 (M=Nb and Ta) Photocatalysts with Layered Perovskite Structures:Factors Affecting the Photocatalytic Activity, J. Phys. Chem. B,2000,104,571.
    [43]H. Kato, A. Kudo, Water Splitting into H2 and 02 on Alkali Tantalate Photocatalysts ATaO3 (A= Li, Na, and K), J. Phys. Chem. B,2001,105,4285.
    [44]Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature (London, U. K.),2001,414,625.
    [45]H. Kato, K. Asakura, A. Kudo, Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, Journal of the American Chemical Society,2003,125,3082.
    [46]K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting, Journal of the American Chemical Society,2005,127,8286.
    [47]A. Kudo, Development of photocatalyst materials for water splitting, International Journal of Hydrogen Energy,2006,37,197.
    [48]K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature,2006,440,295.
    [49]M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renewable Sustainable Energy Reviews,2006,11,401.
    [50]J. H. Park, S. Kim, A. J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Letters,2006,6,24.
    [51]A. Kudo, Recent progress in the development of visible light-driven powdered photocatalysts for water splitting, International Journal of Hydrogen Energy,2007,32,2673.
    [52]K. Maeda, K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light, The Journal of Physical Chemistry C,2007,111,7851.
    [53]F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chemistry of Materials,2008,20,35.
    [54]X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chemical Reviews,2010,110,6503.
    [55]K. Maeda, K. Domen, Photocatalytic Water Splitting:Recent Progress and Future Challenges, The Journal of Physical Chemistry Letters,2010,1,2655.
    [56]S. K. Mohapatra, M. Misra, V. K. Mahajan, K. S. Raja, Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting:Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode, The Journal of Physical Chemistry C,2007,111,8677.
    [57]K.-S. Ahn, S. Shet, T. Deutsch, C.-S. Jiang, Y. Yan, M. Al-Jassim, J. Turner, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films, Journal of Power Sources, 2008,176,387.
    [58]G. Wu, J. Wang, D. F. Thomas, A. Chen, Synthesis of F-Doped Flower-like TiO2 Nanostructures with High Photoelectrochemical Activity, Langmuir,2008,24,3503.
    [59]D. K. Zhong, J. Sun, H. Inumaru, D. R. Gamelin, Solar Water Oxidation by Composite Catalyst/a-Fe2O3 Photoanodes, Journal of the American Chemical Society,2009,131,6086.
    [60]R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photochem. Photobiol., C,2010,11,179.
    [61]T. Nann, S. K. Ibrahim, P.-M. Woi, S. Xu, J. Ziegler, C. J. Pickett, Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production, Angewandte Chemie International Edition,2010, 49,1574.
    [62]J. Sun, D. K. Zhong, D. R. Gamelin, Composite photoanodes for photoelectrochemical solar water splitting, Energy & Environmental Science,2010,3,1252.
    [63]A. Paracchino, V. Laporte, K. Sivula, M. Graetzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nature Materials,2011,10,456.
    [64]D. K. Zhong, S. Choi, D. R. Gamelin, Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by "Co-Pi" Catalyst-Modified W:BiVO4, Journal of the American Chemical Society,2011,133,18370.
    [65]Y. Surendranath, D. K. Bediako, D. G. Nocera, Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves, Proceedings of the National Academy of Sciences U. S. A., Early Ed.,2012,1.
    [66]I. Cesar, A. Kay, M. J. A. Gonzalez, M. Graetzel, Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight:Nanostructure-Directing Effect of Si-Doping, Journal of the American Chemical Society,2006,128,4582.
    [67]F. F. Le, M. Graetzel, K. Sivula, Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting, Advanced Functional Materials,2010,20,1099.
    [68]S. D. Tilley, M. Cornuz, K. Sivula, M. Graetzel, Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis, Angewandte Chemie International Edition, 2010,49,6405.
    [69]F. F. Le, N. Tetreault, M. Comuz, T. Moehl, M. Graetzel, K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers, Chemical Science,2011,2,737.
    [70]A. Paracchino, V. Laporte, K. Sivula, M. Graetzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nature Materials,2011,10,456.
    [71]K. Sivula, F. F. Le, M. Graetzel, Solar Water Splitting:Progress Using Hematite (a-Fe2O3) Photoelectrodes, ChemSusChem,2011,4,432.
    [72]T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Graetzel, N. Mathews, Enhancement in the Performance of Ultrathin Hematite Photoanode for Water Splitting by an Oxide Underlayer, Advanced Materials,2012,24,2699.
    [73]A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley, M. Graetzel, Ultrathin films on copper(I) oxide water splitting photocathodes:a study on performance and stability, Energy & Environmental Science,2012,5,8673.
    [74]W. Y. Gan, D. Friedmann, R. Amal, S. Zhang, K. Chiang, H. Zhao, A comparative study between photocatalytic and photoelectrocatalytic properties of Pt deposited TiO2 thin films for glucose degradation, Chemical Engineering Journal,2010,158,482.
    [75]M. T. Dinh Nguyen, A. Ranjbari, L. Catala, F. Brisset, P. Millet, A. Aukauloo, Implementing molecular catalysts for hydrogen production in proton exchange membrane water electrolysers, Coordination Chemistry Reviews,2012,256,2435.
    [76]A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews,2009,38,253.
    [77]N.A. Campbell, W. Brad; J.H. Robin, Biology:Exploring Life. Boston, Massachusetts: Pearson Prentice Hall.2006, ISBN 0-13-250882-6.
    [78]J. Postgate, Nitrogen Fixation, Cambridge University Press, Cambridge UK.1998 (3rd Edition), ISBN:9780521648530.
    [79]J. Desilvestro, D. Dung, M. Kleijn, M. Graetzel, Tris(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(Ⅱ), a redox sensitizer affording water oxidation to oxygen in the absence of a heterogeneous catalyst, Chimia,1985,39,102.
    [80]P. Comte, M. K. Nazeeruddin, F. P. Rotzinger, A. J. Frank, M. Graetzel, Artificial analogs of the oxygen-evolving complex in photosynthesis:the oxo-bridged ruthenium dimer L2(H2O)Ru(Ⅲ)-O-Ru(Ⅲ)(H2O)L2, L=2,2'-bipyridyl-4,4'-dicarboxylate, Journal of Molecular Catalysis,1989,52,63.
    [81]C. W. Chronister, R. A. Binstead, J. Ni, T. J. Meyer, Mechanism of Water Oxidation Catalyzed by the μ-Oxo Dimer [(bpy)2(OH2)RuIⅡORuⅢ(OH2)(bpy)2]4+, Inorganic Chemistry,1997,36, 3814.
    [82]J. Limburg, G. W. Brudvig, R. H. Crabtree, O2 Evolution and Permanganate Formation from High-Valent Manganese Complexes, Journal of the American Chemical Society,1997,119,2761.
    [83]J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree, G. W. Brudvig, A functional model for O-O bond formation by the O2-evolving complex in photosystem Ⅱ, Science, 1999,283,1524.
    [84]J. Limburg, J. S. Vrettos, H. Chen, P. J. C. de, R. H. Crabtree, G. W. Brudvig, Characterization of the O(2)-evolving reaction catalyzed by [(terpy)(H20)Mn(Ⅲ)(O)2Mn(IV)(OH2)(terpy)](NO3)3 (terpy=2,2':6,2"-terpyridine), J Am Chem Soc,2001,123,423.
    [85]R. Zong, R. P. Thummel, A New Family of Ru Complexes for Water Oxidation, Journal of the American Chemical Society,2005,127,12802.
    [86]N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard, Cyclometalated Iridium(Ⅲ) Aquo Complexes:Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water, Journal of the American Chemical Society,2007,130,210.
    [87]J. Mola, E. Mas-Marza, X. Sala, I. Romero, M. Rodriguez, C. Vinas, T. Parella, A. Llobet, Ru-Hbpp-Based Water-Oxidation Catalysts Anchored on Conducting Solid Supports, Angewandte Chemie International Edition,2008,47,5830.
    [88]Z. Chen, J. J. Concepcion, J. W. Jurss, T. J. Meyer, Single-Site, Catalytic Water Oxidation on Oxide Surfaces, Journal of the American Chemical Society,2009,131,15580.
    [89]L. Duan, Y. Xu, P. Zhang, M. Wang, L. Sun, Visible Light-Driven Water Oxidation by a Molecular Ruthenium Catalyst in Homogeneous System, Inorganic Chemistry,2009,49,209.
    [90]J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. v. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer, Making Oxygen with Ruthenium Complexes, Accounts of Chemical Research,2009,42,1954.
    [91]J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation, Journal of the American Chemical Society,2009,131,8730.
    [92]Y. V. Geletii, C. Besson, Y. Hou, Q. Yin, D. G. Musaev, D. Quinonero, R. Cao, K. I. Hardcastle, A. Proust, P. Kogerler, C. L. Hill, Structural, Physicochemical, and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation, Journal of the American Chemical Society,2009,131,17360.
    [93]R. Cao, H. Ma, Y. V. Geletii, K. I. Hardcastle, C. L. Hill, Structurally Characterized Iridium(Ⅲ)-Containing Polytungstate and Catalytic Water Oxidation Activity, Inorganic Chemistry (Washington, DC, U. S.),2009,48,5596.
    [94]R. Lalrempuia, N. D. McDaniel, H. Muller-Bunz, S. Bernhard, M. Albrecht, Water Oxidation Catalyzed by Strong Carbene-Type Donor-Ligand Complexes of Iridium, Angewandte Chemie International Edition,2010,49,9765.
    [95]J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis, Journal of the American Chemical Society,2010,132,16017.
    [96]Y. Xu, A. Fischer, L. Duan, L. Tong, E. Gabrielsson, B. Akermark, L. Sun, Chemical and Light-Driven Oxidation of Water Catalyzed by an Efficient Dinuclear Ruthenium Complex, Angewandte Chemie International Edition,2010,49,8934.
    [97]G. F. Moore, J. D. Blakemore, R. L. Milot, J. F. Hull, H.-e. Song, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst, Energy & Environmental Science,2011,4,2389.
    [98]D. G. H. Hetterscheid, J. N. H. Reek, Me2-NHC based robust Ir catalyst for efficient water oxidation, Chemical Communications,2011,47,2712.
    [99]R. Cao, W.Z. Lai, P.W. Du, Catalytic Water Oxidation at Single Metal Sites, Energy & Environmental Science,2012, 5,8134.
    [100]L.L. Duan, L.P. Tong, Y.H. Xu, L.C. Sun, Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells, Energy & Environmental Science,2011,4,3167
    [101]B. Li, F. Li, S.Y. Bai, Z.J. Wang, L.C. Sun, Q.H. Yang, C. Li, Oxygen Evolution from Water Oxidation on Molecular Catalysts Confined in the Nanocages of Mesoporous Silicas, Energy & Environmental Science,2012,5,8229
    [102]L.L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L.C. Sun, A Molecular Ruthenium Catalyst with Water-oxidation Activity Comparable to that of Photosystem Ⅱ, Nature Chemistry,2012,4,418.
    [103]S.M. Barnett, K.I. Goldberg, J.M. Meyer, A Soluble Copper-bipyridine Water-oxidation electrocatalyst, Nature Chemistry,2012,4,498.
    [104]P. Martigny, F. C. Anson, Catalysis of the reduction of dioxygen by poly(xylylviologen) coatings on graphite electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982,139,383.
    [105]R. R. Durand, Jr., C. S. Bencosme, J. P. Collman, F. C. Anson, Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins, Journal of the American Chemical Society, 1983,105,2710.
    [106]C. K. Chang, H. Y. Liu, I. Abdalmuhdi, Electroreduction of oxygen by pillared cobalt(Ⅱ) cofacial diporphyrin catalysts, Journal of the American Chemical Society,1984,106,2725.
    [107]H. Y. Liu, I. Abdalmuhdi, C. K. Chang, F. C. Anson, Catalysis of the electroreduction of dioxygen and hydrogen peroxide by an anthracene-linked dimeric cobalt porphyrin, J. Phys. Chem.,1985, 89,665.
    [108]J. P. Collman, N. H. Hendricks, K. Kim, C. S. Bencosme, The role of Lewis acids in promoting the electrocatalytic four-electron reduction of dioxygen, Journal of the Chemical Society, Chemical Communications,1987,1537.
    [109]C. Arana, M. Keshavarz, K. T. Potts, H. D. Abruna, Electrocatalytic reduction of CO2 and O2 with electropolymerized films of vinyl-terpyridine complexes of Fe, Ni and Co, Inorganica Chimica Acta,1994,225,285
    [110]J. P. Collman, P. C. Herrmann, B. Boitrel, X. Zhang, T. A. Eberspacher, L. Fu, J. Wang, D. L. Rousseau, E. R. Williams, Synthetic Analog for the Oxygen Binding Site in Cytochrome c Oxidase, Journal of the American Chemical Society,1994,116,9783.
    [111]M Momenteau, C. A. Reed, Synthetic Heme-Dioxygen Complexes, Chemical Reviews,1994,94, 659.
    [112]J. P. Collman, L. L. Chng, D. A. Tyvoll, Electrocatalytic Reduction of Dioxygen to Water by Iridium Porphyrins Adsorbed on Edge Plane Graphite Electrodes, Inorganic Chemistry,1995,34, 1311.
    [113]R. Guilard, S. Brandes, C. Tardieux, A. Tabard, M. L'Her, C. Miry, P. Gouerec, Y. Knop, J. P. Collman, Synthesis and Characterization of Cofacial Metallodiporphyrins Involving Cobalt and Lewis Acid Metals:New Dinuclear Multielectron Redox Catalysts of Dioxygen Reduction, Journal of the American Chemical Society,1995,117,11721.
    [114]M. Y. Le, M. L'Her, Electrochemical generation of a new type of dioxygen carrier complex. Reversible fixation of dioxygen by the highly electron-deficient two-electron oxidized derivative of a dicobalt face-to-face diporphyrin, Journal of the Chemical Society, Chemical Communications,1995,1441.
    [115]G. J. Park, S. Nakajima, A. Osuka, K. Kim, Electrocatalytic four-electron reduction of dioxygen by 1,2-phenylene-bridged dicobalt diporphyrins, Chemistry Letters,1995,255.
    [116]F. C. Anson, C. Shi, B. Steiger, Novel Multinuclear Catalysts for the Electroreduction of Dioxygen Directly to Water, Accounts of Chemical Research,1997,30,437.
    [117]J. P. Collman, L. Fu, P. C. Herrmann, X. Zhang, A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of 02, Science,1997,275,949.
    [118]M. Y. Le, C. Inisan, A. Laouenan, M. L'Her, J. Talarmin, K. M. El, J.-Y. Saillard, Reactivity toward Dioxygen of Dicobalt Face-to-Face Diporphyrins in Aprotic Media. Experimental and Theoretical Aspects. Possible Mechanistic Implication in the Reduction of Dioxygen, Journal of the American Chemical Society,1997,119,6095.
    [119]D. Ricard, M. L'Her, P. Richard, B. Boitrel, Iron porphyrins as models of cytochrome c oxidase, Chemistry,2001,7,3291.
    [120]S. Fukuzumi, H. Kotani, H. R. Lucas, K. Doi, T. Suenobu, R. L. Peterson, K. D. Karlin, Mononuclear Copper Complex-Catalyzed Four-Electron Reduction of Oxygen, Journal of the American Chemical Society,2010,132,6874.
    [121]Matthew S. Thorum, Jessica Yadav, and Andrew A. Gewirth, Oxygen Reduction Activity of a Copper Complex of 3,5-Diamino-1,2,4-triazole Supported on Carbon Black, Angewandte Chemie International Edition 2009,48,165
    [122]Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells, Energy & Environmental Science,2011,4,3167.
    [123]S. Fukuzumi, L. Tahsini, Y.-M. Lee, K. Ohkubo, W. Nam, K.D. Karlin, Factors That Control Catalytic Two-versus Four-Electron Reduction of Dioxygen by Copper Complexes, Journal of the American Chemical Society,2012,134,7025.
    [124]T. Honda, T. Kojima, S. Fukuzumi, Proton-Coupled Electron-Transfer Reduction of Dioxygen Catalyzed by a Saddle-Distorted Cobalt Phthalocyanine, Journal of the American Chemical Society,2012,134,4196.
    [125]G. N. Schrauzer, R. J. Holland, Hydridocobaloximes, Journal of the American Chemical Society, 1971,93,1505.
    [126]V. Houlding, T. Geiger, U. Koelle, M. Graetzel, Electrochemical and photochemical investigations of two novel electron relays for hydrogen generation from water, Journal of the Chemical Society, Chemical Communications,1982,681.
    [127]J. Hawecker, J. M. Lehn, R. Ziessel, Efficient homogeneous photochemical hydrogen generation and water reduction mediated by cobaloxime or macrocyclic cobalt complexes, Nouveau Journal de Chimie,1983,7,271.
    [128]P. Connolly, J. H. Espenson, Cobalt-catalyzed evolution of molecular hydrogen, Inorganic Chemistry,1986,25,2684.
    [129]Y. Higuchi, H. Ogata, K. Miki, N. Yasuoka, T. Yagi, Removal of the bridging ligand atom at the Ni-Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution, Structure,1999,7,549.
    [130]F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate, Journal of the American Chemical Society,2001,123,9476.
    [131]F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate, Journal of the American Chemical Society,2001,123,9476.
    [132]X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis, J. C. Peters, Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes, Chemical Communications,2005, 4723.
    [133]M. Razavet, V. Artero, M. Fontecave, Proton Electroreduction Catalyzed by Cobaloximes: Functional Models for Hydrogenases, Inorganic Chemistry,2005,44,4786.
    [134]J. W. Tye, J. Lee, H.-W. Wang, R. Mejia-Rodriguez, J. H. Reibenspies, M. B. Hall, M. Y. Darensbourg, Dual Electron Uptake by Simultaneous Iron and Ligand Reduction in an N-Heterocyclic Carbene Substituted [FeFe] Hydrogenase Model Compound, Inorganic Chemistry, 2005,44,5550.
    [135]A. D. Wilson, R. H. Newell, M. J. McNevin, J. T. Muckerman, D. M. Rakowski, D. L. DuBois, Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays, Journal of the American Chemical Society,2006,128,358.
    [136]A. J. Esswein, D. G. Nocera, Hydrogen Production by Molecular Photocatalysis, Chemical Reviews,2007,107,4022.
    [137]J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases, Chemical Reviews,2007,107,4273.
    [138]X. L. Hu, B. S. Brunschwig, J. C. Peters, Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes, Journal of the American Chemical Society,2007,129,8988.
    [139]P. Du, K. Knowles, R. Eisenberg, A Homogeneous System for the Photogeneration of Hydrogen from Water Based on a Platinum(Ⅱ) Terpyridyl Acetylide Chromophore and a Molecular Cobalt Catalyst, Journal of the American Chemical Society,2008,130,12576.
    [140]A. Fihri, V. Artero, A. Pereira, M. Fontecave, Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts, Dalton Transactions,2008,5567.
    [141]A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl, M. Fontecave, Cobaloxime-based photocatalytic devices for hydrogen production, Angewandte Chemie International Edition,2008, 47,564.
    [142]Y. Na, M. Wang, J. Pan, P. Zhang, B. Akermark, L. Sun, Visible Light-Driven Electron Transfer and Hydrogen Generation Catalyzed by Bioinspired [2Fe2S] Complexes, Inorganic Chemistry, 2008,47,2805.
    [143]T. Lazarides, T. McCormick, P. Du, G. Luo, B. Lindley, R. Eisenberg, Making Hydrogen from Water Using a Homogeneous System Without Noble Metals, Journal of the American Chemical Society,2009,131,9192.
    [144]S. Jasimuddin, T. Yamada, K. Fukuju, J. Otsuki, K. Sakai, Photocatalytic hydrogen production from water in self-assembled supramolecular iridium-cobalt systems, Chemical Communications, 2010, 46,8466.
    [145]T. M. McCormick, B. D. Calitree, A. Orchard, N. D. Kraut, F. V. Bright, M. R. Detty, R. Eisenberg, Reductive side of water splitting in artificial photosynthesis:new homogeneous photosystems of great activity and mechanistic insight, Journal of the American Chemical Society, 2010,132,15480.
    [146]E. S. Wiedner, J. Y. Yang, W. G. Dougherty, W. S. Kassel, R. M. Bullock, M. R. DuBois, D. L. DuBois, Comparison of Cobalt and Nickel Complexes with Sterically Demanding Cyclic Diphosphine Ligands:Electrocatalytic H2 Production by [Co(Ptu2NPh2)(CH3CN)3](BF4)2, Organometallics,2010,29,5390.
    [147]M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production, Science,2011, 333,863.
    [148]U. J. Kilgore, J. A. S. Roberts, D. H. Pool, A. M. Appel, M. P. Stewart, M. R. DuBois, W. G. Dougherty, W. S. Kassel, R. M. Bullock, D. L. DuBois, [Ni(PPh2NC6H4X2)2]2+ Complexes as Electrocatalysts for H2 Production:Effect of Substituents, Acids, and Water on Catalytic Rates, Journal of the American Chemical Society,2011,133,5861.
    [149]M. P. McLaughlin, T. M. McCormick, R. Eisenberg, P. L. Holland, A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution, Chemical Communications,2011,47,7989.
    [150]C.-F. Leung, S.-M. Ng, C.-C. Ko, W.-L. Man, J. Wu, L. Chen, T.-C. Lau, A cobalt(II) quaterpyridine complex as a visible light-driven catalyst for both water oxidation and reduction, Energy & Environmental Science,2012,5,7903.
    [151]X. Li, M. Wang, D. Zheng, K. Han, J. Dong, L. Sun, Photocatalytic H2 production in aqueous solution with host-guest inclusions formed by insertion of an FeFe-hydrogenase mimic and an organic dye into cyclodextrins, Energy & Environmental Science,2012,5,8220.
    [152]X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis, J. C. Peters, Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes, Chemical Communications,2005, 4723.
    [153]P.-A. Jacques, V. Artero, J. Pecaut, M. Fontecave, Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages, Proceedings of the National Academy of Sciences,2009,106,20627.
    [154]U. J. Kilgore, J. A. S. Roberts, D. H. Pool, A. M. Appel, M. P. Stewart, M. R. DuBois, W. G. Dougherty, W. S. Kassel, R. M. Bullock, D. L. DuBois, [Ni(PPh2NC6H4X2)2]2+ Complexes as Electrocatalysts for H2 Production:Effect of Substituents, Acids, and Water on Catalytic Rates, Journal of the American Chemical Society,2011,133,5861.
    [155]M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production, Science,2011, 333,863.
    [156]B. D. Stubbert, J. C. Peters, H. B. Gray, Rapid Water Reduction to H2 Catalyzed by a Cobalt Bis(iminopyridine) Complex, Journal of the American Chemical Society,2011,133,18070.
    [157]H. I. Karunadasa, C. J. Chang, J. R. Long, A molecular molybdenum-oxo catalyst for generating hydrogen from water, Nature,2010,464,1329.
    [158]B. E. Barton, T. B. Rauchfuss, Hydride-Containing Models for the Active Site of the Nickel-Iron Hydrogenases, Journal of the American Chemical Society,2010,132,14877.
    [159]J. Fritsch, P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B. Friedrich, O. Lenz, C. M. T. Spahn, The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre, Nature,2011,479,249.
    [160]Y. Shomura, K.-S. Yoon, H. Nishihara, Y. Higuchi, Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase, Nature,2011,479,253.
    [161]Y. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long, C. J. Chang, Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water, Journal of the American Chemical Society,2011, 133,9212.
    [162]H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang, A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation, Science,2012,335,698.
    [163]W. M. Singh, T. Baine, S. Kudo, S. Tian, X. A. N. Ma, H. Zhou, N. J. DeYonker, T. C. Pham, J. C. Bollinger, D. L. Baker, B. Yan, C. E. Webster, X. Zhao, Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex, Angewandte Chemie International Edition,2012,51,5941.
    [164]B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, T. J. Meyer, One-and two-electron pathways in the electrocatalytic reduction of carbon dioxide by fac-(2,2'-bipyridine)tricarbonylchlororhenium, Journal of the Chemical Society, Chemical Communications,1985,1414.
    [165]F. P. A. Johnson, M. W. George, F. HartⅠ, J. J. Turner, Electrocatalytic Reduction of CO2 Using the Complexes [Re(bpy)(CO)3L]n (n=+1, L=P(OEt)3, CH3CN; n=0, L=Cl-, Otf-; bpy= 2,2'-Bipyridine; Otf-= CF3SO3) as Catalyst Precursors:Infrared Spectroelectrochemical Investigation, Organometallics,1996,15,3374.
    [166]T. Yoshida, T. Iida, T. Shirasagi, R.-J. Lin, M. Kaneko, Electrocatalytic reduction of carbon dioxide in aqueous medium by bis(2,2':6',2"-terpyridine)cobalt(II) complex incorporated into a coated polymer membrane, Journal of Electroanalytical Chemistry,1993,344,355.
    [167]H. Ishida, K. Tanaka, T. Tanaka, The electrochemical reduction of carbon dioxide catalyzed by ruthenium carbonyl complexes, Chemistry Letters,1985,405.
    [168]H. Ishida, K. Fujiki, T. Ohba, K. Ohkubo, K. Tanaka, T. Terada, T. Tanaka, Ligand effects of ruthenium 2,2'-bipyridine and 1,10-phenanthroline complexes on the electrochemical reduction of carbon dioxide, J. Chem. Soc., Dalton Transactions,1990,2155.
    [169]M. R. M. Bruce, E. Megehee, B. P. Sullivan, H. H. Thorp, T. R. O'Toole, A. Downard, J. R. Pugh, T. J. Meyer, Electrocatalytic reduction of carbon dioxide based on 2,2'-bipyridyl complexes of osmium, Inorganic Chemistry,1992,31,4864.
    [170]S. Chardon-Noblat, M. N. Collomb-Dunand-Sauthier, A. Deronzier, R. Ziessel, D. Zsoldos, Formation of Polymeric [{RuO(bpy)(CO)2}n] Films by Electrochemical Reduction of [Ru(bpy)2(CO)2](PF6)2:Its Implication in CO2 Electrocatalytic Reduction, Inorganic Chemistry, 1994,33,4410.
    [171]S. Chardon-Noblat, A. Deronzier, D. Zsoldos, R. Ziessel, M. Haukka, T. Pakkanen, T. Venalainen, Mode of formation of polymer [{Ru(bipy)(CO)2}n] (bipy=2,2'-bipyridine) films, J. Chem. Soc., Dalton Transactions,1996,2581.
    [172]K. Tanaka, Y. Kushi, K. Tsuge, K. Toyohara, T. Nishioka, K. Isobe, Catalytic Generation of Oxalate through a Coupling Reaction of Two CO2 Molecules Activated on [[Ir(η5-C5Me5)]2(Ir(η4-C5Me5)CH2CN)(μ3-S)2], Inorganic Chemistry,1998,37,120.
    [173]R. E. Wittrig, G. M. Ferrence, J. Washington, C. P. Kubiak, Infrared spectroelectrochemical and electrochemical kinetics studies of the reaction of nickel cluster radicals [Ni3(μ2-dppm)3(μ3-L)(μ3-I)] (L=CNR, R=CH3, i-C3H7, C6H11, CH2C6H5, t-C4H9, 2,6-Me2C6H3; L= CO) with carbon dioxide, Inorganica Chimica Acta,1998,270,111.
    [174]E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels, Chemical Society Reviews,2009,38,89.
    [175]R. Angamuthu, P. Byers, M. Lutz, A.L. Spek, E. Bouwman, Electrocatalytic CO2 conversion to oxalate by a copper complex, Science,2010,327,313.
    [176]J. Schneider, K. Q. Vuong, J. A. Calladine, X.-Z. Sun, A. C. Whitwood, M. W. George, R. N. Perutz, Photochemistry and Photophysics of a Pd(II) Metalloporphyrin:Re(I) Tricarbonyl Bipyridine Molecular Dyad and its Activity Toward the Photoreduction of CO2 to CO, Inorganic Chemistry,2011,50,11877.
    [177]C. Costentin, S. Drouet, M. Robert, J.-M. Saveant, A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst, Science,2012,338,90.
    [178]C. Finn, S. Schnittger, L. J. Yellowlees, J. B. Love, Molecular approaches to the electrochemical reduction of carbon dioxide, Chemical Communications,2012,48,1392.
    [179]S. A. Yao, R. E. Ruther, L. Zhang, R. A. Franking, R. J. Hamers, J. F. Berry, Covalent Attachment of Catalyst Molecules to Conductive Diamond:CO2 Reduction Using "Smart" Electrodes, Journal of the American Chemical Society,2012,134,15632.
    [180]J.-M. Saveant, Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects, Chemical Reviews,2008,108,2348.
    [181]D. Lexa, J. M. Saveant, H. J. Schaefer, B. Su Khac, B. Vering, D. L. Wang, Outer-sphere and inner-sphere processes in reductive elimination. Direct and indirect electrochemical reduction of vicinal dibromoalkanes, Journal of the American Chemical Society,1990,112,6162.
    [182]C. J. Campbell, J. F. Rusling, C. Bruckner, Nickel(II) meso-Tetraphenyl-Homoporphyrins,-secochlorins, and -chlorophin:Control of Redox Chemistry by Macrocycle Rigidity, Journal of the American Chemical Society,2000,122,6679.
    [183]V. Fourmond, P.-A. Jacques, M. Fontecave, V. Artero, H2 Evolution and Molecular Electrocatalysts:Determination of Overpotentials and Effect of Homoconjugation, Inorganic Chemistry,2010,49,10338.
    [184]G. A. N. Felton, R. S. Glass, D. L. Lichtenberger, D. H. Evans, Iron-Only Hydrogenase Mimics. Thermodynamic Aspects of the Use of Electrochemistry to Evaluate Catalytic Efficiency for Hydrogen Generation, Inorganic Chemistry,2006,45,9181.
    [185]J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Hydrogen Evolution Catalyzed by Cobaloximes, Accounts of Chemical Research,2009,42,1995.
    [186]M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production, Science,2011, 333,863.
    [187]A. D. Wilson, R. H. Newell, M. J. McNevin, J. T. Muckerman, M. Rakowski DuBois, D. L. DuBois, Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays, Journal of the American Chemical Society,2005,128,358.
    [1]Photosystem Ⅱ, Wikipedia, http://en.wikipedia.org/wiki/Photosystem_Ⅱ
    [2]Oxygen-evolving complex, Wikipedia, http://en.wikipedia.org/wiki/Oxygen-evolving_complex
    [3]R. J. Cogdell, T. H. P. Brotosudarmo, A. T. Gardiner, P. M. Sanchez, L. Cronin, Artificial photosynthesis - solar fuels:current status and future prospects, Biofuels,2010,1,861.
    [4]S. W. Gersten, G. J. Samuels, T. J. Meyer, Catalytic oxidation of water by an oxo-bridged ruthenium dimer, Journal of the American Chemical Society,1982,104,4029.
    [5]J. J. Concepcion, J. W. Jurss, J. L. Templeton, T. J. Meyer, Mediator-assisted water oxidation by the ruthenium "blue dimer" cis,cis-[(bpy)2(H2O)RuORu(OH2)(bpy)2]4+, Proceedings of the National Academy of Sciences,2008,105,17632.
    [6]R. A. Binstead, C. W. Chronister, J. Ni, C. M. Hartshorn, T. J. Meyer, Mechanism of Water Oxidation by the μ-Oxo Dimer [(bpy)2(H2O)RuⅢORuⅢ(OH2)(bpy)2]4+, Journal of the American Chemical Society,2000,122,8464.
    [7]Z. Chen, J. J. Concepcion, J. W. Jurss, T. J. Meyer, Single-Site, Catalytic Water Oxidation on Oxide Surfaces, Journal of the American Chemical Society,2009,131,15580.
    [8]J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. v. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer, Making Oxygen with Ruthenium Complexes, Accounts of Chemical Research,2009,42,1954.
    [9]R. Brimblecombe, G. C. Dismukes, G. F. Swiegers, L. Spiccia, Molecular water-oxidation catalysts for photoelectrochemical cells, Dalton Transactions,2009,9374.
    [10]M. Yagi, M. Kaneko, Molecular Catalysts for Water Oxidation, Chemical Reviews,2000,101,21.
    [11]J. Limburg, J. S. Vrettos, H. Chen, J. C. de Paula, R. H. Crabtree, G. W. Brudvig, Characterization of the 02-Evolving Reaction Catalyzed by [(terpy)(H2O)MnⅢ(O)2MnⅣ(OH2)(terpy)](NO3)3 (terpy=2,2':6,2'(?)'-Terpyridine), Journal of the American Chemical Society,2000,123,423.
    [12]K. Beckmann, H. Uchtenhagen, G. Berggren, M. F. Anderlund, A. Thapper, J. Messinger, S. Styring, P. Kurz, Formation of stoichiometrically 18O-labelled oxygen from the oxidation of 18O-enriched water mediated by a dinuclear manganese complex-a mass spectrometry and EPR study, Energy & Environmental Science,2008,1,668.
    [13]N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard, Cyclometalated Iridium(III) Aquo Complexes:(?) Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water, Journal of the American Chemical Society,2007,130,210.
    [14]J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, Highly Active and Robust Cp* Iridium Complexes for Catalytic Water Oxidation, Journal of the American Chemical Society,2009,131,8730.
    [15]J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis, Journal of the American Chemical Society,2010,132,16017.
    [16]Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, C. L. Hill, A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals, Science,2010,328,342.
    [17]S. M. Barnett, K. I. Goldberg, J. M. Mayer, A soluble copper-bipyridine water-oxidation electrocatalyst, Nature Chemistry,2012,4,498.
    [18]J. J. Stracke, R. G. Finke, Electrocatalytic Water Oxidation Beginning with the Cobalt Polyoxometalate [Co4(H2O)2(PW9O34)2]10-:Identification of Heterogeneous CoOx as the Dominant Catalyst, Journal of the American Chemical Society,2011,133,14872.
    [19]D. B. Grotjahn, D. B. Brown, J. K. Martin, D. C. Marelius, M.-C. Abadjian, H. N. Tran, G. Kalyuzhny, K. S. Vecchio, Z. G. Specht, S. A. Cortes-Llamas, V. Miranda-Soto, C. van Niekerk, C. E. Moore, A. L. Rheingold, Evolution of Iridium-Based Molecular Catalysts during Water Oxidation with Ceric Ammonium Nitrate, Journal of the American Chemical Society,2011,133, 19024.
    [20]D. Hong, M. Murakami, Y. Yamada, S. Fukuzumi, Efficient water oxidation by cerium ammonium nitrate with [IrⅢ(Cp*)(4,4'-bishydroxy-2,2'-bipyridine)(H20)]2+ as a precatalyst, Energy & Environmental Science,2012,5,5708.
    [21]A. Savini, P. Belanzoni, G. Bellachioma, C. Zuccaccia, D. Zuccaccia, A. Macchioni, Activity and degradation pathways of pentamethyl-cyclopentadienyl-iridium catalysts for water oxidation, Green Chemistry,2011,13,3360.
    [22]C. Zuccaccia, G. Bellachioma, S. Bolano, L. Rocchigiani, A. Savini, A. Macchioni, An NMR Study of the Oxidative Degradation of Cp*Ir Catalysts for Water Oxidation:Evidence for a Preliminary Attack on the Quaternary Carbon Atom of the-C-CH3 Moiety, European Journal of Inorganic Chemistry,2012,2012,1462.
    [23]R. Lalrempuia, N. D. McDaniel, H. Muller-Bunz, S. Bernhard, M. Albrecht, Water Oxidation Catalyzed by Strong Carbene-Type Donor-Ligand Complexes of Indium, Angewandte Chemie International Edition,2010,49,9765.
    [24]T. P. Brewster, J. D. Blakemore, N. D. Schley, C. D. Incarvito, N. Hazari, G. W. Brudvig, R. H. Crabtree, An Iridium(IV) Species, [Cp*Ir(NHC)Cl]+, Related to a Water-Oxidation Catalyst, Organometallics,2011,30,965.
    [25]D. G. H. Hetterscheid, J. N. H. Reek, Me2-NHC based robust Ir catalyst for efficient water oxidation, Chemical Communications,2011,47,2712.
    [26]T. D. Tilley, R. H. Grubbs, J. E. Bercaw, Halide, hydride, and alkyl derivatives of (pentamethylcyclopentadienyl)bis(trimethylphosphine)ruthenium, Organometallics,1984,3,214.
    [27]N. Oshima, H. Suzuki, Y. Morooka, Synthesis and some reactions of dichloro(pentamethylcyclopentadienyl)ruthenium(Ⅲ) oligomer, Chemistry Letters,1984,7,1161
    [28]U. Koelle, J. Kossakowski, Pentamethylcyclopentadienylruthenium complexes:Ⅳ. Pentarnethylcyclopentadienyl(halo)ruthenium(Ⅲ, Ⅱ/Ⅱ, or Ⅱ), and pentamethylcyclopentadienyl(alkoxo)ruthenium(Ⅱ) complexes, Journal of Organometallic Chemistry,1989,362,383.
    [1]Swiss-PEC-EPFL, pechouse.epfl.ch/files/content/sites/pechouse/files/users/178220/public/SwissPEC-EPFL.pdf
    [2]Y. Zhao, J.K. Swierk, J.D. Jr Megiatto, B. Sherman, W.J. Youngblood, D. Qin, D.M. Lentz, A.L. Moore, T.A. Moore, D. Gust, T.E. Mallouk, Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proceedings of the National Academy of Sciences.2012,109,15612
    [3]3. R. Brimblecombe, A. Koo, G. C. Dismukes, G. F. Swiegers, L. Spiccia, Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst, Journal of the American Chemical Society,2010,132,2892.
    [4]4. L. Li, L. Duan, Y. Xu, M. Gorlov, A. Hagfeldt, L. Sun, A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2, Chemical Communications,2010,46,7307.
    [5]5. G. F. Moore, J. D. Blakemore, R. L. Milot, J. F. Hull, H.-e. Song, L. Cai, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst, Energy & Environmental Science,2011,4,2389.
    [6]A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature,1972,238,37.
    [7]K. Rajeshwar, R. McConnell, S. Licht, Solar Hydrogen Generation Toward a Renewable Energy Future, Spriger,2008, p.174
    [8]J. Sun, D. K. Zhong, D. R. Gamelin, Composite photoanodes for photoelectrochemical solar water splitting, Energy & Environmental Science,2010,3,1252.
    [9]M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production, Renewable and Sustainable Energy Reviews,2007,11,401.
    [10]F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chemistry of Materials,2007,20,35.
    [11]R. Dholam, N. Patel, M. Adami, A. Miotello, Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst, International Journal of Hydrogen Energy,2009,34,5337.
    [12]D. W. Hwang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim, J. S. Lee, Photocatalytic water splitting over highly donor-doped (110) layered perovskites, Journal of Catalysis,2000,193,40.
    [13]H. G. Kim, D. W. Hwang, J. Kim, Y. G. Kim, J. S. Lee, Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting, Chemical Communications, 1999,1077.
    [14]J. H. Park, S. Kim, A. J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting, Nano Letters,2006,6,24.
    [15]J. F. Reber, K. Meier, Photochemical production of hydrogen with zinc sulfide suspensions, The Journal of Physical Chemistry,1984,88,5903.
    [16]K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga1-xZnx)(N1-xOx) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting, The Journal of Physical Chemistry B,2006,110, 13753.
    [17]K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water-Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight, Nature,2006,440,295
    [18]I. Cesar, A. Kay, M. J. A. Gonzalez, M. Graetzel, Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight:Nanostructure-Directing Effect of Si-Doping, Journal of the American Chemical Society,2006,128,4582.
    [19]I. Cesar, K. Sivula, A. Kay, R. Zboril, M. Gratzel, Influence of Feature Size, Film Thickness and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting, The Journal of Physical Chemistry C,2009,113,772.
    [20]K. Sivula, F. F. Le, M. Graetzel, Solar Water Splitting:Progress Using Hematite (a-Fe2O3) Photoelectrodes, ChemSusChem,2011,4,432.
    [21]K. Sivula, R. Zboril, F. F. Le, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Gratzel, Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, Journal of the American Chemical Society,2010,132,7436.
    [22]S. D. Tilley, M. Cornuz, K. Sivula, M. Graetzel, Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis, Angewandte Chemie International Edition, 2010,49,6405.
    [23]R. Liu, Y. Lin, L.-Y. Chou, S. W. Sheehan, W. He, F. Zhang, H. J. M. Hou, D. Wang, Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst, Angewandte Chemie International Edition,2011,50,499.
    [24]C. Santato, M. Ulmann, J. Augustynski, Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films, The Journal of Physical Chemistry B,2001,105,936.
    [25]A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution, J. Mater. Chem.,2010,20,7536.
    [26]A. Kudo, K. Omori, H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties, Journal of the American Chemical Society,1999,121,11459.
    [27]Y. H. Ng, A. Iwase, A. Kudo, R. Amal, Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting, J. Phys. Chem. Lett.,2010,1, 2607.
    [28]M. Gratzel, Photoelectrochemical Cells, Nature,2001,414,338.
    [29]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Solar Water Splitting Cells, Chemical Reviews,2010,110,6446.
    [30]A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews,2009,38,253.
    [31]A. Walsh, K.-S. Ahn, S. Shet, M. N. Huda, T. G. Deutsch, H. Wang, J. A. Turner, S.-H. Wei, Y. Yan, M. M. Al-Jassim, Ternary cobalt spinel oxides for solar driven hydrogen production:Theory and experiment, Energy & Environmental Science,2009,2,774.
    [32]M. N. Huda, A. Walsh, Y. F. Yan, S. H. Wei, M. M. Al-Jassim, Electronic, structural, and magnetic effects of 3d transition metals in hematite, Journal of Applied Physics,2010,107,123712.
    [33]A. Iwase, H. Kato, A. Kudo, A Novel Photodeposition Method in the Presence of Nitrate Ions for Loading of an Iridium Oxide Cocatalyst for Water Splitting, Chemistry Letters,2005,34,946.
    [34]W. J. Youngblood, S.-H. A. Lee, K. Maeda, T. E. Mallouk, Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors, Accounts of Chemical Research,2009,42,1966.
    [35]M. W. Kanan, D. G. Nocera, In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science,2008,321,1072.
    [36]D. K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, D. R. Gamelin, Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation, Energy & Environmental Science,2011,4,1759.
    [37]B. H. Meekins, P. V. Kamat, Role of Water Oxidation Catalyst IrO2 in Shuttling Photogenerated Holes Across TiO2 Interface, The Journal of Physical Chemistry Letters,2011,2,2304.
    [38]A. Kleiman-Shwarsctein, Y.-S. Hu, G. D. Stucky, E. W. McFarland, NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes, Electrochemistry Communications,2009,11,1150.
    [39]H. Ye, H. S. Park, A. J. Bard, Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO4 Photocatalysts by Scanning Electrochemical Microscopy, The Journal of Physical Chemistry C,2011,115,12464.
    [40]A. J. Bard, F.-R. F. Fan, A. S. Gioda, G. Nagasubramanian, H. S. White, On the role of surface states in semiconductor electrode photoelectrochemical cells, Faraday Discussions of the Chemical Society,1980,70,19.
    [41]C. Zuccaccia, G. Bellachioma, S. Bolano, L. Rocchigiani, A. Savini, A. Macchioni, An NMR Study of the Oxidative Degradation of Cp*Ir Catalysts for Water Oxidation:Evidence for a Preliminary Attack on the Quaternary Carbon Atom of the -C-CH3 Moiety, European Journal of Inorganic Chemistry,2012,2012,1462.
    [42]Solar-sensitized solar cell, Wikipedia, http://en.wikipedia.org/wiki/Dye-sensitized_solar_cell#cite_note-2
    [43]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737.
    [44]J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. v. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer, Making Oxygen with Ruthenium Complexes, Accounts of Chemical Research,2009,42,1954.
    [45]D. J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, M. A. Henderson, C. P. Berlinguette, Insight into Water Oxidation by Mononuclear Polypyridyl Ru Catalysts, Inorganic Chemistry,2010,49, 2202.
    [46]N. Iordanova, M. Dupuis, K. M. Rosso, Charge transport in metal oxides:A theoretical study of hematite α-Fe2O3, Journal of Chemical Physics,2005,122,144305
    [47]Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting, Nano Letters,2011,11,2119.
    [48]P. G. Bomben, K. C. D. Robson, P. A. Sedach, C. P. Berlinguette, On the Viability of Cyclometalated Ru(Ⅱ) Complexes for Light-Harvesting Applications, Inorganic Chemistry,2009, 48,9631.
    [1]Cammack, R.; Frey, M.; Robson, R. Hydrogen as a Fuel:Learning from Nature; Taylor & Francis: London,2001.
    [2]K. A. Vincent, A. Parkin, F. A. Armstrong, Investigating and Exploiting the Electrocatalytic Properties of Hydrogenases, Chemical Reviews,2007,107,4366.
    [3]J. Fritsch, P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B. Friedrich, O. Lenz, C. M. T. Spahn, The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre, Nature,2011,479,249.
    [4]Y. Shomura, K.-S. Yoon, H. Nishihara, Y. Higuchi, Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase, Nature,2011,479,253.
    [5]F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss, Biomimetic Hydrogen Evolution Catalyzed by an Iron Carbonyl Thiolate, Journal of the American Chemical Society,2001,123,9476.
    [6]B. E. Barton, T. B. Rauchfuss, Hydride-Containing Models for the Active Site of the Nickel-Iron Hydrogenases, Journal of the American Chemical Society,2010,132,14877.
    [7]X. Hu, B. M. Cossairt, B. S. Brunschwig, N. S. Lewis, J. C. Peters, Electrocatalytic hydrogen evolution by cobalt difluoroboryl-diglyoximate complexes, Chemical Communications,2005, 4723.
    [8]M. Razavet, V. Artero, M. Fontecave, Proton Electroreduction Catalyzed by Cobaloximes: Functional Models for Hydrogenases, Inorganic Chemistry,2005,44,4786.
    [9]P.-A. Jacques, V. Artero, J. Pecaut, M. Fontecave, Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages, Proceedings of the National Academy of Sciences,2009,106,20627.
    [10]U. J. Kilgore, J. A. S. Roberts, D. H. Pool, A. M. Appel, M. P. Stewart, M. R. DuBois, W. G. Dougherty, W. S. Kassel, R. M. Bullock, D. L. DuBois, [Ni(PPh2NC6H4X2)2]2+ Complexes as Electrocatalysts for H2 Production:Effect of Substituents, Acids, and Water on Catalytic Rates, Journal of the American Chemical Society,2011,133,5861.
    [11]M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s-1 for H2 Production, Science,2011, 333,863.
    [12]B. J. Fisher, R. Eisenberg, Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt, Journal of the American Chemical Society,1980,102,7361.
    [13]B. D. Stubbert, J. C. Peters, H. B. Gray, Rapid Water Reduction to H2 Catalyzed by a Cobalt Bis(iminopyridine) Complex, Journal of the American Chemical Society,2011,133,18070.
    [14]H. I. Karunadasa, C. J. Chang, J. R. Long, A molecular molybdenum-oxo catalyst for generating hydrogen from water, Nature,2010,464,1329.
    [15]Y. Sun, J. P. Bigi, N. A. Piro, M. L. Tang, J. R. Long, C. J. Chang, Molecular Cobalt Pentapyridine Catalysts for Generating Hydrogen from Water, Journal of the American Chemical Society,2011, 133,9212.
    [16]H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang, A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation, Science,2012,335,698.
    [17]W. M. Singh, T. Baine, S. Kudo, S. Tian, X. A. N. Ma, H. Zhou, N. J. DeYonker, T. C. Pham, J. C. Bollinger, D. L. Baker, B. Yan, C. E. Webster, X. Zhao, Electrocatalytic and Photocatalytic Hydrogen Production in Aqueous Solution by a Molecular Cobalt Complex, Angewandte Chemie International Edition,2012,51,5941.
    [18]M. T. M. Koper, E. Bouwman, Electrochemical Hydrogen Production:Bridging Homogeneous and Heterogeneous Catalysis, Angewandte Chemie International Edition,2010,49,3723.
    [19]X.-M. Zhang, H.-S. Wu, X.-M. Chen, Linear and Helical Chains in Hydrothermally Synthesized Coordination Polymers [Co(bpdc)(H2O)2] and [Ni(bpdc)(H20)3]·H2O Involving in situ Ligand Synthesis, European Journal of Inorganic Chemistry,2003,2003,2959.
    [20]E. Tynan, P. Jensen, N. R. Kelly, P. E. Kruger, A. C. Lees, B. Moubaraki, K. S. Murray, The ligand, the metal and the' Holey'-host:Synthesis, structural and magnetic characterisation of Co(Ⅱ), Ni(Ⅱ) and Mn(Ⅱ) metal-organic frameworks incorporating 4,4'-dicarboxy-2,2'-bipyridine, Dalton Transactions,2004,3440.
    [21]J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, H. B. Gray, Hydrogen Evolution Catalyzed by Cobaloximes, Accounts of Chemical Research,2009,42,1995.
    [22]V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Splitting Water with Cobalt, Angewandte Chemie International Edition,2011,50,7238.
    [23]P. Du, R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges, Energy & Environmental Science,2012,5,6012.
    [24]D. H. Huchital, A. E. Martell, Mixed-ligand complexes of terpyridinecobalt(II). New low-pH oxygen carriers, Inorganic Chemistry,1974,13,2966.
    [25]M. Wang, L. Chen, L. Sun, Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts, Energy & Environmental Science,2012,5,6763.
    [26]V. Fourmond, P.-A. Jacques, M. Fontecave, V. Artero, H2 Evolution and Molecular Electrocatalysts:Determination of Overpotentials and Effect of Homoconjugation, Inorganic Chemistry,2010,49,10338.
    [27]A. D. Wilson, R. H. Newell, M. J. McNevin, J. T. Muckerman, M. Rakowski DuBois, D. L. DuBois, Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays, Journal of the American Chemical Society,2005,128,358.
    [1]Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Metaye, A. Fihri, S. Palacin, M. Fontecave, From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H2 Production and Uptake, Science,2009,326,1384.
    [2]P. D. Tran, A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave, V. Artero, Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes:Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake, Angewandte Chemie International Edition,2011,50,1371.
    [3]L. A. Berben, J. C. Peters, Hydrogen evolution by cobalt tetraimine catalysts adsorbed on electrode surfaces, Chemical Communications,2010,46,398.
    [4]Lange's Handbook of Chemistry, McGraw-Hill Companies,2004, Chapter 8, Table 8.31
    [5]D. H. Huchital, A. E. Martell, Mixed-ligand complexes of terpyridinecobalt(Ⅱ). New low-pH oxygen carriers, Inorganic Chemistry,1974,13,2966.
    [6]A. Heller, Hydrogen-Evolving Solar Cells, Science,1984,223,1141.
    [7]J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, H. B. Gray, Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes, Energy & Environmental Science,2011,4,3573.
    [8]S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, N. S. Lewis, Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays, Journal of the American Chemical Society,2011, 133,1216.
    [9]Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bjorketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. N(?)rskov, I. Chorkendorff, Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution, Nature Materials,2011,10,434.
    [10]B. A. Parkinson, A. Heller, B. Miller, Enhanced photoelectrochemical solar energy conversion by gallium arsenide surface modification, Applied Physics Letters.,1978,33,521.
    [11]J. O. M. Bockris, K. Uosaki, The rate of the photoelectrochemical generation of hydrogen at p-type semiconductors, Journal of The Electrochemical Society,1977,124,1348.
    [12]T. G. Deutsch, C. A. Koval, J. A. Turner, Ⅲ-Ⅴ Nitride Epilayers for Photoelectrochemical Water Splitting:GaPN and GaAsPN, The Journal of Physical Chemistry B,2006,110,25297.
    [13]I. A. Kirovskaya, O. T. Timoshenko, E. O. Karpova, The catalytic and photocatalytic properties of InP-CdS and ZnTe-CdS system components, Russian Journal of Physical Chemistry A,2011,85, 557.
    [14]H. Doescher, O. Supplie, M. M. May, P. Sippel, C. Heine, A. G. Munoz, R. Eichberger, H.-J. Lewerenz, T. Hannappel, Epitaxial III-V Films and Surfaces for Photoelectrocatalysis, ChemPhysChem,2012,13,2899.
    [15]B. P. Rai, Cu2O solar cells:A review, Solar Cells,1988,25,265.
    [16]A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nature Materials,2011,10,456.
    [17]Z. Zhang, P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy, Journal of Materials Chemistry,2012,22, 2456.
    [18]T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, R. A. Van Leeuwen, J. A. Switzer, Electrochemical Deposition of Copper(I) Oxide Films, Chemistry of Materials,1996,8,2499.
    [19]D. K. Zhong, M. Cornuz, K. Sivula, M. Gratzel, D. R. Gamelin, Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation, Energy & Environmental Science,2011,4,1759.
    [1]J. P. Collman, R. Boulatov, C. J. Sunderland, L. Fu, Functional Analogues of Cytochrome c Oxidase, Myoglobin, and Hemoglobin, Chemical Reviews,2003,104,561.
    [2]J.-M. Saveant, Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects, Chemical Reviews,2008,108,2348.
    [3]查全性等,电砐过程动力学,科学出版社,2005(第三版),第三章,p.106
    [4]Lange's Handbook of Chemistry, McGraw-Hill Companies,2004, Chapter 5, Table 5.1
    [5]R. Brimblecombe, G. C. Dismukes, G. F. Swiegers, L. Spiccia, Molecular water-oxidation catalysts for photoelectrochemical cells, Dalton Transactions,2009,9374.
    [6]阿伦.J.巴德,拉里.R.福克纳,电化学方法原理及应用,化学工业出版社(邵元华,朱果逸,张柏林译),2008(第二版),第九章,p.235
    [7]Temperature-dependence of liquid viscosity, Wikipedia, http://en.wikipedia.org/wiki/Temperature_dependence_of_liquid_viscosity
    [8]查全性等,电极过程动力学,科学出版社,2005(第三版),第七章,p.263
    [9]查全性等,电极过程动力学,科学出版社,2005(第三版),第五章,p.211
    [10]Myoglobin, Wikipedia, http://en.wikipedia.org/wiki/Myoglobin
    [11]Hemoglobin, Wikipedia, http://en.wikipedia.org/wiki/Hemoglobin
    [12]D. H. Huchital, A. E. Martell, Mixed-ligand complexes of terpyridinecobalt(II). New low-pH oxygen carriers, Inorganic Chemistry,194,13,2966.
    [1]U. Koelle, J. Kossakowski, Journal of Organometallic Chemistry,1989,362,383.
    [2]B. P. Sullivan, J. M. Calvert, T. J. Meyer, Inorganic Chemistry,1980,19,1404-1407.
    [3]K. J. Takeuchi, M. S. Thompson, D. W. Pipes, T. J. Meyer, Redox and spectral properties of monooxo polypyridyl complexes of ruthenium and osmium in aqueous media, Inorganic Chemistry,1984,23,1845.
    [4]D. J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, M. A. Henderson, C. P. Berlinguette, Inorganic Chemistry,2010,49,2202-2209.
    [5]P. G. Bomben, K. C. D. Robson, P. A. Sedach, C. P. Berlinguette, Inorganic Chemistry,2009,48, 9631-9643.
    [6]D. Chu, B. Wang, Preparation of Benzoxazole Carboxamide Inhibitors of poly(ADP-ribose)polymerase (PARP),2009, US20090197863A.
    [7]B. J. Hathaway, D. G. Holah, A. E. Underhill,468. The preparation and properties of some bivalent transition-metal tetrafluoroborate-methyl cyanide complexes, Journal of the Chemical Society (Resumed),1962,2444.
    [8]E. Tynan, P. Jensen, N. R. Kelly, P. E. Kruger, A. C. Lees, B. Moubaraki, K. S. Murray, The ligand, the metal and the 'Holey'-host:Synthesis, structural and magnetic characterisation of Co(ii), Ni(ii) and Mn(ii) metal-organic frameworks incorporating 4,4'-dicarboxy-2,2'-bipyridine, Dalton Transactions,2004,3440.
    [9]任晓迪,a-Fe2O3光阳极水氧化研究,武汉大学硕士学位论文,2011.
    [10]L. Vayssieres, N. Beermann, S.-E. Lindquist, A. Hagfeldt, Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays:Application to Iron(Ⅲ) Oxides, Chemistry of Materials,2000,13,233.
    [11]T. D. Golden, M. G. Shumsky, Y. Zhou, R. A. VanderWerf, R. A. Van Leeuwen, J. A. Switzer, Electrochemical Deposition of Copper(Ⅰ) Oxide Films, Chemistry of Materials,1996,8,2499.
    [12]Z. Zhang, P. Wang, Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy, Journal of Materials Chemistry,2012,22, 2456.
    [13]R. R. Gagne, C. A. Koval, G. C. Lisensky, Ferrocene as an internal standard for electrochemical measurements, Inorganic Chemistry,1980,19,2854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700