用户名: 密码: 验证码:
日粮能氮释放同步性对奶牛瘤胃代谢、生产效率与性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对当前奶牛养殖过程中所存在的饲料利用效率低,环境污染严重问题,本研究通过变换奶牛日粮主要能量原料(玉米)和蛋白原料(豆粕)加工方式,配制四种能氮同步化程度不同的日粮,系统研究了不同能氮同步释放日粮对奶牛瘤胃代谢、生产效率与性能的影响,为提高饲料利用效率、减少环境污染及改善牛奶品质提供了理论实践依据。鉴于瘤胃代谢研究需要采集瘤胃内容物,本研究首先优化了瘤胃导管(OST)取瘤胃内容物技术,为后续健康奶牛瘤胃代谢研究提供了有效技术手段。
     1、瘤胃导管取瘤胃内容物技术评价及优化(试验一)
     本试验的目的是通过两部分内容的研究对瘤胃导管取瘤胃内容物技术进行优化。首先比较了瘤胃不同位点瘤胃发酵参数的差异,通过瘤胃瘘管(RC)采集六头奶牛不同位点瘤胃液,每天采集一次,连采三天,分析瘤胃液pH值、VFA、NH3-N、Na、 K、Ca、Cl和P离子浓度。试验结果发现,瘤胃不同位点的瘤胃液发酵参数存在差异,与其它位点(前腹盲囊、瘤胃背囊、瘤胃腹囊、后背盲囊、后腹盲囊)相比,前背盲囊瘤胃液pH值、氨氮及Na离子浓度较高,乙酸、丙酸及丁酸浓度较低。因此,推测瘤胃导管的插入深度有可能影响所采集瘤胃液的发酵参数。然后,对OST不同插入深度(180或200cm)采集瘤胃液与通过RC(腹囊)所采集瘤胃液的发酵参数进行了对比。晨饲后5-6h采集六头奶牛瘤胃液,每周采集一次。试验结果发现,当插入深度为180cm时,瘤胃导管探头处于瘤胃前背盲囊(瘤胃前庭)的位置,OST所取瘤胃液pH值、Na离子浓度高于RC所取瘤胃液,但VFA、K、Ca和P离子浓度低于RC所取瘤胃液;当插入深度为200cm时,瘤胃导管探头可以穿过瘤胃前肉柱到达瘤胃中部,OST所取瘤胃液与RC所取瘤胃液pH值、VFA、氨氮及各离子浓度差异不显著。结果说明,OST的插入深度影响瘤胃发酵参数,使用OST取成年奶牛瘤胃内容物时,为取得具有代表性的样品,应插入瘤胃中部(插入深度为200cm)取样。
     2、日粮能氮释放同步性对奶牛瘤胃发酵、微生物酶活及菌群组成的影响(试验二)
     本试验的目的是阐明不同能氮同步释放模式与瘤胃微生物的相互关系及作用机制。根据不同加工方式玉米(蒸汽压片玉米和粉碎玉米)或豆粕(浸提豆粕和热处理豆粕)瘤胃降解率不同(尼龙袋法测定),采用2×2因子组合配制出四种能氮同步化程度不同的日粮用于体内试验。12头经产荷斯坦奶牛(体重=594±31kg;泌乳天数=130±14d;产奶量=31.3±1.8kg),进行4×4重复拉丁方设计,试验分四期,每期21天(前14天为适应期,后7天为采样期)。每期采样期第7天,采用试验一已优化的瘤胃导管技术在晨饲后3h采集瘤胃内容物,用于瘤胃发酵参数、酶活和微生物菌群组成分析。在本试验条件下,日粮能氮同步调控对瘤胃发酵参数、微生物酶活及数量方面没有表现出同步化效应;而不同加工方式玉米对瘤胃代谢的影响较大,在发酵参数方面,饲喂蒸汽压片组奶牛瘤胃液氨氮、乙酸浓度及乙丙比显著低于饲喂粉碎玉米组奶牛,总VFA浓度和CH4估测值较饲喂粉碎玉米组奶牛有降低的趋势,但瘤胃pH、丙酸和丁酸浓度差异不显著;在酶活性方面,饲喂蒸汽压片组奶牛瘤胃内容物木聚糖酶活性显著低于饲喂粉碎玉米组,淀粉酶活性也较饲喂粉碎玉米组奶牛有降低的趋势,但羧甲基纤维素酶活性差异不显著;在微生物菌群组成方面,蒸汽压片玉米处理组日粮奶牛瘤胃内容物甲烷菌、嗜淀粉瘤胃杆菌数量显著低于粉碎玉米组日粮处理组,而牛链球菌数量显著高于粉碎玉米日粮处理组;不同加工方式豆粕日粮对奶牛各瘤胃发酵参数、微生物酶活及数量没有显著影响。本研究结果说明,增加日粮能量释放速率能够提高瘤胃氨氮利用效率,并通过抑制甲烷菌数量减少甲烷排放。
     3、日粮能氮释放同步性对奶牛营养物质消化、代谢及生产性能的影响(试验三)
     本试验的目的是找出能够增加微生物蛋白合成效率、提高动物生产性能的最佳能氮同步释放模式并阐明其机理。试验设计同试验二。在采样期采集奶样、饲料样、粪样、尿样、血样。结果发现,不同能氮同步释放日粮仅在MUN和BUN浓度方面表现出了同步化效应,但对其他营养物质消化、氮代谢及生产性能参数没有影响;不同加工方式玉米日粮对奶牛影响比较大。在生产性能方面,与饲喂含粉碎玉米日粮奶牛相比,饲喂含蒸汽压片玉米日粮奶牛DMI降低,但产奶量不受影响,从而导致饲喂蒸汽压片玉米组奶牛饲料转化效率显著提高。乳蛋白、乳脂肪及乳糖产量均不受玉米类型的影响;蒸汽压片玉米组日粮奶牛淀粉全肠道表观消化率显著高于粉碎玉米组,但对其他营养成分表观消化率没有影响;与饲喂粉碎玉米组奶牛相比,饲喂蒸汽压片玉米组奶牛氮利用效率(乳氮排出量/总氮摄入量)显著增加,尿中尿素含量及粪氮排出量都有降低的趋势;与饲喂粉碎玉米组奶牛相比,饲喂蒸汽压片组奶牛血清胰岛素含量有升高的趋势,血浆尿素氮浓度显著降低,但对其他血液各生化指标没有显著影响;不同加工方式豆粕仅对部分参数存在影响,与浸提豆粕日粮组相比,热处理豆粕组奶牛微生物蛋白合成量显著降低。本试验结果表明,提高日粮能量释放速率能够提高饲料转化率及氮利用效率。
     综上所述,瘤胃导管(OST)取瘤胃液技术的优化,为奶牛瘤胃代谢研究提供了有效的技术手段;日粮能氮同步调控对泌乳中期奶牛瘤胃发酵、微生物蛋白合成及生产性能方面没有表现出预期的同步化效应;相较于蛋白质降解速率,日粮能量降解速率对于奶牛瘤胃代谢及生产性能的影响更大,表明适当增加日粮能量降解速率,可以提高饲料转化效率,减少环境污染。
In the current dairy farming, feed utilization efficiency is very low, which caused serious environmental pollution. In this study, four different nutrient synchrony diets were formulated by changing processing method of the main ingredients (corn and soybean). A systematic research was given on the effects of synchronizing supply of dietary energy and nitrogen on rumen metabolism, productive efficiency and performance, which provided theoretical and practical basis for increasing feed utilization efficiency, reducing environmental pollution and improving milk quality. Because collection of ruminal contents is needed for rumen metabolism research, an oral stomach tube (OST) technique was fisrtly validated for the collection of ruminal contents; and then was applied to the subsequent in vivo experiment for study of rumen metabolism.
     1. Validation of the technique for ruminal content collection by oral stomach tube and its optimization (Experiment1)
     The objective of this experiment was to validate the technique for the collection of ruminal content by an OST. Six rumen-fistulated dairy cows were used in two trials. Firstly, the differences of ruminal fermentation parameters among rumen sites (cranial dorsal, cranial ventral, central, ventral, caudal dorsal and caudal ventral) were compared. The ruminal fluid was collected once a day for3consecutive days through rumen cannula (RC). The samples were analyzed for pH, volatile fatty acids (VFA), ammonia-nitrogen (NH3-N), sodium, potassium, calcium, chloride and phosphorus concentrations. The ruminal fermentation parameters varied significantly among rumen sites. Compared with the central or ventral rumen, the cranial dorsal rumen had significantly higher pH, NH3-N and sodium concentrations and lower acetate, propionate and butyrate concentrations, indicating that the sampling site may be one of the main factors contributing to the difference of ruminal fermentation parameters between the samples collected via the OST and RC. After that, the fermentation parameters of ruminal fluid collected via OST at two insertion depths (180or200cm) were compared with those of ruminal fluid collected via RC (ventral sac). Ruminal fluid was collected once a week at5to6hours after morning feeding. When the OST was inserted to a depth of180cm, the OST head was located in the cranial dorsal (atrium) of the rumen. The ruminal fluid collected via the OST had higher pH and sodium concentrations but lower VFA, potassium, calcium and phosphorus concentrations than that collected via RC. However, when the OST was inserted to a depth of200cm, the OST head could pass through the front rumen pillar and reach the central rumen for sampling. No differences were found in pH, VFA, NH3-N and ion concentrations between the samples collected via the two sampling methods. These results indicated that the OST should be inserted to reach the central rumen to obtain representative ruminal content.
     2. Effects of synchronizing supply of dietary energy and nitrogen on rumen fermentation, enzyme activity and microbial population in dairy cows (Experiment2)
     The objective of this experiment was to investigate the relationship between diets and rumen microorganisms and their interaction mechanism. Two types of corn (dry ground (DGC) and steam-flaked corn (SFC)) and two types of soybean meal (SBM)(solvent-extracted (SSBM) and heat-treated SBM (HSBM)) differing in their rate and extent of ruminal degradation (measured using in situ method) were used to formulate four diets. Twelve multiparous Holstein dairy cows (BW=594±31kg; days in milk=130±14d; milk yield=31.3±1.8kg) were used in a4×4Latin square design with a2×2factorial arrangement. Each period lasted for21days, including14d adaptation and a7d of data collection. Ruminal contents were collected using oral stomach tube (validated in experiment1) at approximately3h after morning feeding at d7of each data collection period and was analyzed for rumen fermentation characteristics, enzyme activity and microbial population. Synchronizing supply of dietary energy and nitrogen had no effects on these parameters. Corn types had greater influence on rumen metabolism than SBM types. Ruminal concentrations of NH3-N and acetate were greater, and total VFA and predicted methanes tended to be greater for DGC than SFC based diets. Xylanase activity was lower, and amylase activity tended to be lower for SFC than DGC based diets, but no difference was found in carboxymethyl cellulase activity. In microbial population, SFC based diets had lower methanogens and R.amylophilus, but higher S. bovis population, compared with DGC based diets. The SBM types differing in CP degradation have no effects on rumen fermentation, enzyme activity and microbial population. These results suggested that increasing rate of energy degradation could improve efficiency of rumen NH3-N utilization, reduce methanogens population and decrease methane emission.
     3. Effects of synchronizing supply of dietary energy and nitrogen on nutrient digestion, metabolism and productive performance in dairy cows (Experiment3)
     The objective of this study was to find out the best pattern of nutrient synchrony that can improve microbial protein synthesis and productive performance and elucidate its mechanism. The experiment design was the same as Experiment2. Samples of milk, feces, urine and blood were collected during sampling period. Synchronizing supply of energy and nitrogen resulted in lower concentrations of urea N in milk (MUN) and blood (BUN), but had no effects on nutrient digestion, N metabolism and productive performance. Dietary energy degradability had more influences on productive performance and nutrient utilization than protein degradability. The cows fed SFC had lower DMI than DGC based diets. However, milk yield was not affected by corn types, resulting in higher feed utilization efficiency for cows fed SFC than DGC based diets. Milk ptotein, milk fat and milk lactose yield were not influenced by corn types. Apparent total tract digestibility of starch was greater for SFC than DGC based diets. However, apparent digestibilities of dry matter, organic matter, crude protein, and neutral detergent fiber were not influenced by corn types. Efficiency of N utilization (milk N/total N intake) was greater and excretion of urine urea N and fecal N tended to be lower for SFC than DGC based diets. Concentration of BUN was lower, while insulin concentration tended to be greater for SFC than DGC based diets. Other parameters were not influenced by corn types. Soybean meal types differing in CP degradability only had influence on few parameters. Cows fed HSBM had significant lower microbial cell protein mass than SSBM based diets did. These results suggested that increasing rate of energy degradation could improve efficiency of feed and N usage.
     In summary, the OST technique was optimized for ruminal fluid collection, and effectively applied to the subsequent in vivo experiments for ruminal metabolism research. Under the condition of this study, synchronizing supply of energy and nitrogen did not have great effects on rumen fermentation, MCP yield and productive performance in mid-lactation dairy cows. Energy degradability had greater influences than protein degradability on rumen metabolism and productive performance in dairy cows. Increasing energy degradability could properly improve feed utilization efficiency and contribute to reduce environmental pollution.
引文
卜登攀,卢德勋,崔慰贤和王加启.2008.瘤胃能氮同步释放对瘤胃微生物蛋白质合成的影响.中国畜牧兽医35(12):5-10.
    陈杰.2003.家畜生理学.北京:中国农业出版社.
    陈涛,高艳霞,曹玉凤,李建国和李卫军.2009.蒸汽压片玉米对奶牛生产性能和氮磷排放影响的研究.畜牧兽医学报40(12):1769-1775.
    陈伟健.2008.蛋白能量平衡对反刍动物饲料组合效应的影响及其机理研究.博士论文.浙江大学.
    陈小连.2007.稻草与补充料组合影响瘤胃纤维消化和微生物生态的效应研究.博士论文.浙江大学.
    陈耀星.2010.畜禽解剖学.北京:中国农业大学出版社.
    迪沃斯(主编).赵德明和沈建忠(主译).2009.奶牛疾病学.北京:中国农业大学出版社.
    冯宗慈.2001.简易羊用瘤胃液采样管的制作.畜牧与饲料科学.22(4):44.
    高鸿宾.2012.依靠科技创新、加快奶业发展方式转变.中国乳业.(127):6-10.
    李燕鹏.2008.用CNCPS评定反刍动物饲料营养价值.硕士论文.广西大学.
    刘成果.2010.中国奶业年鉴.北京:中国农业出版社.311.
    刘开朗.王加启和卜登攀.2010.2008-2009年反刍动物营养研究进展Ⅰ.瘤胃微生物多样性与功能.中国畜牧兽医(2):5-14.
    齐智利.嘎尔迪等.2002.不同加工处理的玉米干物质和淀粉在绵羊瘤胃内降解规律的研究.饲料工业23(12):12-15.
    世界粮农组织(FAO). http://faostat3.fao.org/home/index.html#DOWNLOAD.
    孙宏选.2006.不同来源的蛋白质和非结构性碳水化合物对泌乳奶牛瘤胃微生物酶
    性的影响.硕士论文.中国农业科学院.
    王海伟.2011.我国奶业生产现状研究.现代化农业.29-31.
    王加启.2004.饲料分析与检测.北京:计量出版社.
    王加启.2011.决定我国奶业发展方向的5个重要指标.中国畜牧兽医.38(2):5-9.
    王加启.2012.优质乳是奶业发展的方向.中国畜牧兽医.39:1-5.
    王加启和赵圣国.2009.我国牛奶质量安全的现状、问题和对策.中国奶牛.3-7.
    辛杭书,许曾曾,张跃文和孟庆翔.2006.蒸汽压片技术对玉米营养价值及奶牛饲用效果的影响.中国畜牧杂志42(10):57-60.
    杨凤.2000.动物营养学第二版.北京:中国农业出版社.
    张显东.2008.补饲淀粉对反刍动物饲料组合效应的影响及其机理研究.博士论文.浙江大学.
    中国畜牧业年鉴编辑委员会.2011.中国畜牧业年鉴.北京:中国农业出版社.
    中国奶业统计资料.2010.北京:中国奶业年鉴编辑部.214-225.
    中华人民共和国国家标准(GB 19301-2010).食品安全国家标准-生乳.中华人民共和国卫生部发布.
    中华人民共和国农业部.农牧发[2011]8号.全国畜牧业发展第十二个五年规划.
    忠诚.1991.反刍家畜瘤胃液采集管.中国:90216971.8.
    周明和张晓明.1999.尼龙袋法评定全血保护和热处理豆粕蛋白质的瘤胃降解率.饲料研究(7):10-12.
    朱伟云.2004.瘤胃微生物.In:冯仰廉,editor.反自动物营养学.北京:科学出版社.1-130.
    Aceto H, Simeone A J, Fergusson J D.2000. Effect of rumenocentesis on health and productivity in dairy cows. J Dairy Sci,83(Suppl.1):162.
    Aldrich, J. M., L. D. Muller, G. A. Varga, and L. J. Griel.1993. Nonstructural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J Dairy Sci 76(4):1091-1105.
    Allen, M. S.1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci 80(7):1447-1462.
    Bach, A., S. Calsamiglia and M. D. Stern 2005. Nitrogen metabolism in the rumen. J. Dairy Sci.88:E9-E21.
    Baker, L. D. and J. D. Ferguson and W. Chalupa.1995. Responses in urea and true protein of milk to different protein feeding schemes for dairy cows. J Dairy Sci 78(11):2424-2434.
    Barajas, R. and R. A. Zinn.1998. The feeding value of dry-rolled and steam-flaked corn in finishing diets for feedlot cattle:influence of protein supplementation. J Anim Sci 76(7):1744-1752.
    Bermingham, E. N., W. C. McNabb, I. A. Sutherland, B. R. Sinclair, B. P. Treloar, and N. C. Roy.2007. Intestinal, hepatic, splanchnic and hindquarter amino acid and metabolite partitioning during an established Trichostrongylus colubriformis infection in the small intestine of lambs fed fresh Sulla (Hedysarum coronarium). Brit J Nutr 98(6):1132-1142.
    Borucki, C. S., L. E. Phillip, H. Lapierre, P. W. Jardon, and R. Berthiaume.2007. Ruminal degradability and intestinal digestibility of protein and amino acids in treated soybean meal products. J Dairy Sci 90(2):810-822.
    Bradford, B. J. and M. S. Allen.2007. Depression in feed intake by a highly fermentable diet is related to plasma insulin concentration and insulin response to glucose infusion. J Dairy Sci 90(8):3838-3845.
    Broderick, G. A.1986. Relative value of solvent and expeller soybean-meal for lactating dairy cows. J Dairy Sci.69(11):2948-2958.
    Broderick, G. A. and M. K. Clayton.1997. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J Dairy Sci 80(11):2964-2971.
    Brookman, J. L., and M. J. Nicholson.2005. Anaerobic fungal populations, p.139-150.In H . P. S. Makkar and C. S. McSweeney (ed.), Methods in Gut Microbial Ecology for Ruminants. Springer, Netherlands.
    Bruckental, I., I. Ascarelli, B. Yosif, and E. Alumot.1991. Effect of duodenal proline infusion on milk production and composition in dairy cows. Anim. Prod.53:299-303.
    Bryant, M. P., and I. M. Robinson.1968. Effects of diet, time after feeding, and position sampled on numbers of viable bacteria in the bovine rumen. J. Dairy Sci.51:1950-1955.
    Burkholder, K. M., A. D. Guyton, J. M. McKinney, and K. F. Knowlton.2004. The effect of steam flaked or dry ground corn and supplemental phytic acid on nitrogen partitioning in lactating cows and ammonia emission from manure. J Dairy Sci 87(8):2546-2553.
    Cabritaa, A., R. J. Dewhurst, J. Abreu, and A. Fonseca.2006. Evaluation of the effects of synchronising the availability of N and energy on rumen function and production responses of dairy cows-a review. ANIMAL RESEARCH 55(1):1-24.
    Casper, D. P. and D. J. Schingoethe and W. A. Eisenbeisz.1990. Response of early lactation dairy cows fed diets varying in source of nonstructural carbohydrate and crude protein. J Dairy Sci 73(4):1039-1050.
    Casper, D. P., H. A. Maiga, M. J. Brouk, and D. J. Schingoethe.1999. Synchronization of carbohydrate and protein sources on fermentation and passage rates in dairy cows. J Dairy Sci 82(8):1779-1790.
    Castro, S., L. E. Phillip, H. Lapierre, P. W. Jardon, and R. Berthiaume.2007. Ruminal degradability and intestinal digestibility of protein and amino acids in treated soybean meal products. J Dairy Sci 90(2):810-822.
    Chen, X. B., and M. J. Gomes.1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives—an overview of the tehcnical details. International Feed Resources Unit, Rowett Research Inst., Bucksburn, Aberdeen, AB2 9SB, UK. Occasional Publication.
    Clark, J. H. and T. H. Klusmeyer and M. R. Cameron.1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J Dairy Sci 75(8):2304-2323.
    Cole, N. A. and R. W. Todd.2008. Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants. J. Anim. Sci.86(E. Suppl.):E318-E333.
    Olmos Colmenero, J. J. and G. A. Broderick.2006. Effect of amount and ruminal degradability of soybean meal protein on performance of lactating dairy cows. J Dairy Sci 89(5):1635-1643.
    Crocker, L. M., E. J. DePeters, J. G. Fadel, H. Perez-Monti, S. J. Taylor, J. A. Wyckoff, and R. A. Zinn.1998. Influence of processed corn grain in diets of dairy cows on digestion of nutrients and milk composition. J Dairy Sci 81(9):2394-2407.
    Dehority B. A.2003. Rumen microbiology. Thrumpton, UK:Nottingham University Press.
    Delgado-Elorduy, A., C. B. Theurer, J. T. Huber, A. Alio, O. Lozano, M. Sadik, P. Cuneo, H. D. De Young, I. J. Simas, J. E. Santos, L. Nussio, C. Nussio, K. J. Webb, and H. Tagari.2002. Splanchnic and mammary nitrogen metabolism by dairy cows fed dry-rolled or steam-flaked sorghum grain. J Dairy Sci 85(1):148-159.
    Denman, S. E. and C. S. McSweeney.2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. Ferns Microbiol Ecol 58(3):572-582.
    Dewhurst, R. J. and D. R. Davies and R. J. Merry.2000. Microbial protein supply from the rumen. Anim Feed Sci Tech 85(1-2):1-21.
    Dirksen, G. U., and M. C. Smith.1987. Acquisition and analysis of bovine rumen fluid. Bovine Pract.22:108-116.
    Duffield, T., J. C. Plaizier, A. Fairfield, R. Bagg, G. Vessie, P. Dick, J. Wilson, J. Aramini, and B. McBride.2004. Comparison of techniques for measurement of rumen pH in lactating dairy cows. J. Dairy Sci.87:59-66.
    Einarson, M. S., J. C. Plaizier, and K. M. Wittenberg.2004. Effects of barley silage chop length on productivity and rumen conditions of lactating dairy cows fed a total mixed ration. J. Dairy Sci.87:2987-2996.
    Elseed, A.2005. Effect of supplemental protein feeding frequency on ruminal characteristics and microbial N production in sheep fed treated rice straw. Small Ruminant Res 57(1):11-17.
    El-Shazly, K., B. A. Dehority, and R. R. Johnson.1961. Effect of starch on the digestion of cellulose in vitro and in vivo by rumen micro-organisms. J. Anim. Sci.20:268-273.
    Enemark J., R. J. Jorgensen.2001. Subclinical rumen acidosis as a cause of reduced appetite in newly calved dairy cows in Denmark:Results of a poll among Danish dairy practitioners. Vet Quart,23(4):206-210.
    Enemark, J. M., R. J. Jorgensen, and N. B. Kristensen.2004. An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds. Vet. Res. Commun. 28:687-709.
    Enemark, J. M., R. J. Jorgensen, and P. S. Ememark.2002. Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis:a review. Veterinarija Ir Zootechnika. T.20(42):16-29
    Erdman, R. A.1988. Dietary buffering requirements of the lactating dairy cow:A review. J. Dairy Sci.71:3246-3266.
    Erdman, R. A.1988. Dietary buffering requirements of the lactating dairy cow:A review. J Dairy Sci 71 (12):3246-3266.
    Ferraretto, L. F. and P. M. Crump and R. D. Shaver.2013. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J Dairy Sci 96(1):533-550.
    Firkins, J. L., A. N. Hristov, M. B. Hall, G. A. Varga, and N. R. St-Pierre.2006. Integration of ruminal metabolism in dairy cattle. J Dairy Sci 89 Suppl 1:E31-E51.
    Garrett E. F., K. V. Nordlund, and W. J. Goodge.1997. A corss-sectional field study investigating the effect of periparturient dietary management on ruminal pH in early lactation dairy cows. J Dairy Sci,80(Suppl.1):169.
    Garrett E. F., M. N. Pereira, K. V. Nordlund, L. E. Armentano, W. J. Goodger, and G. R. Oetzel.1999. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J Dairy Sci,82(6):1170-1178.
    Geishauser, T.1993. An instrument for the collection and transfer of ruminal fluid and for the administration of water soluble drugs in adult cattle. Bovine Pract.27:38-42.
    Geishauser, T., and A. Gitzel.1996. A comparison of rumen fluid sampled by oro-ruminal probe versus rumen fistula. Small Rumin. Res.21:63-69.
    Gianesella M, M. Morgante, C. Stelletta, L. Ravarotto, E. Giudice and R. J. V. Saun. Evaluating the effects of rumenocentesis on health and performance in dairy cows. Acta Veterinaria Brno.2010,79:459-468.
    Giri, S. S. and S. Jaggi and N. N. Pathak.2005. Feeding of grainless diets containing different nitrogen sources to crossbred growing bulls:effects on rumen fermentation pattern, microbial enzyme activity and ciliate protozoa population. Anim Feed Sci Tech 118(3-4):187-200.
    Gozho, G. N., M. R. Hobin, and T. Mutsvangwa.2008. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and urea-nitrogen recycling in dairy cows. J Dairy Sci 91:247-259.
    Griinari, J. M., D. A. Dwyer, M. A. McGuire, D. E. Bauman, D. L. Palmquist, and K. V. Nurmela.1998. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J Dairy Sci 81(5):1251-1261.
    Guyton, A. D., J. Ml McKinney, and K. F. Knowlton.2003. The effect of steam-flaked or dry ground corn and supplemental phytic acid on phosphorus partitioning and ruminal phytase activity in lactating cows. J Dairy Sci 86:3972-3982.
    Hall, M. B. and G. B. Huntington.2008. Nutrient synchrony:sound in theory, elusive in practice. J Anim Sci 86(14 Suppl):E287-E292.
    Henderson, A. R., P. C. Garnsworthy, J. R. Newbold and P. J. Buttery.1998. The effect of asynchronous diets on the function of the rumen in the lactating dairy cow. Proceedings of the BSAS Annual Meeting, p.19.
    Henning, P. H. and D. G. Steyn and H. H. Meissner.1993. Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. J Anim Sci 71(9):2516-2528.
    Herrera-Saldana, R., R. Gomez-Alarcon, M. Torabi, and J. T. Huber.1990. Influence of synchronizing protein and starch degradation in the rumen on nutrient utilization and microbial protein synthesis. J Dairy Sci 73(1):142-148.
    Hersom, M. J.2008. Opportunities to enhance performance and efficiency through nutrient synchrony in forage-fed ruminants. J Anim Sci 86(14 Suppl):E306-E317.
    Hofirek, B., and D. Haas.2001. Comparative studies of ruminal fluid collected by oral tube or by puncture of the caudoventral ruminal sac. Acta Vet. Brno 70:27-33.
    Holder, P., P. J. Buttery and P. C. Garnsworthy.1995. The effect of dietary synchrony on rumen nitrogen recycling in sheep. Proc. Br. Anim. Sci.70(Abstr.).
    Hollberg W.1984. Vergleichende Untersuchungen von mittles SCHAMBYE-S(?)RENSEN-Sonde oder durch Punktion des kaudoventralen Pansensacks gewonnenen Pansensaftproben. Dtsche Tierarztliche Wochenschrift DTW.91:317-320.
    Hook, S. E., K. S. Northwood, A. D. Wright, and B. W. McBride.2009. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Appl. Environ. Microb. 75:374-380.
    Hoover, W. H.1986. Chemical factors involved in ruminal fiber digestion. J Dairy Sci 69(10):2755-2766.
    Hristov, A. N. and E. Pfeffer 2005. Nitrogen and phosphorous nutrition of cattle. CABI Publishing. USA. p118.
    Huhtanen, P.2005. Critical aspects of feed protein evaluation systems for ruminants. J. Anim. Feed Sci.14:145-170.
    Huntington, G. B.1989. Hepatic urea synthesis and site and rate of ruea removal from blood of beef steers fed alfalfa hay or a hith concentrate diet. Can J Anim Sci 69(1):215-223.
    Huntington, G. B.1997. Starch utilization by ruminants:from basics to the bunk. J Anim Sci 75(3):852-867.
    Ichinohe, T. and T. Fujihara.2008. Adaptive changes in microbial synthesis and nitrogen balance with progressing dietary feeding periods in sheep fed diets differing in their ruminal degradation synchronicity between nitrogen and organic matter. Anim. Sci. J. 79:322-331.
    Joblin K. N.1989. Physical disruption of plant fibre by rumen fungi of the Sphaeromonas group. In:The role of protozoa and fungi in ruminant Digestion.259-260.
    Johnson K. A., D. E. Johnson. Methane emissions from cattle. Journal of Animal Science. 1995.73:2483-2492.
    Johnson, D. E., and J. K. Matsushi, and K. L. Knox.1968. Utilization of flaked vs cracked corn by steers with observations on starch modification. J Anim Sci 27(5):1431.
    Joy, M. T., E. J. DePeters, J. G. Fadel, and R. A. Zinn.1997. Effects of corn processing on the site and extent of digestion in lactating cows. J Dairy Sci 80(9):2087-2097.
    Kaswari, T., P. Lebzien, G. Flachowsky, and U. ter Meulen.2007. Studies on the relationship between the synchronization index and the microbial protein synthesis in the rumen of dairy cows. Anim Feed Sci Tech 139(1-2):1-22.
    Kennedy, P. D., and L. P. Milligan.1980. The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants:a review. Can J Anim Sci 60(2):205-221.
    Khafipour, E., S. C. Li, J. C. Plaizier, and D. O. Krause.2009. Rumen Microbiome Composition Determined Using Two Nutritional Models of Subacute Ruminal Acidosis. AppI Environ Microb 75(22):7115-7124.
    Kim, K. H., J. J. Choung and D. G. Chamberlain.1999a. Effects of varying degrees of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in cattle consuming a diet of grass silage and cereal-based concentrate. J. Sci. Food Agric.79:1441-1447.
    Kim, K. H., Y. G. Oh, J. J. Choung, and D. G. Chamberlain.1999b. Effects of varying degrees of synchrony of energy and nitrogen release in the rumen on the synthesis of microbial protein in cattle consuming grass silage. J Sci Food Agr 79(6):833-838.
    Kim, C. H. and J. J. Choung and D. G. Chamberlain.2000. Variability in the ranking of the three most-limiting amino acids for milk protein production in dairy cows consuming grass silage and a cereal-based supplement containing feather meal. J Sci Food Agr 80(9):1386-1392.
    Kleen, J, L,, G, A, Hooijer, J, Rehage, and J. P. T. M. Noordhuizen.2009. Subacute ruminal acidosis in Dutch dairy herds. Vet Rec,164(22):681-683.
    Kleen, J, L,, G. A. Hooijer, J. Rehage, and J. P. Noordhuizen.2004. Rumenocentesis (rumen puncture):a viable instrument in herd health diagnosis. Dtsche Tierarztliche Wochenschrift DTW.111(12):458-462.
    Klieve, A.V., D. Hennessy, D. Ouwerkerk, R. J. Forster, R.I. Mackie, and G.T. Attwood. 2003. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J Appl Microbiol 95, 621-630.
    Korhonen, M, A. Vanhatalo, T. Varvikko, and P. Huhtanen.2000. Responses to graded postruminal doses of histidine in dairy cows fed grass silage diets. J Dairy Sci 83(11):2596-2608.
    Lardy, G. P., D. N. Ulmer, V. L. Anderson, and J. S. Caton.2004. Effects of increasing level of supplemental barley on forage intake, digestibility, and ruminal fermentation in steers fed medium-quality grass hay. J Anim Sci 82(12):3662-3668.
    Lee, H. J., E. J. Kim, W. J. Maeng, J. E. Cockburn and N. D. Scollan.1997. Effects of dietary asynchrony on rumen function studied using rumen simulation continuous culture, Proceeding of the British Society of Animal Science Annual Meeting, p.203
    Leng, R. A. and J. V. Nolan.1984. Nitrogen Metabolism in the Rumen. J. Dairy Sci. 67:1072-1089.
    Li, M., G. B. Penner, E. Hernandez-Sanabria, M. Oba, and L. L. Guan.2009. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol.107:1924-1934.
    Lodge-Ivey, S. L., J. Browne-Silva, and M. B. Horvath.2009. Technical note:Bacterial diversity and fermentation end products in rumen fluid samples collected via oral lavage or rumen cannula. J. Anim. Sci.87:2333-2337.
    Madsen, J. and T. Hvelplund.1994. Prediction of in situ protein degradability in the rumen, Results of an European ringtest. Livest. Prod. Sci.39:201-212.
    Mccarthy, R. D., T. H. Klusmeyer, J. L. Vicini, J. H. Clark, and D. R. Nelson.1989. Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lacating cows. J Dairy Sci 72(8):2002-2016.
    Moran, J. B.1986. Cereal grains in complete diets for dairy cows:A comparison of rolled barley, wheat and oats and of three methods of processing oats. Anim. Prod.43(Part l):27-36.
    Morgante M., C. Stelletta, P. Berzaghi, M. Gianesella, I. Andrighetto.2007. Subacute rumen acidosis in lactating cows:an investigation in intensive Italian dairy herds. J Anim Physiol Anim Nutr (Berl),91(5-6):226-234.
    Moss, A. R. and J. P. Jouany and J. Newbold.2000. Methane production by ruminants:its contribution to global warming. ANNALES DE ZOOTECHNIE 49(3):231-253.
    Mourino, F. and R. Akkarawongsa and P. J. Weimer.2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J Dairy Sci 84(4):848-859.
    Newbold, J. R. and S. R. Rust.1992. Effects of asynchronous nitrogen and energy supply on growth of ruminal bacteria in batch culture. J Anim Sci 70(2):538-546.
    Nocek, J. E.1997. Bovine acidosis:implications on laminitis. J. Dairy Sci.80:1005-1028.
    Nordlund K.2003. Factors that contribute to subacute ruminal acidosis. The 36th Annual Conference of American Association of Bovine Practitioners, Columbus, Ohio. September 15-17.
    Nordlund, K. V., and E. F. Garrett.1994. Rumenocentesis:A technique for the diagnosis of subacute rumen acidosis in dairy herds. Bovine Pract.28:109-112.
    NRC.2000. Nutrient requirement of beef cattle:National Academy of Sciences. Washington, DC.
    NRC.2001. Nutrient requirement of dairy cattle:National Academy of Sciences. Washington, DC.
    Oetzel, G. R., Nordlund R V, Garrett E F.1999. Effect of ruminal pH and stage of lactation on ruminal lactate concentration in dairy cows. J Dairy Sci,82(Suppl.1):38.
    Oltner, R. and H. Wiktorsson.1983. Urea concentrations in milk and blood as influenced by feeding varying amounts of protein and energy to dairy cows. Livest Prod Sci 10(5):457-467.
    0rskov, E. R. and I. Mcdonald.1979. Estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agr Sci 92(APR):499-503.
    Orth, R.1992. Sample day and lactation report, DHIA 200. Fact Sheet A-2. Midstates DRPC, Ames, IA.
    Owens, F. N. and R. A. Zinn and Y. K. Kim.1986. Limits to starch digestion in the ruminant small intestine. J Anim Sci 63(5):1634-1648.
    Plascencia, A. and R. A. Zinn.1996. Influence of flake density on the feeding value of steam-processed corn in diets for lactating cows. J Anim Sci 74(2):310-316.
    Prestlokken, E.1999. In situ ruminal degradation and intestinal digestibility of dry matter and protein in expanded feedstuffs (vol 77, pg 1,1999). Anim Feed Sci Tech 82(3-4):271.
    Raun, N. S., and W. Burroughs.1962. Suction strainer technique in obtaining rumen fluid samples from intact lambs. J. Anim. Sci.21:454-457.
    Reilly, K. and G. T. Attwood.1998. Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl Environ Microbiol 64(3):907-913.
    Reynal, S. M. and G. A. Broderick.2003. Effects of feeding dairy cows protein supplements of varying ruminal degradability. J Dairy Sci 86(3):835-843.
    Reynal, S. M. and G. A. Broderick.2005. Effect of dietary level of rumen-degraded protein on production and nitrogen metabolism in lactating dairy cows. J Dairy Sci 88(11):4045-4064.
    Richardson, J. M, R. G. Wilkison and L. A. Sinclair.2003. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. J. Anim. Sci.81:1332-1347.
    Rius, A. G., J. A. Appuhamy, J. Cyriac, D. Kirovski, O. Becvar, J. Escobar, M. L. McGilliard, B. J. Bequette, R. M. Akers, and M. D. Hanigan.2010. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. J Dairy Sci 93(7):3114-3127.
    Rotger, A., A. Ferret, S. Calsamiglia, and X. Manteca.2006. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets. J Anim Sci 84(5):1188-1196.
    Sahlu, T., D. J. Schingoethe, and A. K. Clark.1984. Lactational and chemical evaluation of soybean meals heat-treated by two methods. J. Dairy Sci.67:1725-1738.
    Santos, F. A., J. E. Santos, C. B. Theurer, and J. T. Huber.1998. Effects of rumen-undegradable protein on dairy cow performance:a 12-year literature review. J Dairy Sci 81 (12):3182-3213.
    Satter, L. D. and R. E. Roffler.1977. Influence of nitrogen and carbohydrate inputs on rumen fermentation in:Recent Acvances in animal nutrition. Butterworth Inc., Boston, MA.1977.
    Sauvant, D., and J. Milgen.1995. Dynamic aspects of carbohydrate and protein breakdown and the associated microbial matter synthesis. Ruminant physiology:digestion, metabolism, growth and reproduction. Proceeding 8th international symposium on ruminant physiology.71-91.
    Shabi, Z., A. Arieli, I. Bruckental, Y. Aharoni, S. Zamwel, A. Bor and H. Tagari.1998. Effect of the synchronization of the degradation of dietary crude protein and organic matter and feeding frequency on ruminal fermentation and flow of digesta in the abomasum of dairy cows. J. Dairy Sci.81:1991-2000.
    Shen, J. S., Z. Chai, L. J. Song, J. X. Liu, and Y. M. Wu.2012. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J Dairy Sci 95(10):5978-5984.
    Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold and P. J. Buttery.1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in the sheep. J. Agric. Sci.120(Part 2):251-263
    Sniffen, C. J. and P. H. Robinson.1987. Symposium:Protein and fiber digestion, passage, and utilization in lactating cows. J. Dairy Sci.70:425-441.
    Stevenson, D. M. and P. J. Weimer.2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biot 75(1):165-174.
    Stewart CS.1977. Factors affecting the cellulolytic activity of rumen contents. Appl Environ Microbiol,33:497-502.
    Strabel D, A. Ewy, T. Kaufmann, A. Steiner, and M. Kirchhofer.2007. [Rumenocentesis:a suitable technique for analysis of rumen juice pH in cattle?]. Schweiz Arch Tierheilkd. 149(7):301-306.
    Tajik. J., M. G. Nadalian, A. Raoofi, R. M. Gholam, and A. R. Bahonar.2009. Prevalence of subacute ruminal acidosis in some dairy herds of Khorasan Razavi province, northeast of Iran. Iran J Vet Res,10(1):28-32.
    Tamminga, S., W. M. Vanstraalen, A. Subnel, R. Meijer, A. Steg, C. Wever, and M. C Blok.1994. The dutch protein evaluation system-The DVE/OEB system. Livest Prod Sci 40(2):139:155.
    Theurer, C. B., J. T. Huber, A. Delgado-Elorduy, and R. Wanderley.1999. Invited review: summary of steam-flaking com or sorghum grain for lactating dairy cows. J Dairy Sci 82(9):1950-1959.
    Valadares, R. F., G. A. Broderick, F. S. Valadares, and M. K. Clayton.1999. Effect of replacing alfalfa silage with high moisture com on ruminal protein synthesis estimated from excretion of total purine derivatives. J Dairy Sci 82(12):2686-2696.
    Van Soest, P. J.1994. Nutritional ecology of the ruminant. Second ed. Comstock Pub., Ithaca, NY, USA.
    Wang, R. F. and W. W. Cao and C. E. Cerniglia.1997. PCR detection of Ruminococcus spp. in human and animal faecal samples. Mol Cell Probe 11(4):259-265.
    Wang, Y., T. A. McAllister, M. D. Pickard, Z. Xu, L. M. Rode, and K. J. Cheng.1999. Effect of micronizing full fat canola seed on amino acid disappearance in the gastrointestinal tract of dairy cows. J Dairy Sci 82(3):537-544.
    Williams A. G., G. S. Coleman.1997. The rumen protozoa. Hobson PN, Stewart CS, editors.:Blackie Academic & Professional.73-139.
    Wilson C. A., T. M. Wood.1992. Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis, with special reference to the capacity of the enzyme to degrade crystalline cellulose. Enzyme Microb Technol,14:258-264.
    Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery.1999a. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the production and metabolism of sheep:food characterization and growth and metabolism of ewe lambs given food ad libitum. Anim. Sci.69:223-235.
    Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery.1999b. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the metabolism and growth of ram lambs given food at a restricted level. Anim. Sci. 69:627-636.
    Witt, M. W., L. A. Sinclair, R. G. Wilkinson and P. J. Buttery.2000. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on milk production and metabolism of ewes offered grass silage based diets. Anim. Sci. 71:187-195.
    Yang, J. Y., J. Seo, H. J. Kim, S. Seo and J. K. Ha.2010. Nutrient synchrony:Is it a suitable strategy to improve nitrogen utilization and animal performance?. Asian-Aust. J. Anim. Sci.23(7):972-979.
    Yu, P., J. T. Huber, F. A. Santos, J. M. Simas, and C. B. Theurer.1998. Effects of ground, steam-flaked, and steam-rolled corn grains on performance of lactating cows. J Dairy Sci 81(3):777-783.
    Zhong, R. Z., J. G. Li, Y. X. Gao, Z. L. Tan, and G. P. Ren.2008. Effects of substitution of different levels of steam-flaked corn for dry ground corn on lactation and digestion in early lactation dairy cows. J Dairy Sci 91(10):3931-3937.
    Zinn, R. A.1987. Influenced of lasalocid and monensin plus tylosin on comparative feeding value of steam-flaked versus dry-rolled corn in diets for feedlot cattle. J Anim Sci 65(1):256-266.
    Zinn, R. A. and C. F. Adam and M. S. Tamayo.1995. Interaction of feed intake level on comparative ruminal and total tract digestion of dry-rolled and steam-flaked corn. J Anim Sci 73(5):1239-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700