用户名: 密码: 验证码:
介质阻挡放电再生活性炭及其反应器放大研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭吸附法是治理低浓度、高毒性、难生化降解有机废水,以及突发性环境污染事故形成废水的有效方法。常规活性炭吸附只是将污染物从水相转移到固相,未达到彻底去除污染物的目的,而如果将未经处理的活性炭废弃,将导致环境二次污染,还会造成资源浪费,因此研发高效的活性炭再生方法一直为国内外学者所关注。介质阻挡放电(DBD)能够产生降解有机物的活性物质,如羟基自由基、活性氧、臭氧等,成为当今环境污染治理技术研发的热点。
     本文针对DBD等离子体处理活性炭机理、反应器结构设计与供电方法、运行方法等关键技术问题,以酚类物质为模型污染物,研究DBD降解活性炭吸附有机物和再生活性炭的效果及其影响因素、活性物质在活性炭颗粒间产生和传播过程,探讨DBD协同TiO2催化提高活性炭处理效果的可行性,提出DBD活性炭再生反应器放大方法,研制处理活性炭量为1kg和10kg的DBD放大反应器,考察放大反应器的运行性能。主要研究工作与结果如下:
     (1)采用双介质结构DBD反应器,研究了DBD降解活性炭吸附双酚A(BPA)及再生活性炭的可行性,考察了电气参数和载气参数对活性炭吸附BPA的降解及活性炭再生特性的影响。发现:增加放电电压、电源频率和空气流量均有利于BPA的降解;三次连续吸附/DBD再生后,活性炭再生率仍接近80%。与高频交流电源供电相比,采用双极性脉冲电源的BPA降解能量效率高10倍,三次连续再生的活性炭再生率分别高5%、6%和11%。
     (2)研究了DBD对活性炭上活性物质H2O2和·OH产生规律的影响,分析其传质机理,探索活性炭上苯酚的降解行为,探讨DBD降解活性炭吸附有机物及再生活性炭机理。结果发现:DBD作用下,活性炭上H2O2和-OH生成量随放电电压和空气流量的增加而增加,在活性炭含水率为10~20%范围内,H2O2和·OH生成量随含水率增大而增加;双极性脉冲电源能够有效促进活性物质生成,其H2O2和·OH生成量比高频交流电源的高出20%,并且H2O2和·OH的生成能量效率高出6倍。苯酚OH-官能团的邻位和对位易受攻击而发生邻、对位的取代和加成反应生成邻苯二酚、对苯二酚和苯醌这三种主要中间产物;随着放电电压、空气流量和活性炭含水率的增大,苯酚及其TOC去除率随之增大,三种主要中间产物的最大生成时间提前,最终生成浓度减小,苯酚及TOC去除率分别可达93%和50%。
     (3)开展了DBD协同TiO2催化降解活性炭上苯酚/再生活性炭的研究。采用浸渍干燥法制备了负载TiO2的活性炭(TiO2-GAC),运用X射线衍射仪、电子扫描电镜、傅立叶变换红外光谱、氮吸附等温线及Boehm滴定对负载TiO2前后、吸附苯酚前后、放电处理前后的活性炭进行表征,探索了TiO2催化对活性炭上苯酚降解、矿化、中间产物浓度变化、活性物质·OH和H2O2生成和活性炭再生特性的影响,探讨了DBD协同TiO2催化降解苯酚/再生活性炭的机理。发现负载TiO2后,其催化作用可使活性炭上产生更多的·OH和H2O2,有效促进活性炭上苯酚的降解、矿化及活性炭的再生:TiO2-GAC上·OH和H2O2的生成量分别提高了24%和28%,且苯酚降解率提高了19%,TOC去除率提高了9%,降解能量效率提高了27%,再生效率提高了14%。
     (4)提出了DBD再生活性炭放大反应器的设计方法和反应器气源的布气方法,研制了处理活性炭1kg和10kg级DBD放大反应器,进行了放大反应器的运行实验。应用1kg级DBD放大反应器再生1.2kg的废活性炭,通过优化电气参数、载气参数和活性炭参数考察了活性炭上苯酚的降解、矿化特性及活性炭再生效果:活性炭再生率和苯酚降解率分别达到了94%和70%;开展了10kg级DBD放大反应器与双极性脉冲电源的匹配研究,应用其再生13kg吸附真实工业废水的活性炭,两次再生循环后再生率分别为74%和66%,实验结果为下一步的工业应用研究奠定了基础。
Activated carbon (AC) adsorption is an effective method in the treatment of the low concentration, high toxic and refractory wastewater, and wastewater from emergency environmental accident. The conventional use of AC adsorption alone is limited in that the contaminants are not degraded but instead transferred to the solid phase from liquid phase. To reuse the spent AC, an appropriate regeneration step is necessary to meet the environmental and economical requirements, which has motivated researchers to develop new methods for regeneration of spent activated carbon. The dielectric barrier discharge (DBD) plasma can generate varies of active species, such as hydroxyl radicals, ozone and active oxygen etc., which is a hotspot in environmental pollution control.
     Aiming at clarifying regeneration mechanism of AC by DBD plasma, design of the reactor, power supply for the reactor and operation of the reactor, we combined the granular activated carbon (GAC) adsorption and DBD, to decompose the phenolic pollutants adsorbed on GAC and regenerate GAC simultaneously. The main work was conducted in terms of the feasibility of pollutants degradation and GAC regeneration by DBD, active species generation and transference during DBD process, and DBD regeneration of GAC by the addition of a titanium dioxide catalyst. A methodology of scaling up the DBD plasma reactor was proposed, and the up-scaled reactors of1kg and10kg GAC were used to regenerate GAC. The detailed work and the summarized results are as follows:
     1. A DBD plasma reactor driven by bipolar pulsed power was used to regenerate the GAC adsorbed Bisphenol A (BPA), The effects of pulse voltage, pulse repetitive rate, treatment time and air flow rate were investigated. Experimental results indicated that increasing pulse voltage, pulse repetitive rate, and air flow rate could enhance the degradation of BPA. The energy efficiency of BPA degradation using bipolar pulse power was10times higher than that using high frequency power. After three cycles of adsorption/DBD regeneration, the regeneration efficiency (RE) remains close to80%, and the result of RE using bipolar pulse power was higher than that using high frequency power with5%,6%and11%, respectively.
     2. The generation of active species during bipolar pulse DBD process.·OH and H2O2were quantitative determined by chemical method at different operational parameters by bipolar pulse power and high frequency power. The results showed that the production of·OH and H2O2on GAC powered by bipolar pulse power was10-20%higher than those powered by high frequency power, and the energy efficiency of active species using bipolar pulse power was6times higher than that using high frequency power. The phenol degradation and mineralization and its main products generation on GAC characteristics were investigated, which was powered by bipolar pulse power. The experimental results indicated that increasing pulse voltage, air flow rate and water content of GAC could enhance the removal and TOC of phenol, and the generation time of three main byproducts was earlier, and their final production decreased, the phenol and TOC removal achieved93%and50%at optimized conditions, respectively.
     3. We have investigated a catalytic method to promote the regeneration of the saturated GAC by the addition of TiO2catalyst under the DBD. The TiO2-GAC hybrid was fabricated by an impregnation-desiccation method and characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherms and Boehm titration to investigate its adsorption and catalytic characteristics before and after the adsorption and DBD processes. In addition, the phenol degradation and GAC regeneration characteristics were investigated, TiO2-GAC exhibited remarkable catalytic activity, increasing the phenol degradation by19%, TOC removal by9%, energy efficiency by27%, and RE by14%relative to GAC in DBD treatment.
     4. A methodology of scaling up the DBD reactor for GAC regeneration was proposed, and the up-scaled reactors of1kg and10kg were developed. The1kg DBD reactor driven by bipolar pulse power was built to treat exhausted GAC. The feasibility of GAC regeneration using the up-scaled reactor was systematical assessed by monitoring the GAC regeneration RE and phenol degradation on GAC at different electrical, supply gas and GAC parameters. Under the optimized conditions RE and the phenol degradation reached94%and70%, respectively. After four adsorption-regeneration cycles, RE decreased from94%to55%. The10kg DBD reactor was used to regenerate GAC exhausted by real wastewater, and the results showed that after two cycles, RE decreased from74%to66%. The results have laid the groundwork for further industrial progress.
引文
[1]中国环境保护部.全国环境统计公报[Z].2010.
    [2]CHU L, WANG J, DONG J, et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide [J]. Chemosphere.2012,86(4): 409-414.
    [3]陶亮,陈砺,严宗诚,等.介质阻挡放电等离子体技术处理难降解有机废水的研究进展[J].化工环保,2009,29(6):509-513.
    [4]UMAR M, RODDICK F, FAN L H, et al. Application of ozone for the removal of bisphenol A from water and wastewater-A review [J]. Chemosphere.2013,90(8):2197-2207.
    [5]赵天亮,陈芳媛,宁平,等.工业含酚废水治理进展及前景[J].环境科学与技术,2008,31(6):64-66.
    [6]郑江,俞幸幸,俞明飞.居住区大气中酚类化合物的流动注射分析[J].中国卫生检验杂志,2011,21(9):2341-2342.
    [7]蔡宝立,任河山,王颖赵,等.酚降解菌株的分离、鉴定和在含酚废水生物处理中的应用[J].环境科学,2008,29(2):482-487.
    [8]孙晓君,冯玉杰,蔡伟民,等.废水中难降解有机物的高级氧化技术[J].化工环保,2001,21(5):264-269.
    [9]BABUPONNUSAMI A, MUTHUKUMAR K. Advanced oxidation of phenol:A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes [J]. Chemical Engineering Journal.2012,183:1-9.
    [10]VALSANIA M C, FASANO F, RICHARDSON S D, et al. Investigation of the degradation of cresols in the treatments with ozone [J]. Water Research.2012,39:1-10.
    [11]YAVUZ Y, KOPARAL A S. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode Original [J]. Journal of Hazardous Materials.2006, 136(2):296-302.
    [12]杨少霞,冯玉杰,万家峰,等.湿式催化氧化氧化技术的研究与发展概况[J].哈尔滨工业大学学报,2002,34(4):540-544.
    [13]ZHOU C, GAO N, DENG Y, et al. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water [J]. Journal of Hazardous Materials. 2012,232:43-48.
    [14]WOLS B A, HOFMAN-CARIS C H M. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water [J]. Water Research. 2012,1-13.
    [15]林屹,秦炜,黄少凯,等.溶剂萃取法处理苯酚稀溶液及其废水的研究[J].高校化学工程学报,2003,17(3):261-265.
    [16]刘启明,田清华,马建华,等.含盐废水电渗析膜分离处理工艺研究[J].生态环境学报,2012,21(9):1604-1607.
    [17]OZKAYA B. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models [J]. Jouranl of Hazardous Materials.2006,129(1-3):158-163.
    [18]董伟娜.纳米零价Fe处理五氯酚的研究[D].北京:北京工业大学,2009.
    [19]范明霞,皮科武,龙毅,等.吸附法处理焦化废水的研究进展[J].环境科学与技术,2009,32(4):102-106.
    [20]立本英机活性炭的应用技术:其维持管理及存在问题[Z].高尚愚.东南大学出版社,2002.
    [21]DELGADO L F, CHARLES P, GLUCINA K, et al. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon-A review [J]. Science of the Total Environment.2012, 436:509-525.
    [22]叶翠莲,范瑾初.活性炭—硅藻土联用于饮用水深度处理的研究[J].中国给水排水,1993,9(4):14-18.
    [23]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷工艺评述[J].环境科学,1999,1:110-112.
    [24]AHMAD A A, HAMEED B H. Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon [J]. Journal of Hazardous Materials.2009,172(2-3):1538-1543.
    [25]BOULINGUIEZ B, Le CLOIREC P. Chemical transformations of sulfur compounds adsorbed onto activated carbon materials during thermal desorption [J]. Carbon.2010,48(5):1558-1569.
    [26]张旋,姜洪雷.造纸废水治理技术的研究进展[J].工业水处理,2007,27(1):8-11.
    [27]熊鹭,李夏兰,王镇发,等.活性炭吸附电镀废水中CODcr的实验研究[J].工业水处理,2012,32(1):44-46.
    [28]EL-NAAS M H, AL-ZUHAIR S, ABU ALHAIJA M. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon [J]. Chemical Engineering Journal.2010,162(3):997-1005.
    [29]SALVADOR F, JIMENEZ C S. Effect of regeneration treatment with liquid water at high pressure and temperature on the characteristics of three commercial activated carbons [J]. Carbon. 1999,37(4):577-583.
    [30]SAN MIGUEL G, LAMBERT S D, GRAHAM N. The regeneration of field-spent granular-activated carbons [J]. Water Research.2001,35(11):2740-2748.
    [31]SAN MIGUEL G, LAMBERT S D, GRAHAM N. The effect of thermal treatment on the reactivity of field-spent activated carbons [J]. Applied Catalysis B:Environmental.2003,40(3): 185-194.
    [32]HE W, LU G, CUI J, et al. Regeneration of spent activated carbon by yeast and chemical method [J]. Chinese Journal of Chemical Engineering.2012,20(4):659-664.
    [33]HORNG R S, TSENG IC. Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation [J]. Journal of Hazardous Materials.2008,154(1-3):366-372.
    [34]AKTAS O, CECEN F. Adsorption, desorption and bioregeneration in the treatment of 2-chlorophenol with activated carbon [J]. Journal of Hazardous Materials.2007,141(3):769-777.
    [35]GONZALEZ J F, ENCINAR J M, RAMIRO A, et al. Regeneration by wet oxidation of an activated carbon saturated with p-nitrophenol [J]. Industrial & Engineering Chemistry Research. 2002,41(5):1344-1351.
    [36]OKAWA K, SUZUKI K, TAKESHITA T, et al. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation [J]. Water Research.2007,41(5): 1045-1051.
    [37]JULCOUR-LEBIGUE C, KROU N J, ANDRIANTSIFERANA C, et al. Assessment and modeling of a sequential process for water treatment-adsorption and batch CWAO regeneration of activated carbon [J]. Industrial & Engineering Chemistry Research.2012,51(26):8867-8874.
    [38]LU J, WANG S. Ultrasonic regeneration of granular activated carbon used in water treatment [C].4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE), Chengdu, China,2010.
    [39]NARBAITZ R M, MCEWEN J. Electrochemical regeneration of field spent GAC from two water treatment plants [J]. Water Research.2012,46(15):4852-4860.
    [40]ANIA C O, BEGUIN F. Electrochemical regeneration of activated carbon cloth exhausted with bentazone [J]. Environmental Science & Technology.2008,42(12):4500-4506.
    [41]ZHOU M H, LEI L C. Electrochemical regeneration of activated carbon loaded with p-nitrophenol in a fluidized electrochemical reactor [J]. Electrochimica Acta.2006,51(21): 4489-4496.
    [42]ANIA C O, PARRA J B, MENENDEZ J A, et al. Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals [J]. Water Research.2007,41(15):3299-3306.
    [43]FOO K Y, HAMEED B H. Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation [J]. Chemical Engineering Journal.2012,187:53-62.
    [44]QUAN X, LIU X T, BO L L, et al. Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation [J]. Water Research.2004,38(20):4484-4490.
    [45]MORENOCASTILLA C, RIVERAUTRILLA J, JOLY J P, et al. Thermal regeneration of an activated carbon exhausted with different substituted phenols [J]. Carbon.1995,33(10): 1417-1423.
    [46]BERENGUER R, MARCO-LOZAR J P, QUIJADA C, et al. Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon [J]. Energy & Fuels.2010,24:3366-3372.
    [47]JOHNSEN D L, ROOD M J. Temperature control during regeneration of activated carbon fiber cloth with resistance-feedback [J]. Environmental Science & Technology.2012,46(20): 11305-11312.
    [48]LASHAKI M J, FAYAZ M, WANG H Y, et al. Effect of adsorption and regeneration temperature on irreversible adsorption of organic vapors on beaded activated carbon [J]. Environmental Science & Technology.2012,46(7):4083-4090.
    [49]LIANG C J, LIN Y T, SHIN W H. Persulfate regeneration of trichloroethylene spent activated carbon [J]. Journal of Hazardous Materials.2009,168(1):187-192.
    [50]HULING S G, KO S, PARK S, et al. Persulfate oxidation of MTBE-and chloroform-spent granular activated carbon [J]. Journal of Hazardous Materials.2011,192(3):1484-1490.
    [51]GUO D S, SHI Q T, HE B B, et al. Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater [J]. Journal of Hazardous Materials. 2011,186(2-3):1788-1793.
    [52]LU P J, LIN H C, YU W T, et al. Chemical regeneration of activated carbon used for dye adsorption [J]. Journal of the Taiwan Institute of Chemical Engineers.2011,42(2):305-311.
    [53]SALMAN J M, HAMEED B H. Removal of insecticide carbofuran from aqueous solutions by banana stalks activated carbon [J]. Journal of Hazardous Materials.2010,176(1-3):814-819.
    [54]AKTAS O, CECEN F. Bioregeneration of activated carbon:A review [J]. International Biodeterioration & Biodegradation.2007,59(4):257-272.
    [55]NG S L, SENG C E, LIM P E. Quantification of bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds [J]. Chemosphere.2009,75(10):1392-1400.
    [56]AL-AMRANI W A, LIM P, SENG C, et al. Bioregeneration of mono-amine modified silica and granular activated carbon loaded with Acid Orange 7 in batch system [J]. Bioresource Technology.2012,118:633-637.
    [57]NWANKWO J, TURK A. Catalytic oxidation of adsorbed hydrocarbons [J]. Carbon.1975,13: 397-403.
    [58]李占臣,韩雪,张丽霞,等.超声辐射法降解废水中的二甲苯、苯酚和丙烯腈[J].化工环保,2007,27(4):305-308.
    [59]王西奎,国伟林,姚忠燕,等.超声化学法降解水中微量亚甲基蓝的研究[J].环境化学,2004,23(1):105-108.
    [60]王松林.超声处理垃圾渗沥液及有机污染物的研究[D].武汉:华中科技大学,2006.
    [61]MEEGODA J N, PERERA R. Ultrasound to decontaminate heavy metals in dredged sediments [J]. Journal of Hazardous Materials.2001,85(1):73-89.
    [62]LIM J L, OKADA M. Regeneration of granular activated carbon using ultrasound [J]. Ultrasonics Sonochemisrty.2005,12(4):277-282.
    [63]CHOI J, CHUNG S, KIM D, et al. Regeneration of AG-AC beads for adsorption of monoaromatic compounds [J]. Current Applied Physics.2008,8(5):559-562.
    [64]WENG C H, HSU M C. Regeneration of granular activated carbon by an electrochemical process [J]. Separation and Purification Technology.2008,64(2):227-236.
    [65]BERENGUER R, MARCO-LOZAR J P, QUIJADA C, et al. Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium [J]. Carbon.2010,48(10):2734-2745.
    [66]BERENQUER R, MARCO-LOZAR J P, QUIJADA C, et al. Effect of electrochemical treatments on the surface chemistry of activated carbon [J]. Carbon.2009,47(4):1018-1027.
    [67]NARBAITZ R M, KARIMI-JASHNI A. Electrochemical reactivation of granular activated carbon Impact of reactor configuration [J]. Chemical Engineering Journal.2012,197:414-423.
    [68]WANG L Z, BALASUBRAMANIAN N. Electrochemical regeneration of granular activated carbon saturated with organic compounds [J]. Chemial Engineering Journal.2009,155(3): 763-768.
    [69]LIU X T, QUAN X, BO L L, et al. Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation [J]. Carbon.2004,42(2): 415-422.
    [70]FOO K Y, HAMEED B H. A cost effective method for regeneration of durian shell and jackfruit peel activated carbons by microwave irradiation [J]. Chemical Engineering Journal.2012,194: 404-409.
    [71]FOO K Y, HAMEED B H. Microwave-assisted regeneration of activated carbon [J]. Bioresource Technology.2012,119:234-240.
    [72]WEI M, WANG K, LIN I, et al. Rapid regeneration of sulfanilic acid-sorbed activated carbon by microwave with persulfate [J]. Chemical Engineering Journal.2012,193-194:366-371.
    [73]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [74]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社社,1993.
    [75]贾建平,刘克富,朱业湘,等.大气压下低温等离子体灭菌消毒技术的研究[J].高电压技术,2007,33(2):16-119.
    [76]杨超,邱高.等离子体表面技术和在有机材料改性应用中的新进展[J].2001,17(6):30-34.
    [77]林锋,于月光,蒋显亮,等.等离子体喷涂纳米结构热障涂层微观组织及性能[J].中国有色金属学报,2006,16(3):482-487.
    [78]LEE H, LEE C H, CHOI J W, et al. The effect of the electric pulse polarity on CO2 reforming of CH4 using dielectric barrier discharge [J]. Energy & Fuels.2007,21(1):23-29.
    [79]HUA W, JIN L, HE X, et al. Preparation of NiMgO catalyst for CO2 reforming of methane by dielectric-barrier discharge plasma [J]. Catalysis Communications.2010,11:968-972.
    [80]LOCKE B R, SATO M, SUNKA P, et al. Electrohydraulic discharge and nonthermal plasma for water treatment [J]. Industrial & Engineering Chemistry Research.2006,45(3):882-905.
    [81]CHANG J S. Physics and chemistry of plasma pollution control technology [J]. Plasma Sources Science & Technology.2008,17:0450044.
    [82]CHANG J S. Recent development of plasma pollution control technology:a critical review [J]. Science and Technology of Advanced Materials.2001,2:571-576.
    [83]WAGNER H E, BRANDENBURG R, KOZLOV K V, et al. The barrier discharge:basic properties and applications to surface treatment [J]. Vacuum.2003,71(3):417-436.
    [84]KOGELSCHATZ U, ELIASSON B, EGLI W. From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges [J]. Pure and Applied Chemistry.1999, 71(10):1819-1828.
    [85]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-12.
    [86]陈伯通,罗建中,刘芳.DBD等离子体氧化法及其在有机废水中的应用[J].工业水处理,2006,26(5):45-48.
    [87]吴向阳,仰榴青,储金宇,等.低温等离子体处理废液技术[J].化工环保,2004,22(2):111-114.
    [88]张芝涛.大气压窄间隙DBD等离子体源与应用基础研究[D].沈阳:东北大学,2003.
    [89]JIANG N, LU N, LU J, et al. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor [J]. Plasma Science and Technology.2012,14(1):1-7.
    [90]GANDHI M S, MOK Y S. Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor.pdf [J]. Journal of Environmental Sciences.2012,24(7):1234-1239.
    [91]CHEN J, YANG J T, PAN H, et al. Abatement of malodorants from pesticide factory in dielectric barrier discharges [J]. Journal of Hazardous Materials.2010,177(1-3):908-913.
    [92]BAI M, ZHANG Z, BAI M. Simultaneous desulfurization and denitrification of flue gas by·OH radicals produced from O2. and water vapor in a duct [J]. Environmental Science & Technology. 2012,46(18):10161-10168.
    [93]OBRADOVIC B M, SRETENOVIC G B, KURAICA M M. A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas [J]. Journal of Hazardous Materials.2011,185(2-3):1280-1286.
    [94]JEONG J, JURNG J. Removal of gaseous elemental mercury by dielectric barrier discharge [J]. Chemosphere.2010,68:2007-2010.
    [95]KARUPPIAH J, REDDY E L, KUMAR P M, et al. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor [J]. Journal of Hazardous Materials. 2012,237-238(283-289.
    [96]LI K, TANG X, YI H, et al. Research on manganese oxide catalysts surface pretreated with non-thermal plasma for NO catalytic oxidation capacity enhancement [J]. Applied Surface Science.2013,264:557-562.
    [97]GUO Y F, LIAO X B, HE J H, et al. Effect of manganese oxide catalyst on the dielectric barrier discharge decomposition of toluene [J]. Catalysis Today.2010,153(3-4):176-183.
    [98]PARK C W, BYEON J H, YOON K Y, et al. Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge [J]. Separation and Purification Technology.2011,77(1):87-93.
    [99]REDOLFI M, MAKHLOUFI C, OGNIER S, et al. Oxidation of kerosene components in a soil matrix by a dielectric barrier discharge reactor [J]. Process Safety and Environmental Protection. 2010,88:207-212.
    [100]SONG C, BIN F, TAO Z, et al. Simultaneous removals of NOV, HC and PM from diesel exhaust emissions by dielectric barrier discharges [J]. Journal of Hazardous Materials.2009,166: 523-530.
    [101]LI J, WANG T, LU N, et al. Degradation of dyes by active species injected from a gas phase surface discharge [J]. Plasma Sources Science and Technology.2011,20(3):34019.
    [102]WANG T C, LU N, AN J T, et al. Multi-tube parallel surface discharge plasma reactor for wastewater treatment [J]. Separation and Purification Technology.2012,100:9-14.
    [103]LIU Y N, MEI S F, IYA-SOU D, et al. Carbamazepine removal from water by dielectric barrier discharge:Comparison of ex situ and in situ discharge on water [J]. Chemical Engineering and Processing.2012,56:10-18.
    [104]HUANG F M, CHEN L, WANG H L, et al. Degradation of methyl orange by atmospheric DBD plasma:Analysis of the degradation effects and degradation path [J]. Journal of Electrostatics.2012,70(1):43-47.
    [105]BOBKOVA E S, GRINEVICH V I, IVANTSOVA N A, et al. A study of sulfonol decomposition in water solutions under the action of dielectric barrier discharge in the presence of different heterogeneous catalysts [J]. Plasma Chemistry and Plasma Processing.2012,32: 97-107.
    [106]DOJCINOVIC B P, ROGLIC G M, OBRADOVIC B M, et al. Decolorization of reactive textile dyes using water falling film dielectric barrier discharge [J]. Journal of Hazardous Materials. 2011,192(2):763-771.
    [107]QU G Z, LI J, WU Y, et al. Regeneration of acid orange 7-exhausted granular activated carbon with dielectric barrier discharge plasma [J]. Chemical engineering journal.2009,146(2): 168-173.
    [108]QU G Z, LU N, LI J, et al. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma [J]. Journal of Hazardous Materials.2009,172(1):472-478.
    [109]QU G Z, LI J, LI G F, et al. DBD regeneration of GAC loaded with acid orange 7 [J]. Asia-pacific Journal of Chemical Engineering.2009,4:649-653.
    [110]LU N, LI J, WANG X, et al. Application of double-dielectric barrier discharge plasma for removal of pentachlorophenol from wastewater coupling with activated carbon adsorption and simultaneous regeneration [J]. Plasma Chemistry and Plasma Processing.2012,32:109-121.
    [111]HERNANDEZ-LEAL L, TEMMINK H, ZEEMAN G, et al. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon [J]. Water Research.2011,45(9): 2887-2896.
    [112]FANNING P E, VANNICE M A. A drifts study of the formation of surface groups on carbon by oxidation [J]. Carbon.1993,31(5):721-730.
    [113]MANGUN C L, BENAK K R, ECONOMY J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia [J]. Carbon. 2001,39(12):1809-1820.
    [114]CZAPLICKA M, KACZMARCZYK B. Infrared study of chlorophenols and products of their photodegradation [J]. Talanta.2006,70(5):940-949.
    [115]SUNDARAGANESAN N, ANAND B, MEGANATHAN C, et al. FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of 2,3-difluoro phenol [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy.2007,68(3):561-566.
    [116]周文敏,傅德黔,孙宗光.中国水中优先控制污染物黑名单的确定[J].环境科学研究,1991,4(6):9-12.
    [117]QUAN X, ZHANG Y B, CHEN S, et al. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances [J]. Journal of Molecular Catalysis A-Chemical.2007,263(1-2):216-222.
    [118]GUO Y F, LIAO X B, YE D Q. Detection of hydroxyl radical in plasma reaction on toluene removal [J]. Journal of Environmental Sciences-China.2008,20(12):1429-1432.
    [119]SELLERS R M. Spectrophotometric Determination of Hydrogen Peroxide Using Potassium Titanium(Ⅳ) Oxalate [J]. Analyst.1980,105(1255):950-954.
    [120]SUN B, SATO M, CLEMENTS J S. Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution [J]. Journal of Physics D-Applied Physics.1999,32(15): 1908-1915.
    [121]MOK Y S, NAM C M, CHO M H, et al. Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes [J]. IEEE Transactions on Plasma Science. 2002,30(1):408-416.
    [122]BABAYAN S E, DING G, HICKS R F. Determination of the Nitrogen Atom Density in the Afterglow of a Nitrogen and Helium, Nonequilibrium, Atmospheric Pressure Plasma [J]. Plasma Chemistry and Plasma Processing.2001,21(4):505-521.
    [123]LOCKE B R, THAGARD S M. Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water [J]. Plasma Chemistry and Plasma Processing.2012,32(5):875-917.
    [124]LOCKE B R, BURLICA R, KIRKPATRICK M J. Formation of reactive species in gliding arc discharges with liquid water [J]. Journal of Electrostatics.2006,64(1):35-43.
    [125]HE Z G, LIU J S, CAI W M. The important role of the hydroxy ion in phenol removal using pulsed corona discharge [J]. Journal of Electrostatics.2005,63(5):371-386.
    [126]BIAN W J, YING X L, SHI J W. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor [J]. Journal of Hazardous Materials.2009,162:906-912.
    [127]JOSHI A A, LOCKE B R, ARCE P, et al. Formation of hydroxyl radicals, hydrogen-peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous-solution [J]. Journal of Hazardous Materials.1995,41(1):3-30.
    [128]BIAN W J, ZHOU M H, LEI L C. Formations of active species and by-products in water by pulsed high-voltage discharge [J]. Plasma Chemistry and Plasma Processing.2007,27(3): 337-348.
    [129]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2011.
    [130]马广大.大气污染控制工程[M].北京:中国环境科学出版社,2004.
    [131]谭天恩,窦梅,周明华.化工原理[M].北京:化学工业出版社,2011.
    [132]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al.Gaussian 03 [M].Pittsburgh PA: Gaussian Inc,2003.
    [133]SAN N, HATIPOGLU A, KOCTURK G, et al. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions:Theoretical prediction of the intermediates [J]. Journal of Photochemistry and Photobiology A-Chemistry.2002,146(3):189-197.
    [134]WANG H J, LI J, QUAN X, et al. Formation of hydrogen peroxide and degradation of phenol in synergistic system of pulsed corona discharge combined with TiO2 photocatalysis [J]. Journal of Hazardous Materials.2007,141(1):336-343.
    [135]TRYBA B, MORAWSKI A W, INAGAKI M. Application of TiO2-mounted activated carbon to the removal of phenol from water [J]. Applied Catalysis B:Environmental.2003,41(4): 427-433.
    [136]LUKES P, LOCKE B R. Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor [J]. Industrial & Engineering Chemistry Research.2005,44(9):2921-2930.
    [137]KENT F C, MONTREUIL K R, BROOKMAN R M, et al. Photocatalytic oxidation of DBP precursors using UV with suspended and fixed TiO2 [J]. Water Research.2011,45(18): 6173-6180.
    [138]WANG H J, LI J, QUAN X, et al. Enhanced generation of oxidative species and phenol degradation in a discharge plasma system coupled with TiO2 photocatalysis [J]. Applied Catalysis B:Environmental.2008,83(1-2):72-77.
    [139]WANG T C, LU N, LI J, et al. Plasma-TiO2 Catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge [J]. Environmental Science & Technology. 2011,45:9301-9307.
    [140]NAKANO K, OBUCHI E, TAKAGI S, et al. Photocatalytic treatment of water containing dinitrophenol and city water over TiO2/SiO2 [J]. Separation and Purification Technology.2004, 34(1-3):67-72.
    [141]LU M C, CHEN J N, CHANG K T. Effect of adsorbents coated with titanium dioxide on the photocatalytic degradation of propoxur [J]. Chemosphere.1999,38(3):617-627.
    [142]NARIHITO T, HIROSHI I, NORIHIKO S, et al. Preparation of titanium dioxide/activated carbon composites using supercritical carbon dioxide [J]. Carbon.2005,43(11):2358-2365.
    [143]YAP P, LIM T, LIM M, et al. Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption-photocatalytic degradation of aqueous bisphenol-A using solar light [J]. Catalysis Today.2010,151(1-2):8-13.
    [144]FOO K Y, HAMEED B H. Decontamination of textile wastewater via TiO2/activated carbon composite materials [J]. Advances in Colloid and Interface Science.2010,159(2):130-143.
    [145]HAO X L, ZHOU M H, LEI L C. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water [J]. Journal of Hazardous Materials.2007,141(3):475-482.
    [146]BOEHM H P. Surface oxides on carbon and their analysis:a critical assessment [J]. Carbon. 2002,40(2):145-149.
    [147]ARULDOSS U, KENNEDY L J, VIJAYA J J, et al. Photocatalytic degradation of phenolic syntan using TiO2 impregnated activated carbon. [J]. Journal of Colloid and Interface Science. 2011,355(1):204-209.
    [148]TORIMOTO T, OKAWA Y, TAKEDA N, et al. Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane [J]. Journal of Photochemistry and Photobiology A:Chemistry.1997,103(1-2):153-157.
    [149]DING Z, HU X J, LU G Q, et al. Novel silica gel supported TiO2 photocatalyst synthesized by CVD method [J]. Langmuir.2000,16(15):6216-6222.
    [150]DEGUCHI T, IMAI K, IWASAKI M, et al. Photocatalytically highly active nanocomposite films consisting of TiO2 particles and ZnO whiskers formed on steel plates [J]. Journal of the Electrochemical Society.2000,147(6):2263-2267.
    [151]SABATE J, ANDERSON M A, KIKKAWA H, et al. Nature and properties of pure and nb-doped TiO2 ceramic membranes affecting the photocatalytic degradation of 3-chlorosalicylic acid as a model of halogenated organic-compounds [J]. Journal of Catalysis.1992,134(1):36-46.
    [152]BINIAK S, PAKULA M, SZYMANSKI G S, et al. Effect of activated carbon surface oxygen-and/or nitrogen-containing groups on adsorption of copper(Ⅱ) ions from aqueous solution [J]. Langmuir.1999,15(18):6117-6122.
    [153]BINIAK S, SZYMANSKI G, SIEDLEWSKI J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups [J]. Carbon.1997,35(12):1799-1810.
    [154]LOPEZ-GARZON F J, DOMINGO-GARCIA M, PEREZ-MENDOZA M, et al. Textural and chemical surface modifications produced by some oxidation treatments of a glassy carbon [J]. Langmuir.2003,19(7):2838-2844.
    [155]DOMINGO-GARCIA M, LOPEZ-GARZON F J, PEREZ-MENDOZA M. Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon [J]. Journal of Colloid and Interface Science.2000,222(2):233-240.
    [156]RINCON M E, TRUJILLO-CAMACHO M E, CUENTAS-GALLEGOS A K, et al. Surface characterization of nanostructured TiO2 and carbon blacks composites by dye adsorption and photoelectrochemical studies [J]. Applied Catalysis B:Environmental.2006,69(1-2):65-74.
    [157]SANCHEZ-POLO M, von GUNTEN U, RIVERA-UTRILLA J. Efficiency of activated carbon to transform ozone into center dot OH radicals:Influence of operational parameters [J]. Water Research.2005,39(14):3189-3198.
    [158]ALVAREZ P M, GARCIA-ARAYA J F, BELTRAN F J, et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach [J]. Carbon.2006,44(14):3102-3112.
    [159]MORENOCASTILLA C, RIVERAUTRILLA J, LOPEZRAMON M V, et al. Adsortpion of some substituted phenols on activated carbons from a bituminous coal [J]. Carbon.1995,33(6): 845-851.
    [160]LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society.1918,40:1361-1403.
    [161]FREUNDLICH H M F. Over the adsorption in solution [J]. Zeitschrift fur Physikalische Chemie.1906, A57:358-471.
    [162]ALVAREZ P M, BELTRAN F J, MASA F J, et al. A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment [J]. Applied Catalysis B:Environmental.2009,92(3-4):393-400.
    [163]TREYBAL R E.Mass-Transfer Operations [M].Singapore:McGraw-Hill International,1981.
    [164]HOFFMANN M R, MARTIN S T, CHOI W Y, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews.1995,95(1):69-96.
    [165]LEE D, HONG S H, PAEK K H, et al. Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment [J]. Surface & Coatings Technology.2005,200(7): 2277-2282.
    [166]NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation [J]. Applied Catalysis B:Environmental.2010,99(1-2):27-42.
    [167]KASPRZYK-HORDERN B, ZIOLEK M, NAWROCKI J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B:Environmental. 2003,46(4):639-669.
    [168]ZHANG J L, XU H S, CHEN H J, et al. Study on the formation of H2O2 on TiO2 photocatalysts and their activity for the photocatalytic degradation of X-GL dye [J]. Research on Chemical Intermediates.2003,29(7-9):839-848.
    [169]SATO M, OHGIYAMA T, CLEMENTS J S. Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water [J]. IEEE Transactions on Industry Applications.1996,32(1):106-112.
    [170]PICHAT P, DISDIER J, HOANG-VAN C, et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis [J]. Catalysis Today.2000,63(2-4):363-369.
    [171]SANO T, NEGISHI N, SAKAI E, et al. Contributions of photocatalytic/catalytic activities of TiO2 and gamma-A12O3 in nonthermal plasma on oxidation of acetaldehyde and CO [J]. Journal of Molecular Catalysis A-Chemical.2006,245(1-2):235-241.
    [172]LOGEMANN F P, ANNEE J H J. Water treatment with a fixed bed catalytic ozonation process [J]. Water Science and Technology.1997,35(4):353-360.
    [173]ASTM Annual Book of ASTM standards. Standard test method for pH of activatedcarbon, D3838-80 [M]. Philadelphia, PA:1996:531-532.
    [174]MOK Y S, JO J O, LEE H J. Dielectric barrier discharge plasma-induced photocatalysis and ozonation for the treatment of wastewater [J]. Plasma Science and Technology.2008,10(1): 100-105.
    [175]SUARASAN I, GHIZDAVU L, GHIZDAVU I, et al. Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids [J]. Journal of Electrostatics. 2002,54(2):207-214.
    [176]ALVAREZ P M, BELTRAN F J, GOMEZ-SERRANO V, et al. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol [J]. Water Research. 2004,38(8):2155-2165.
    [177]SANO N, KAWASHIMA T, FUJIKAWA J, et al. Decomposition of Organic Compounds in Water by Direct Contact of Gas Corona Discharge:(?) Influence of Discharge Conditions [J]. Industrial & Engineering Chemistry Research.2002,41(24):5906-5911.
    [178]XU X J. Dielectric barrier discharge-properties and applications [J]. Thin Solid Films.2001, 390(1-2):237-242.
    [179]ALVAREZ P M, GARCIA-ARAYA J F, BELTRAN F J, et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach [J]. Carbon.2006,44(14):3102-3112.
    [180]BELTRAN F J, GARCIA-ARAYA J F, GIRALDEZ I. Gallic acid water ozonation using activated carbon [J]. Applied Catalysis B:Environmental.2006,63(3-4):249-259.
    [181]SANCHEZ-POLO A, RIVERA-UTRILLA J. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone [J]. Carbon.2003,41(2):303-307.
    [182]邹东雷.高浓度难生物降解有机废水处理技术及工艺研究[D].长春:吉林大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700