用户名: 密码: 验证码:
多点进水厌氧—多级缺氧/好氧—膜组合工艺处理生活污水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业生产的发展,由氮、磷引起的水体污染日益加剧,给水体生态系统和人体健康造成了极大危害。污水脱氮除磷工作到了不容忽视的地步。生物法被公认为是一种经济、有效和最有发展前途的脱氮除磷方法之一。
     本文基于目前城市污水生物脱氮除磷研究的发展趋势,针对目前生物脱氮除磷存在的问题,将污水生物处理新理论(如废水处理生物反应统一动力学理论、活性污泥法动力学负荷理论以及同步硝化反硝化理论等)和新技术(膜技术)相结合,开发出一种新型高效的厌氧-多级缺氧/好氧-膜组合脱氮除磷工艺(简称An-M(A/O)-MBR工艺)。该工艺主要由厌氧区、多级A/O区和MBR区三部分组成,其主要技术特点为;(1)采用多点进水方式,一方面,实现全程低营养状态,有利于硝化反应的进行;另一方面,采用原水为反硝化补充碳源,促进了反硝化的进行,同时节省了外加碳源的费用;(2)多级A/O区采用间隔曝气方式,使混合液在前进的过程中频繁地经历缺氧-好氧环境,达到频繁的硝化和反硝化,使产生的硝态氮得到及时的去除而不至于抑制整个硝化反应的进行,达到频繁硝化和反硝化的目的,最终在无混合液内回流的条件下实现氮的高效去除;(3)采用膜分离代替传统工艺中的二沉池,可以提高整个系统中的污泥浓度,从而降低了污泥负荷,提高了反应的速度,同时保证了良好的出水水质。与现有的大多数生物脱氮除磷工艺相比,An-M(A/O)-MBR工艺具有无内回流、脱氮效率高;污泥平均浓度高、泥龄长、池容小、基建投资省;能耗小、运行费用低;抗冲击负荷强和易于操作运行等优点。
     论文首先从理论上探讨了多点进水An-M(A/O)-MBR工艺在生活污水处理方面的可行性,然后通过小试试验重点考察了工艺在不同运行条件下的特性,验证该工艺对生活污水处理的适用性,探讨了反应器各部分在脱氮除磷过程中的作用,功能及主要的运行机理,并获得相应的运行参数。研究的主要内容包括;(1)单点进水An-M(A/O)-MBR系统的初步研究;(2)多点进水An-M(A/O)-MBR系统的优化研究;(3)An-M(A/O)-MBR系统的污泥特性分析;(4)An-M(A/O)-MBR系统膜污染及其清洗的特性分析;(5)An-M(A/O)-MBR工艺动力学模式的建立与模拟。试验结果如下;
     1.单点进水条件下,An-M(A/O)-MBR系统对COD和总磷(TP)均有较高且稳定的处理效果,当进水COD和TP浓度在340.5~395.6 mg/L和3.92~5.67 mg/L时,两者平均去除率约为98.01%和74.80%。从氮的去除效果看,An-M(A/O)-MBR系统可以在无硝化液回流的条件下达到与传统A/O系统相当的脱氮效果,因而降低了运行能耗。An-M(A/O)-MBR系统对TN的平均去除率为60.22%,出水TN的形式主要为硝酸盐氮,但出水中仍含有一定量的NH_3-N(1.2mg/L左右)。说明单点进水条件下,An-M(A/O)-MBR系统对氨氮的去除不太理想。试验还发现,MBR区DO浓度过高与过低对系统除磷效果均有不利影响,该区DO浓度最好控制在2.0-3.0mg/L范围内。
     2.多点进水An-M(A/O)-MBR工艺的运行结果表明,多级A/O区曝气室溶解氧(DO)浓度、污泥龄(SRT)、系统总的水力停留时间(HRT)、进水COD浓度及进水分配比等参数均影响着系统的处理效果。试验结果表明;(1)进水COD浓度在120-1200 mg/L范围条件下,多点进水An-M(A/O)-MBR系统对COD的去除率均可以达到94%以上,说明该系统对有机物有很强的去除能力和抗冲击负荷能力;(2)多级A/O反应器好氧室DO浓度对系统的氮磷处理效果影响很大,过高或过低的DO水平均不利于系统对氮磷的去除。在选定的试验条件下,DO浓度在0.8~1.2mg/L范围时可以取得较好的处理效果,TN和TP的平均去除率分别可达74.81%和71.41%;(3)兼顾脱氮和除磷两方面考虑,系统在SRT为26~27d时可以取得较好的运行效果;(4)当水力停留时间(HRT)分别为8.7h、6.96h和4.97h时,系统对TN和TP的去除率分别达到73.15%、79.76%和81.98%对TP的去除效率分别为67.79%、80.99%和92.16%,可见,在试验选定的HRT范围内,系统对TN和TP的去除率随着HRT的降低而逐渐增加。分析认为,HRT越大,系统的有机负荷越低,从而引起生物的内源呼吸加剧,使得生物污泥的活性降低,最终导致系统对氮磷的去除效果的下降;(5)当进水COD浓度过低时(120~200mg/L),由于碳源不足会引起脱氮除磷效果变差,而当COD浓度过高时(1110~1200mg/L),由于负荷过高使得微生物种群的改变也会使脱氮除磷效果恶化;(6)适当增加多级A/O反应器缺氧室的进水量可以提高系统的脱氮和除磷效果。但多级A/O反应器的进水量过大(进水分配比为4;6)时,会因为最后一级进水中氮磷停留时间过短,加之厌氧区进水中有机物含量无法满足聚磷菌释磷的需要,最终导致系统脱氮除磷效果降低。
     3.An-M(A/O)-MBR系统污泥特性的研究结果表明;(1)整个运行期间,反应器系统中污泥的生物活性良好,MLVSS/MLSS值均在0.76~0.85之间。沿水流方向,污泥的MLVSS/MLSS值呈下降趋势,这表明在该系统中能够形成稳定的厌氧释磷和好氧吸磷。此外,厌氧反应器和膜反应器内污泥的MLVSS/MLSS值有较大的差异,它们之间的差值可以定性反映除磷效果的好坏,差值越大,系统除磷效果越好;(2)系统中厌氧区、多级A/O区及膜区中的SVI值相差不大,而且有相同的变化趋势。正常运行时膜反应器中污泥的SVI值在65~90mL/g之间,说明污泥的沉降性能良好;(3)An-M(A/O)-MBR系统的特征有利于活性污泥中微生物种群的多样化,能形成复杂而稳定的微生物生态系统,从而提高污泥的稳定性及抗外界干扰能力;而且,可利用不同微生物种群之间的相互协同作用,提高处理效率;(4)An-M(A/O)-MBR系统内污泥的吸附性能良好,污泥负荷对活性污泥的吸附有较大影响,随着污泥负荷的增加单位污泥吸附的COD量也逐渐增加。
     4.An-M(A/O)-MBR工艺膜污染及其清洗特性的研究结果如下;(1)膜污染的发展呈现典型的三阶段特性,即初始快速发展阶段、缓慢发展阶段和快速跳跃式发展阶段;(2)长期运行中膜污染特性与污泥混合液特性和膜通量等因素密切相关。良好的污泥性状和较低的膜通量均利于减缓膜污染的发展;(3)空曝气和清水反冲洗只能起到暂时延缓膜污染的作用,无法实现膜组件的长期稳定运行,但可以作为在线化学清洗的辅助措施以去除泥饼层和部分松散的膜孔堵塞和凝胶层物质;氧化剂在线清洗模式可以有效控制膜孔堵塞和凝胶层污染,在次临界通量运行条件下可以实现膜组件的长期稳定运行;在线酸洗和碱洗可以作为氧化剂清洗的有益补充联合使用;离线化学清洗可以最大限度地恢复膜的过滤性能,是有效的膜污染去除的清洗模式;(4)离线清洗结果显示,大量污泥絮体(可逆污染)在膜面沉积是引起TMP急剧增加的主要原因,清水清洗可使之有效去除;对于凝胶层(不可逆污染)的去除,NaClO+HCl的清洗效果比HCl+NaClO更好,因为NaClO可使大分子有机物(凝胶层的主要部分)彻底氧化,而HCl去除的是一些由Ca、Mg、Al等无机离子形成的垢粒(凝胶层的次要部分)。
     5.根据厌氧反应器、多级A/O反应器各反应室及膜反应器内水质各种成分的物料变化建立相应的物料平衡方程,得出了各成分沿An-M(A/O)-MBR反应系统流程变化的动力学模式并进行求解,能将多点进水An-M(A/O)-MBR生物处理系统模型化。结果表明,多点进水An-M(A/O)-MBR系统各成分的模拟值与试验值基本吻合,该动力学模式具有较高的数据拟合能力,能较好模拟多点进水An-M(A/O)-MBR系统的反应过程。因此,该动力学模式对系统的方案设计、系统控制及运行结果预测等方面具有较大的应用价值。
With the development of industry and agriculture,water eutrophication induced by nitrogen and phosphorus becomes more and more serious,which does great harm to the ecosystem and to human health as well.Therefore,it is urgent to remove nitrogen and phosphorus from the wastewater before discharging wastewater into water bodies. Biological nutrients removal(BNR)is regarded as one of the most economical, effective and promising solutions to this problem.
     Under this background,this study was conducted aiming at solving the problems existed in most of the BNR processes.Adopting the new concepts,such as biological reaction dynamic theory,activated sludge dynamic loading theory,and the simultaneous nitrification and denitrification theory,and the advance membrane separation technology,an innovated step-feed anaerobic-multiple anoxic/oxic-membrane bioreactor[An-M(A/O)-MBR],was developed for nutrients removal.The An-M(A/O)-MBR process was composed of an anaerobic reactor、a multiple phases of anoxic and aerobic(A/O)zones in sequence followed by a continuous aerated MBR.Characteristics of the An-M(A/O)-MBR process were as following;(1)When step-feed strategy was adopted,on the one hand,the low organic load rate(OLR),condition could be maintained along the system flow,which was favorable for nitrification.On the other hand,the influent received at multiple oxic/anoxic tanks could be used as external carbon source for denitrification and thus save the cost of external carbon source;(2)More combinations of oxic and anoxic tanks in series enabled nitrification stream flow from oxic zone of one pass to anoxic zone of next pass straightly,which could decrease the negative effect of nitrate accumulation on nitrification.As a result,high nitrogen removal was achieved without internal nitrate recycling;(3)The conventional second sedimentation tank was replaced by membrane separation in the An-M(A/O)-MBR process,which enhanced the MLSS. concentration,resulting the decrease of OLR and the improvement of the biological reaction rate.Additionally,high-quality effluent could be obtained through the membrane filtration.Comparing to other BNR processes,the An-M(A/O)-MBR process has many advantages,such as eliminating the internal nitrate recycling and the additional external carbon source,high nitrogen removal efficiency,low capital construction investment and operation cost,and flexible manipulation and maintenance.
     In this paper,the feasibility of the step-feed An-M(A/O)-MBR process for domestic wastewater treatment was discussed theoretically.Then,to validate the theoretic analysis,process performances under different conditions were investigated on a lab-scale system.The operation mechanism of each reactor and the optimal operational parameters were evaluated during the operation.Major investigations included;(1)preliminary performance study on the single-point feed An-M(A/O)-MBR process;(2)detailed analysis on the performance of the step-feed An-M(A/O)-MBR process under different operation conditions;(3)characteristics of the activated sludge during the operation;(4)characteristics of membrane fouling and cleaning methods;(5) dynamic simulation of the step-feed An-M(A/O)-MBR process.The major findings of this study were as following;
     1.Under the single-point influent feed condition,the An-M(A/O)-MBR system exhibited high and stable performance on COD and total phosphorus(TP)removal. When the COD and TP concentration fluctuated at 340.5~395.6mg/L and 3.92~5.67 mg/L,the average removal efficiency of COD and TP was 98.01% and 74.80%, respectively.As for total nitrogen(TN)removal,without the internal nitrate recycling, the An-M(A/O)-MBR system could achieve the same performance level(60.22%)as that of other conventional BNR processes,so the operational cost could be deceased. Although the nitrate was the major component in the effluent,a fraction of ammonia (about 1.2mg/L)still could be found in the effluent,indicating that incomplete nitrification was achieved in the single-point feed An-M(A/O)-MBR system.Studies also showed that dissolved oxygen(DO)concentration in the MBR zone was one of the important parameters affecting the performance of the system.DO value at the range of 2.0~3.0mg/L was optimal in this research.
     2.Studies showed that many parameters,such as DO concentration in the aerobic compartments of the multiple A/O reactor,the sludge retention time(SRT),the hydraulic retention time(HRT),the influent COD concentration and the influent distribution ratio,could affect the performance of the step-feed An-M(A/O)-MBR system.The results of this study were as following;(1)The step-feed An-M(A/O)-MBR system exhibited good performance on organic substances removal. The COD removal efficiency was high and stable(more than 94%)throughout the operation although influent COD concentration fluctuated in the range of 120-1200 mg/L;(2)DO concentration in the aerobic compartment in multiple A/O reactor had great effect on the performance of nitrogen and phosphorus removal.Under the conditions imposed,high nutrient removal could be obtained when DO concentration was at 0.8~1.2mg/L.The average removal efficiency of TN and TP was 74.81% and 71.41%;(3)Giving attention to nitrogen removal and phosphorus removal simultaneously,under the conditions imposed,good performance could be obtained when SRT was at 26~27d;(4)When the HRT was at 8.7h、6.96h and 4.97h,the average removal efficiencies of TN and TP were 73.15%、79.76%、81.98% and 67.79%、80.99%、92.16%,respectively.Under the conditions imposed,Long HRT introduced low OLR in the system,resulting in the decrease of nitrogen and phosphorus removal due to the decrease of bioactivity.That's why removal efficiencies of TN and TP increased with the decrease of HRT;(5)Low COD level(120~200mg/L)could cause the deficiency of organic carbon source for denitrification and for phosphorus release. And high COD level(1110~1200mg/L)could change the ecospecies in the system because of the excessive high OLR;(6)More influent quantity flowing into the multiple A/O reactor was favorable for nutrients removal.But too much influent distributed to the multiple A/O reactor(distribution rate was 4;6)could shorten the retention time of a fraction of influent,and could lead to the deficiency of organic substances for phosphorus release in the anaerobic reactor as well,resulting in the deterioration of process performance
     3.Studies of activated sludge characteristics showed;(1)MLVSS/MLSS values in all reactors were in the range of 0.76~0.85,indicating that good bioactivity was kept throughout the operation.The MLVSS/MLSS value demonstrated a decrease trend along the system flow,implying that stable phosphorus release and uptake existed in the step-feed An-M(A/O)-MBR system.In addition,the MLVSS/MLSS margin between in the membrane tank and in the anaerobic tank could reflect the phosphorus removal performance of the system.The more the margin value,the better the phosphorus removal efficiency could be achieved in the system;(2)There was no obvious sludge volume index(SVI)difference in the anaerobic reactor,the multiple A/O reactor and the membrane reactor,and the SVI variation showed the same trend in these reactors.Under normal condition,the SVI value in the membrane reactor was at 65~90mL/g,so the sludge had good sedimentation property;(3)The special configuration and operation mode ensured the diversity of microorganism population in the step-feed An-M(A/O)-MBR system.So stable and complex microbial ecosystem was built up and the ability of microorganism self-adjustment and self- improvement could be enhanced when the influent quality changed a lot.Meanwhile,the interaction among different microorganism populations could also improve the performance of the system;(4)Activated sludge in the step-feed An-M(A/O)-MBR system had strong ability for COD adsorption.OLR exhibited great influence on the adsorption character. The COD adsorption quantity increased with the increase of OLR.
     4.Characteristics of membrane fouling were as following;(1)In the A-(A/O)~n-MBR process,a characteristic three-stage TMP profile was observed with an initially extended period of slow and a fast TMP rise followed by a sudden transition to a rapid rise;(2)During long-term operation,characteristics of membrane fouling varied with the mix liquor characteristic and the membrane flux adopted.High-quality sludge characteristics and low membrane flux was helpful to alleviated membrane fouling;(3) Physical cleaning methods,such as air flushing and water flushing,were only effective to alleviate membrane fouling in short time,but they could be used as supplementary methods to remove fouling caused by cake layer and part of incompact clogging and gel layer;On-line oxidant cleaning method was effective to remove fouling caused by pore clogging and gel layer; On-line acid cleaning and on-line alkaline cleaning could be used as supplementary methods for oxidant cleaning; Off-line chemical cleaning was the most effective method for fouling control,which could ensure perfect regeneration of the membrane;(4)The rapid TMP rise was mainly due to surface cake accumulation, which belonged to reversible resistance and could be removed by tap water washing. Fouling caused by gel layer,which belonged to irreversible fouling,could be removed efficiently by chemical cleaning,and the effect of NaClO+HCl cleaning procedure was superior to that of HCl+NaClO one because NaClO could oxidize gel layer formed mainly by macro-molecular organic substances,while HCl could remove inorganic particles formed by Ca、Mg,Al,etc.
     5.According to the mass-balance equations of each composition in the anaerobic reactor,each compartment of the multiple A/O reactor and the aerated membrane reactor were established respectively,a series of dynamic models of each composition along the An-M(A/O)-MBR system flow were built and computed.The results showed that good consistency between the measured and the simulated values of each composition was achieved,indicating these dynamic models were suitable for simulating the variation of each composition in the An-M(A/O)-MBR system. Therefore,the dynamic models were useful in system design,control and prediction.
引文
[1]郊兴灿,李亚新.污水除磷脱氮技术[M].北京;中国建筑工业出版社,1998
    [2]徐亚同,史家墚,张明.污染控制微生物工程[M].北京;化学工业出版社,2001
    [3]金相灿.中国湖泊富营养化[M].北京;中国环境科学出版社,1990
    [4]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京;化学工业出版社,2002,40-55
    [5]杨朝晖等.废水生物脱氮除磷机理与技术研究的进展.四川环境,2002,21(2);25-29
    [6]高廷耀。城市污水生物脱氮除磷机理研究进展。上海环境科学,1999,18(1);31-35
    [7]Nazih k.h.Shamas.Interaction of Temperature,PH and Biomass on the Nitrification Process.J.WPCF,1989,58(1),52-99
    [8]D.Baetens,P.A.Vanrolleghem,M.C.M.Van Loosdrecht and LH.Hosten.temperature Effects in Bio-P Removal.Wat.Sci.Technol.1999,39(1),215-225
    [9]朱怀兰等,SBR生物除磷工艺的研究,上海环境科学,1993,12(8);8-13
    [10]毕学军,张波,低负荷运行对城市污水生物除磷的影响,上海环境科学,2002,21(2);93-96
    [11]Rensink,J.H.,Donker,H.J.GW.and de Vries,H.P.Biological P-removal in domestic wastewater by the activated sludge process,Proc.5th Environ.Sewage Refuse Symp.,Munchen,1982
    [12]许保玖,龙腾锐。当代给水与废水处理原理(第二版).北京;高等教育出版社,2000
    [13]刘瑾,城市污水生物脱氮除磷机理与工艺研究,同济大学工学博士学位论文,1994
    [14]K.S.Kim,-M.Cho,H.Choi,et al.A pilot study on nitrogen and phosphorus removal by amodified photostrip process.Wat.Sci.Technol.,2000,42(3-4);199-206.
    [15]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮.中国给水排水,2000,16(2);29-31
    [16]仝武刚,王继徽,刘大鹏.高浓度氨氮废水的处理现状与发展.工业水处理,2002,22(9);9-12
    [17]Hellinga C.The SHARON process;an innovative method for nitrogen removal from ammonium-rich wastewater.Wat Sci Technol,1998,37(9);135-142
    [18]van Dongen U,Jetten M C M and van Loosdrecht M C M.The SHARON-Anammox process for treatment of ammonia rich wastewater.2001,44(1);153-160
    [19]邹联沛,刘红丽,徐商田.MBR短程硝化反硝化的机理探讨.污染防治技术,2003,16(4);32-34.43
    [20]Haniki K.,et al.Nitification at Low Level of Dissolved Oxygen with and without Organic Loading in a Suspended Growth Reactor.Wat.Res.,1990,24(3);297-302
    [21]Yang L.,Alleman J E.Investigation of Batchwise Nitrite Build-up by an Enriched Nitirfication Culture.Wat.Sci.Technol,1992,26(5/6);997-1005
    [22]杨霞,杨朝晖.城市生活垃圾填埋声渗滤液废水处理工艺.环境工程,2000,18(5);15-17
    [23]Werstraete W,Philips S.Nitrification denitrification processes and technologies in new contexts.Environmental Pollution,1998,102;717-726
    [24]樊耀波等.水与废水处理中的膜生物反应器技术.环境科学,1996,16(5);79-81
    [25]Elisabeth V M,Paul L,Jurh K.Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors.Wat.Res.,1996,30(2);277-284
    [26]Sen Priyali,Dentel Steven K.Simultaneous Nitrification-denitrification in a Fluidized Bed Reactor.Wat.Sci.Technol.,1998,38(1);247-254
    [27]Watanabe W.Simultaneous Nitrification and Denitrification in Micro-aerobic Biofilm.Wat.Sci.Technol.,1992,26;511-522
    [28]Puznava N,Payraudeau M and Thornberg D.Simultaneous nitrification and denitrification in biofilters with real time aeration control.Wat Sci Technol,2001,43(1);269-276
    [29]Wartchow D.Nitrification and Denitrification in Combined Activated Systems.Wat.Sci.Technol.,1990,22(7/9);199-206
    [30]邹联沛,张立秋,王宝贞等.MBR中DO对同步硝化反硝化的影响.中国给水排水,2001,17(6);11-14
    [31]周毅,杨开,杨德勇.污水生物处理过程中的同步硝化反硝化研究概况.环境科学与技术,2001.18(6);6-8
    [32]Hippen A.,Rosenwinkel K.,Baumgarten G,et al.Aerobic deam monification;a new experience in the treatment of wastewater.Wat.Sci.Technol.,1997,35(10);111-120
    [33]Muller E B.,et al.Simultaneous NH_3 oxidation and N_2 productionat reduced O2 tensions by sewage sludge subcultured with chemolithotrophic medium.Biodegradation,1995,6(4);339-349.
    [34]Graaf A A Van de,Mulder A,Bruijn P de,et al.Anaerobic ammonium oxidation is a biologically mediated process,Appl.Environ.Microbiol.,1995,61(4);1246-1251
    [35]Straous M.,et al.Ammonium removal from concentrated wastestreams with the anaerobic ammonium oxidation(ANAMMOX)process in different reactor configurations.Wat.Res.,1997,31(8);1955-1962.
    [36]Graaf A A.,et al.Autotrophic growth of Anaerobic Ammonium-Oxidizing Microorganisms in a Euidized Bed Reactor.Microbiology,1996,142;2187-2196
    [37]Graaf A A.,et al.Metabolic Pathway of Anaerobic Ammonium Oxidation on the Basis of NH3 Studies in a Fluidized Bed Reactor,Microbiology,1997,143;2415-2421
    [38]郑平等.厌氧氨氧化菌基质转化特性的研究.浙江农业大学学报.1997,23(4);409-413
    [39]赵宗升,刘鸿亮,李炳伟等.高浓度氨氮废水的高效生物脱氮途径.中国给水排水,2001,17(5);24-28
    [40]左剑恶,蒙爱红.一种新型生物脱氮工艺—SHARON-ANAMMOX组合工艺.给水排水,2001,27(10);22-27
    [41]Mike S M Jetten,et al.The anaerobic oxidation of ammonium FEMS Microbiology Reviews,1999,22;421-437
    [42]van Loosdrecht M C M,Pot M A,Heijnen J J.Importance of bacterial storage polymers in bioprocess.Wat.Sci.Technol,1997,35;41-47
    [43]Kuba T,Smolders G J F,van Loosdrecht M C M,et al.Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor.Wat Sci Technol,1993,27(5/6);241-252
    [44]Smolders G J F,Kolp J M,van Loosdrecht M C M,et al.A metabolic model of the biological phosphorus removal process;1.effect of the sludge retention time.Biotechnol Bioeng,1995,48;222-233
    [45]Arun V,Mino T and Matsuo T.Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems.Wat Res,1988,22(5);565-570
    [46]Keasling J D,van Dien S J,Pramanik J.Engineering polyphosphate metabolism in Escherichia coli;implications for bioremediation of inorganic contaminants.Biotechnol Bioeng,1998,58;231-239
    [47]van veen H W,Abee T,Kortstee G J J,et al.Generation of a proton motive force by the polyphosphate-accumulating acinetobacter johnsonii strain 210 A.J Biol Chem,1994,269;29509-29514
    [48]Dircks K,Beun J J,van Loosdrecht M C M,et al.Glycogen metabolism in aerobic mixed cultures.Biotechnol Bioeng,2001,73;85-94
    [49]黄霞,桂萍,范晓军等.膜生物反应器废水处理工艺的研究发展.环境科学研究,1998,11(1);40-44
    [50]Jin Kie Shim,Ik-Keun Yoo,Young Moo Lee.Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor.Process Biochemistry,2002,38(2);279-285
    [51]van der Graaf J.HJ.M.,Kramer J.F.,et al.Experiments on membrane filtration of effluent at wastewater treatment plants in the Netherlands.Wat.Sci.Technol.,1999,39(5);129-136
    [52]Yeom I.T.,Nah Y.M.,Ann K.H..Treatment of household wastewater using an intermittently aerated membrane bioreactor.Desalination,1999,124(l-3);193-204
    [53]Ueda T.,Hata K.,Kikuoka Y.Treatment of domestic sewage from rural settlements by a membrane bioreactor.Wat.Sci.Technol.,1996,34(9);189-196
    [54]Xing C.H.,Qian Y,Wen X.H.,etc.Physical and biological characteristics of a tangential-flow MBR for municipal wastewater treatemt.Journal of Membrane Science,1999,191(1-2);31-42
    [55]Van Dijk L,Roncken GGG Membrane bioreactors for wastewater treatment;the state of the art and new developments.Wat.Sci.Technol.,1997(35)10;35-41
    [56]H.Nagaoka.Nitrogen removal by submerged membrane separation activated sludge process.Wat.Sci.Technol.,1999,39(8);107-114
    [57]Tatsuki Ueda and Kenji Hata.Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration.Wat.Res.,1999,33(12);2888-2892.
    [58]S-H.Yoon,H-S.Kim,and J.K.Parketal.Influence of important operational parameters on performance of a membrane biological reactor.Wat.Sci.Technol.,2000,41(10-11);235-242.
    [59]Ahn K H,Song K G,Cho E,et al.Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor(SAM)process.Desalination,2003,(157);345-352.
    [60]Pedro A.Castillo,Simon Gonzalez-Martinez,et al.Biological phosphorus removal using a biofilm membrane reactor;operation at high organic loading rates.Wat.Sci.Technol.,1999,40(4-5);321-329
    [61]Suwa Y,Suzuki T,Toyohara H.,Yamagishi T.and Urushigawa Y Single stage-single sludge nitrogen removal by an activated sludge process with cross flow filtration.Wat.Res.,1992,26(9);1149-1157.
    [62]Seo G.T.,Lee T.S.,and Moon B.H.et al.Two stage intermittent aeration membrane bioreactor for simultaneous organic,nitrogen and phosphorus removal.Wat.Sci.Technol.,2000,41(10-11);217-225.
    [63]Xiao-jun Fan,et al.Nitrification and mass balance with a membrane with a membrane bioreactor for municipal wastewater treatment.Wat.Sci.Technol.,1996,34(1-2);129-136
    [64]Muller E.B.,Stocthamer A.H.,et al.Aerobic domestic waste water treatment in a pilot plant with complete sludge Mention by cross-flow filtration.Wat.Res.1995,(4);1179-1189
    [65]Kraume M Bracklow U,Vocks M,Drews A.Nutrients removal in MBRs for municipal wastewater treatment.Wat.Sci.Technol.,2005,51(6-7);391-402
    [66]Van der Roest H F,van Bentem AGN,Lawrence DP.MBR-technology in municipal wastewater treatment;challenging the traditional treatment technologies.Wat.Sci.Technol.,2002,46(4-5);273-280
    [67]Cote P,Buisson H,Pound C,et al.Immersed membrane activated sludge for the reuse of municipal wastewater.Desalination,1997,(113);189-196.
    [68]Bae T H,Han S S and Tak T M.Membrane sequencing batch reactor system for the treatment of dairy industry wastewater.Process Biochemistry,2003,(39);221-231
    [69]Cho J,Song K G,Lee S H,et al.Sequencing anoxic/anaerobic membrane bioreactor(SAM)pilot plant for advanced wastewater treatment.Desalination 2005,(178);219-225
    [70]赵方波,于水利,荆国林,李谦,镇祥华.间歇循环活性污泥一MBR工艺的脱氮除磷特性.中国给水排水,22(11),2006;22-25
    [71]Lesjean B,Gnirss,R,Adam C.Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal.Desalination,2002,149;217-224
    [72]袁丽梅,张传义,张雁秋,奚旦立,高彦林.交替式缺氧/厌氧膜生物物反应器的脱氮除磷效能.中国给水排水,2006,22(23);14-17
    [1]王建龙.生物脱氮新工艺及技术原理.中国给水排水,2000,16(2);25-27
    [2]郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念-可持续生物除磷脱氮工艺(上).给水排水,2002,28(7);6-11
    [3]郝晓地,汪慧贞,钱易等.欧洲城市污水处理技术新概念-可持续生物除磷脱氮工艺(下).给水排水,2002,28(7);5-8
    [4]张雁秋,张洁,许翱天等.废水处理生物处理高效硝化新工艺.中国矿业大学学报,2004,33(2);197-199
    [5]邱慎初,丁堂堂.分段进水的生物除磷脱氮工艺.中国给水排水,2003,19(4);32-36
    [6]Christine de Barbadillo,Luis Carrio,Keith Mahoney,James Andersion,et al.Practical considerations for design of a step-feed biological nutrient removal system.Florida Water Resources Journal,2002,January
    [7]George Tehobanoglous,Franklin L,Burton H,et al.Wasterwater engineering treatment and reuse.Metcalf & Eddy.Inc.[M].北京;清华大学出版社,大学环境教育丛书(影印版),2003
    [8]龙北生,聂熹,赵永胜 等.分级式除磷脱氮工艺探讨.吉林大学学报,2004,34(2);260-263
    [9]于社平,彭党聪,朱海荣等.城市污水分段进水A/O脱氮工艺试验研究.环境科学研究,2006,19(3);75-80
    [10]祝贵兵,彭永臻,周利等.优化分段进水生物脱氮工艺设计参数.中国给水排水,2004,20(9);62-64
    [11]Lin Y F,Jing S R.Characterization of denitrification and nitrification in a step-feed alternating anoxic-oxic sequencing batch reactor.Water Environment Research Alexandria;2001,73(9/10);526-5288
    [12]R.David Holbrook and Robert Holland.Full-scale operational experience at Ocoee.Florida Water Resources Journal,June,1996,28-30
    [13]Fillos,John,Diyamandoglu.Vasil,Carrio,Luis A.Full-scale evaluation of biological nitrogen removal in the step-feed activated sludge process.Wat.Envoron.Res.,1996,68(3-4);132-135
    [1]国家环境保护局.水和废水监测分析方法[M].第3版.北京;中国环境科学出版社,1989.
    [2]Stephenson T,Judd S,Brindle K.Membrane Bioreactors for Wastewater Treatment,IWA Publishing,London,2000
    [3]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京;化学工业出版社.2002.9
    [4]Mulkerrins D,Jordan C,McMahon S,et al.Evaluation of the parameters affecting nitrogen and phosphorus removal in A/A/0 biological nutrient removal system.J Chem Technol Biotechnol,2000,75;261-268
    [5]Brdjanovic D,van Loosdrecht M C M,Hooijmans C M,et al.Minimal aerobic sludge retention time in biological phosphorus removal systems.Biotechnol Bioeng,1998,60;326-332
    [6]Petersen B,Temmink H,Henze M,et al.Phosphate uptake kinetics in relation to PHB under aerobic conditions.Wat Res,1998,32(1);91-100
    [7]Dircks K,Beun J J,van Loosdrecht M C M,et al.Glycogen metabolism in aerobic mixed cultures.Biotechnol Bioeng,2001,73;85-94
    [8]Liu W T,Mino T,Nakamura K,et al.Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic aerobic activated sludge with a minimized polyphosphate content.J Ferment Bioeng,1994,77;535-540
    [9]Brdjanovic D van Loosdrecht M C M,Hooijmans C M,et al.Bioassay for glycogen determination in biological phosphorus removal systems.Wat Sci Tech,1997,37(4/5);541-547
    [10]Murnleitner E,Kuba T,van Loosdrecht M C M,et al.An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.J Environ Eng,1997,56;876-883
    [11]Temmink H,Petersen B,Isaacs S,et al,Recovery of biological phosphorus removal after periods of low organic loading.Wat Sci Tech,1996,34(l/2);1-8
    [12]Brdjanovic D,Slamet A,van Loosdrecht M C M,et al.Impact of excessive aeration on biological phosphorus removal from wastewater.Wat.Res.1998,32(1);200-208
    [13]Smolders G J F,van der Meij J,van Loosdrecht M C M,et al.Model of the anaerobic metabolism of the biological phosphorus removal process;Stoichiometry and pH influence.Biotechnol Bioeng,1994,43;461-470
    [14]Shehabo O,Deininger R,Porta F,et al.Optimal phosphorus removal at the Ann Arbor wastewater treatment plant.Wat Sci Tech,1996,34;493-499
    [1]邱慎初.生物除磷系统中尚未明确的厌氧稳定问题.中国给水排水,2001,17(10);23-27
    [2]Yoo H,Ahn K H,Lee H J et al.Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aerated reactor.Wat Res,1999,33(1);145-154
    [3]王社平.西安市第四污水厂水质分析及分段进水AO生物脱氮工艺研究.西安建筑科技大学博士论文,2006
    [4]王伟,彭永臻,王海东,张树军,令云芳.溶解氧对分段进水生物脱氮工艺的影响.中国环境科学,2006,26(3);293-297
    [5] Wentzel M C,Ekama G A and Marais G v R. Kinetics of nitrification denitrification biological phosphorus removal systems-A review. Wat Sci Tech, 1991,23(4/6): 555-565
    [6] Jenkins K and Tandoi V. The applied microbiology of enhanced biological phosphorus removal, Accomplishments and needs. Wat Res, 1991, 25:1471-1478
    [7] Vlekke G J F M, Comeau Y and Oldman W K. Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactor. Environ Technol Lett., 1988, 9: 791-796
    [8] Kuba T, van Loosdrecht M C M and Heijnen J J, Phosphorus and nitrogen removal with minimal COD requirement by integration of nitrifying dephosphatation and nitrification in a two-sludge system. Wat Res, 1996,30(7): 1702-1710
    [9] (?) stgaard K, Christensson M and Lie E. Anoxic biological phosphorus removal in a full scale UCT process. Wat Res, 1997,31(11): 2719-2726
    [10] Nowak 0, Schweighofer P and Svardal K. Nitrification inhibition-a method for the estimation of actual maximun autotrophic growth rates in activated sludge systems. Wat Sci Tech, 1994, 30(6): 9-19
    [11] Rosenberger, S., Kruger, U., Witzig, R., et al.Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Research, 2002, 36: 413-420
    [12] K.G Song, J. Cho, E.T. Ko, et al.Characteristics of nitrogen and phosphorous removal in a sequencing anoxic/anaerobic membrane bioreactor (SAM) process, 4th IWA World Water Congress, Marrakech, Morocco. 2004.
    [13] Okabe S, Oozawa Y, Hirata K, et al. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C: N ratios. Wat Res, 1996,30: 1563-1572
    [14] Gomez J, Mendez R and Lema J M. Kinetic study of addition of volatile organic compounds to a nitrifying sludge. Appl Biochem Biotechnol, 2000, 87:189-202
    [15] Temmink H, Petersen B, Isaacs S, et al. Recovery of biological phosphorus removal after periods of low organic loading. Paper presented at the Water Quality International'96, IAWQ 18th Biennial Conference, Singapore, 23-28 June 1996
    [16] Jun H B and Shin H S. Substrate transformation in a biological excess phosphorus removal system. Wat Res, 1997,31(4): 893-899
    [17] Icaacs S H, Henze M, Soeberg H, et al. External carbon source addition as a means to control an activated sludge nutrient removal process. Wat Res, 1994,28(3): 511-520
    [18] Wentzel M C, Dold P L, Ekama G A, et al. Kinetics of biological phosphorus removal release. Wat Sci Tech, 1985,17:57-61
    [19] Smolders G J F, van der Meij J, van Loosdrecht M C M, et al . Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence. Biotechnol Bioeng, 1994, 43: 461-470
    [20] Barker P S, and Dold P L. General model for biological nutrient removal activated sludge systems: model presentation. Water Environ Res., 1997,69: 969-985
    [21] Filipe C D M, Meinhold J, and Jrgensen S B et al. Evaluation of the potential effects of equalization on the performance of biological phosphorus removal systems . Water Environ. Res. 2001, 73(3): 276-285
    [22] Wentzel M C, Dold P L, and Ekama G A, et al. Enhanced polyphosphate organism cultures in activated sludge. Part III: kinetic model. Water SA, 1989, 15, 89-96
    [23] Randall A A, Benefield L D, Hill W E, et al. The effect of volatile fatty acids on enhanced biological phosphorus removal and population structure. Proceedings of First IAWQ Specialized Conference on Sequencing Batch Reactor Technology,Munich,18-20 March 1996
    [24]Randall A A,Benefield L D and Hill W E.Induced of phosphorus removal in and enhanced biological phosphorus removal bacterial population.Wat Res,1997,31(11);2869-2877
    [25]Abu-ghararah Z H and Randall C W.The effect of organic compounds on biological phosphorus removal.Wat Sci Tech,1991,23;585-594
    [1]徐亚同,史嘉粱,张明.污染控制微生物工程[M].北京;化学工业出版社,2001
    [2]Henze M,Harrenmoes P,Jansen J L C,et al.Wasterwater treatment;Biological and chemical process[M].2nd edition,New York;Springer,1997
    [3]罗固源,罗富金,豆俊峰.螺旋升流式反应器脱氮除磷系统中污泥特性的试验分析.重庆大学学报,2003,26(10);112-115
    [4]罗固源,豆俊峰,吉芳英等.螺旋升流式反应器脱氮除磷效果及其特性的研究.环境科学学报,2004,24(1);16-20
    [5]Zhang C Y,Zhang Y Q,Yuan L M et al.Characteristic of Membrane Fouling in an Anaerobic-(Anoxic/Oxic)~n-MBR Process.Journal of China University of Mining and Technology,2008.(in press)
    [6]Wilen B M,Keiding K,Nielsen P H.Anaerobic deflocculation and aerobic feflocculation of activated sludge.Water Res,2000,16(34);3933-3942
    [7]Hulshoff Pol,L.W.The Phenomenon of Granulation of Anaerobic Sludge,Ph.D.The Netherlands;WAU,1989
    [1]顾国维,何义亮.膜生物反应器—在污水处理中的研究与应用[M].北京;化学工业出版社,2002
    [2]刘锐.一体式膜生物反应器的微生物代谢特性及膜污染控制.清华大学博士学位论文,2000
    [3]邓雁平,叶亚平,钱维兰等,不同物理清洗方式对一体式膜生物反应器过滤特性的影响,环境科学研究,2005,18(6);59-64
    [4]孙振龙,陈绍伟,污水处理中有机膜的化学清洗技术研究,环境科学与技术,2003,26(6);3-5
    [5][英]Tom Stephenson,Simon Judd,Bruce Jefferson,Keith Brindle.Membrane bioreactors for wastewater treatment.张树国,李咏梅 译.北京;化学工业出版社,2003
    [6]S.Ognier,Membrane bioreactor fouling in sub-critical filtration conditions;a local critical flux concept.Journal of Membrane Science,2004,229(1-2);171-177
    [7]Sandra Rosenberger,Filterability of activated sludge in membrane bioreactors.Desalination,2002(146),373-379
    [8]张传义,王丽萍,黄霞,一体式MBR膜污染形成机理的试验研究.中国矿业大学学报,2004,33(4);476-479
    [9]Ueda T,Hata K and Kikuoka Y.Treatment of domestic sewage from rural settlements by a membrane bioreactor.Water Science and Technology 1996,34(9);189-196
    [10]邹联沛,王宝贞,范延臻,等.SRT对膜生物反应器出水水质的影响研究.中国给水排水,2000,16(7);16-18
    [11]Chang I S,Le Clech P,Jefferson B,et al.Membrane fouling in membrane bioreactors for wastewater treatment.Journal of Environmental Engineering-Asce 2002,128(11);1018-1029
    [12]Huang X,Gui P and Qian Y.Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor.Process Biochemistry 2001,36(10);1001-1006
    [13]Visvanathan C,Yang B S,Muttamara S,et al.Application of air backflushing technique in membrane bioreactor.Water Science and Technology 1997,36(12);259-266
    [14]魏春海.一体式膜-生物反应器水动力学与在线清洗的膜污染控制.清华大学博士学位论文,2006
    [15]邹联沛,王宝贞,张悍民.膜生物反应器中膜的堵塞与清洗的机理研究.给水排水,2000,26(9);73-75
    [16]Wisniewsk C,Grasmick A.Floc size distribution in a membrane bioreactor and consequences for membrane fouling.Colloids and surfaces.1998,138;403-411.
    [17]Zhang C Y,Zhang Y Q,Yuan L M et al.Characteristic of Membrane Fouling in an Anaerobic-(Anoxic/Oxic)~n -MBR Process.Journal of China University of Mining and Technology,2008.(in press)
    [18]黄霞,莫罹.MBR在净水工艺中的膜污染特征及清洗.中国给水排水,2003,19(5);8-12
    [19]张传义,毛庆泉.膜生物反应器(MBR)—污水处理与回用技术的研究与应用[M].徐州;中国矿业大学出版社,2006
    [1]Grady C P L and Lim H C.Biological wastewater treatment theory and applications[M].New York;Marcel Dekker Inc.1980
    [2]van Veldhuizen H M,van Loosdrecht M C M and Heijnen J J.Modeling biological phosphate and nitrogen removal in a full scale activated sludge process.Wat Res,1999,33(16);3459-3468
    [3]豆俊峰.螺旋升流式反应器处理城市污水的试验研究.重庆大学博士学位论文,2004
    [4]Henze M.Grady CPL,Gujer W,et al.Activated sludge model No.1[M].IAWPRC,London,1987
    [5]Meganck M,Malnou D,Le Flohic P,et al.The importance of the acidogenic micreflora in biological phosphorus removal.Wat Sci Tech,1985,17;199-212
    [6]Kuba T,Murnleitner E,van Loosdrecht M C M,et al.A metabolic model for biological phosphorus removal by denitrifying organisms.Biotech.Bioeng.1996,52(6);685-695
    [7]Ramadori R,Rozzi A and Tandoi V.An automated system for monitoring the kinetics of biological oxidation of ammonia.Wat Res,1980,14;1555-1557
    [8]张亚雷,李咏梅译.活性污泥数学模型[M].上海;同济大学出版社,2002
    [9]Murnleitner E,Kuba T,van Loosdrecht M C M,et al.An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.Biotechnol Bioeng.1997,54(5);434-450
    [10]Smolders G J F,van der Meij J,van Loosdrecht M C M,et al.Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process.Biotech.Bioeng.,1994,44;837-848
    [11]Filipe C D M and Daigger G T.Development of a revised metabolic model for the growth of phosphorus accumulating organisms.Wat Env Res,1998,70(1);67-79
    [12]Kuba T,Smolders G J F,van Loosdrecht M C M,et al.Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor.Wat Sci Tech,1993,27;241-252
    [13]Kerrn-Jespersen J P and Henze M.Biological phosphorus uptake under anoxic and aerobic conditions.Wat Res,1993,27;617-624
    [14]Ziglio G Andreottola G,Foladori P,et al.Experimental validation of a single-OUR method for wastewater RBCOD characterization.Wat Sci Tech,2001,43(11);119-126
    [15]Mamais D,Jenkins D and Pitt P.A rapid physical- chemical method for the determination of readily biodegradable soluble COD in municipal wastewater.Wat Res,1992.27(1);195-197
    [16]Witteborg A,van der Last A,Hamming R,et al.Respirometry for determination of the influent Ss-concentration.Wat Sci Tech,1996,33(1);311-323
    [17]黄勇,杨铨大.生物处理动力学参数测定.中国环境科学,1996,16(2);123-127
    [18]周需飞,顾国维.ASMs中易生物降解有机物Ss的物化测定方法.给水排水,2003,29(11);23-26
    [19]Cokgor E U,Sozen S,Orhon D,et al.Respirometric analysis of activated sludge behavior-Ⅰ.assessment of the readily biodegradable substrate.Wat Res,1998,32(2);461-457
    [20]Ekama G A,Dold P L and Marais G v R.Procedures for determining influent COD fractions and the maximun specific growth rate of heterotrophs in activated sludge systems.Wat Sci Tech,1986,18(6);91-114
    [21]Henze M.Characterization of wastewater for modeling of activate sludge process.Wat Sci Tech,1992,25(6);1-15
    [22]Kappeler J and Gujer W.Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modeling.Wat Sci Tech,1992,25(6);125-139
    [23]Orhon D,Karahan O and Sozen S.The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters.Wat Res,1999,33(14);3191-3203
    [24]Wentzel M C,Mbewe A,Lakay M T,et al.Batch test for characterization of carbonaceous materials in municipal wastewater.Water SA,1999,25(3);327-336
    [25]Lie E and Welander T.A method for determination of the readily fermentable organic fraction in municipal wastewater.Wat Res 1997,31(6);1269-1274
    [26]Kong Z,Vanrollighem P,Willems P,et al.Simultaneous determination of inhibition kinetics of carbon oxidation and nitrification with a respirometer.Wat Res,1996,30;825-836
    [27]Grady C P L Jr,Smets B F and Barbeau D S.Variability in kinetic parameter estimates;a review of possible causes and a proposed terminology.Wat Res,1996,30;742-748
    [28]Nowak O and Svardal K.Observation on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds.Wat Sci Tech,1993,28(2);115-123
    [29]Gernaey K,Vanrolleghem P and Verstraete W.On-line estimation of Nitrosomonas kinetics parameters in activated sludge samples using titration in-sensor-experiments.Wat Res,1998,32;71-80
    [30]Goudar C T and Devlin J F.Nonlinear estimation of microbial and enzyme kinetic parameters from progress curve data.Wat Env Res,2001,73(3);260-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700