用户名: 密码: 验证码:
基于厌氧环境的倒置A~2/O工艺生物除磷机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水的生物除磷技术能够经济有效预防水体富营养化等环境问题,有助于回收磷资源,环境意义重大。生物除磷机理在微生物学和生物化学方面的研究进展明显。众多研究者认为:聚磷菌在厌氧条件下通过水解胞内聚磷提供能量,跨膜吸收挥发性脂肪酸(Volatile fatty acids, VFAs)合成聚羟基烷酸酯(Poly-hydroxyalkanoates, PHAs);在好氧条件下氧化利用PHAs产生能量过度吸磷,从而实现污水中磷的脱除。这样的观点认为厌氧环境聚磷菌胞内PHAs合成能力的大小决定着好氧吸磷动力的强弱,因而特别强调厌氧释磷水平对于污水生物除磷性能的重要作用,长期以来一直被用于指导传统污水生物除磷工艺的设计。
     大量试验结果表明,倒置A2/O工艺相对于传统生物脱氮除磷工艺不仅具有更高的脱氮除磷性能,而且具有更好的节能技术优势。倒置A2/O工艺的理论观点中强调厌氧环境对聚磷菌过度吸磷能力的重要影响,不同的研究者对此有不同的观点。为了系统了解厌氧环境因素对倒置A2/O工艺除磷性能的影响,本论文从物质代谢和能量代谢两个角度系统研究了厌氧历时和厌氧程度对倒置A2/O工艺生物除磷过程的规律性影响。基于厌氧历时的倒置A2/O工艺生物除磷机理研究表明:
     1.在一定水质范围内,无论废水中VFAs的比例高低,适当延长厌氧历时,在厌氧有效释磷水平和PHAs合成量没有明显增加的情况下,可有效提高好氧段的吸磷动力、除磷效率、微生物能量代谢的水平及活性。厌氧有效释磷水平高低或者PHAs合成量的多寡,都不是决定聚磷菌过度吸磷能力的充分必要条件。
     2.随着厌氧历时的延长,聚磷菌的过度吸磷能力和微生物能量代谢的水平及活性总是发生同步的增减变化,都会先增加后减小。适当延长厌氧历时能够提高微生物的能量代谢活性及水平,过度延长厌氧历时反而会降低聚磷微生物的能量代谢活性及水平。在其他条件相同的情况下,微生物能量代谢水平及活性的提高总会导致聚磷菌过度吸磷能力相应增强。适当延长厌氧历时能够增强聚磷菌过度吸磷能力的根本原因在于提高了微生物能量代谢的水平及活性。
     3.使聚磷菌的过度吸磷能力最强所需的厌氧历时与废水中VFAs比例有关,废水中VFAs比例高时所需的厌氧历时较长,表明废水中所含的VFAs比例对聚磷菌耐受厌氧历时的能力有一定的影响。对于VFAs/COD=30%左右的生活污水而言,使聚磷菌过度吸磷能力最强、微生物的能量代谢活性及水平达到最高所需的厌氧历时在4h左右。
     基于厌氧程度的倒置A2/O工艺生物除磷机理研究表明:
     1.在一定水质范围内,适度增加厌氧程度可以提高厌氧段的释磷水平和聚磷菌PHAs合成量,还可以提高好氧段的微生物能量代谢的水平及活性,最终导致除磷效率提高。
     2.对于实际生活污水处理厂的污泥而言,在厌氧程度相同的条件下,提高进水中的VFAs比例虽然可以有效的增加厌氧释磷水平和PHAs合成量却不一定能提高除磷效率,表明厌氧释磷水平的高低和PHAs合成量的多寡都不是决定聚磷菌过度吸磷能力的充分必要条件。同样的试验条件下,微生物能量代谢的水平及活性和除磷效率密切相关,微生物能量代谢的水平及活性的提高总是导致除磷效率的增加,表明厌氧程度能够提高聚磷菌过度吸磷能力的根本原因在于微生物能量代谢的水平及活性得到了提高。
Enhanced biological phosphorus removal (EBPR) process can either alleviate eutrophication or recover phosphorus from wastewater. Great effort from the view of microbiology and biochemischry has been made clarify the mechanism of the process. It has been widely accepted that polyphosphate accumulating organisms (PAOs) cleave polyphosphate to produce energy for volatile fatty acids uptake (VFAs) and poly-hydroxyalkanoates (PHAs) synthesis during anaerobic pHase and use the PHAs as energy source to luxurily uptake pHospHate during the subsequent aerobic phase. That means the more phosphate released during anerobic phase the more phosphate can be uptaken during aerobic phase. By far, most wastewater treatment plants have been designed according to this theory.
     The configuration of reversed A2/O process has achieved better nutrient removal performance than traditional A/O process in many cases and it has been found to be energy saving. Those who had proposed the reversed A2/O process suggest that "the foundmental force that drive the PAOs to uptake phosphate luxurily is related to the anerobic hydraulic retention time and anaerobic degree of anerobic zones. To some extent, longer anerobic hydraulic retention time and deeper anaerobic degree lead to better motivation for phosphate uptake".
     In order to understand how the anaerobic environment affec the PAOs'ability to uptake phosphate, we studied the regular effects of anaerobic duration and anaerobic degree on the mataerial metabolism and energy metabolism of micorbes that perform phaosphorus uptake.
     When it coming to the effect of anerobic duration on biological phosphorus removal, we get three conclusions as follows:
     No matter how much VFAs the wastewater contains, proper longer anaerobic duration can always increase the PAOs' phosphorus uptake motivation and removal efficiency, microbes' energy level and activity. More released phosphorus and synthesized PHAs can not always lead to PAOs' higher phosphorus removal ability.
     With the extention of anaerobic duration, PAOs' motivation for phosphorus uptake always goes up and down simoutaneously with the microbes' activity and energy level. When the other conditions remain unchanged, microbes' higher activity and energy level almost always led to PAOs' stronger motivation for phosphorus uptake. It is the microbes' higher activity and energy level caused by proper longer anaerobic duration that led to PAOs' stronger motivation for phosphorus uptake.
     The anaerobic duration the the microbes can endure should be limited in a proper range. Proper longer anaerobic duration can increase microbes' activity and energy level but excessive longer anaerobic duration can impair microbes' activity and energy level.
     How long anaerobic duration can cause the PAOs' to exhibit the strongest motivation for phosphorus uptake depends on how much VFAs the wastewater contains which affect the PAOs, ability to endure anaerobic duration. As for domestic sewage, the anaerobic duration of4h can make the PAOs to show the best motivation for phosphorus uptake, energy level and activity.
     As far as the effect of anaerobic degree is concerned, we have three conclusions.
     No matter synthetic wastewater or domestic wastewater was used and no matter how much VFAs the wastewater contains, with a certain anaerobic duration, deeper anaerobic degree can always increase the released phosphorus and synthesized PHAs during anaerobic stage, the microbes' energy level and activity and finally PAOs' phosphorus uptake motivation and removal efficiency.
     When the sludge taken from wastewater treatment plants which is used to treat domestic sewage is used, higher VFAs content of the synthetic wastewater can increase the released phosphorus and synthesized PHAs during anaerobic stage, but can not correspondingly increase the phosphorus removal efficiency. That means more released phosphorus and synthesized PHAs can not always lead to PAOs'higher phosphorus removal ability.
     When the sludge taken from wastewater treatment plants which is used to treat domestic sewage is used, no matter how much VFAs the synthetic wastewater contains, microbes' energy level and activity are always closely related to PAOs phosphorus removal ability, microbes' higher energy level and activity usually lead to better phosphorus removal efficiency. It is the microbes' higher energy level and activity caused by deeper anaerobic degree that makes the PAOs to uptake phosphorus more efficiently.
引文
[1]中华人民共和国环境保护部.2011年中国环境状况公报[R].北京,2012.
    [2]Rittmann B E, Mayer B, Westerhoff P, et al. Capturing the lost phosphorus[J]. Chemosphere.2011,84(6):846-853.
    [3]王海军,王洪铸.富营养化治理应放宽控氮、集中控磷[J].自然科学进展.2009(06):599-604.
    [4]Janssen P M J, Meinema K, van der Roest H F. Biological Phosphorus Removal Manual for Design and Operation[M]. Beijing:China Architecture & Building Press, 2005.
    [5]Mino T, van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Water Research.1998,32(11): 3193-3207.
    [6]Fuhs G W, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microbial Ecology.1975,2(2): 119-138.
    [7]Jenkins D, Tandoi V. The applied microbiology of enhanced biological phosphate removal accomplishment and needs[J]. Water Research.1991,25:1471-1478.
    [8]Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus removal activated sludge system[J]. Water Research.1996,30(4):769-780.
    [9]Seviour R J, Mino T, Onuki M. The microbiology of biological phosphorus removal in activated sludge system[J]. FEMS MICROBIOLOGY REVIEWS.2003, 27(1):99-127.
    [10]Wagner M, Erhart R, Manz W, et al. Developement of an ribsomal-RNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in-situ monitoring in activated sludge[J]. Appllied Environment and Microbiology.1994,60(3): 792-800.
    [11]Nakamura K, Hiraishi A, Yoshimi Y, et al. Microlunatus phosphovorus gen-nov, sp-nov, a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge[J]. International journal of systematic bacteriology.1995,45(1):17-22.
    [12]Santos M M, Lemos P C, Reis M A M, et al. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus[J]. Appllied Environment and Microbiology.1999,65(9):3920-3928.
    [13]Stante L, Cellamare C M, Malaspina F, et al. Biological phosphorus removal by pure culture of Lampropedia spp[J]. Water Research.1997,31(6):1317-1324.
    [14]Maszenan A M, Seviour R J, Patel B K C, et al. Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp, nov and Tetrasphaera australiensis sp nov[J]. International Journal of Systematic Evolutionary Microbiology.2000(50):593-603.
    [15]Saunders A M. The physiology of microorganisms in enhanced biological phosphorus removal[D]. St. Lucia:University of Queensland,2005.
    [16]Lu H, Oehmen A, Virdis B, et al. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphatis through alternating carbon sources[J]. Water Research.2006, 40(20):3838-3848.
    [17]Bond P L, Hugenholtz P, Keller J, et al. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing bactch reactors[J]. Applied and Environmental Microbiology.1995,61(5):1910-1916.
    [18]Bond P L, Erhart R, Wagner M, et al. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems[J]. Applied and Environmental Microbiology.1999,65(9):4077-4084.
    [19]Hesselmann R P X, Werlen C, Hahn D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic and Applied Microbiology.1999,22(3):454-465.
    [20]Crocetti G R, Hugenholtz P, Keller J, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J]. Appllied Environment and Microbiology.2000,66(3): 1175-1182.
    [21]Liu W T, Nielsen A T, Wu J H, et al. In situ identification of polyphosphate-and polyhydroxyalkanoate-accumulating traits for microbial population in a biological phosphorus removal process[J]. Environment Microbiology.2001,3(2):110-122.
    [22]Zilles J L, Peccia J, Noguera D R, et al. Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants[J]. Appllied Environment and Microbiology.2002,68(6):2763-2769.
    [23]Saunders A M, Oehmen A, Blackall L L, et al. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants[J]. Water Science and Technology.2003,47(11):37-43.
    [24]Kong Y, Nielsen J L, Nielsen P H. Microautoradiographic Study of Rhodocyclus-Related Polyphosphate-Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants[J]. American Society for Microbiolgy.2004, 70(9):5383-5390.
    [25]Gu A Z, Saunders A M, Neethling J B, et al. Investigation of PAOs and GAOs and their effects on EBPR performance at full-scale wastewater treatment plants in US[Z]. Washington, DC, USA:20051985-1998.
    [26]He S, Gu A Z, Mcmahon K D. The role of Rhodocyclus-like organisms in biological phosphorus removal:factors influencing population structure and acivity.[Z]. Washington, DC, USA:20051999-2011.
    [27]Wong M T, Mino T, Seviour R J, et al. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan[J]. Water Research.2005,39(13):2901-2914.
    [28]Kawaharasaki M, Tanaka H, Kanagawa T, et al. In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4',6-diamidino-2-phenylingdol (DAPI) at a polyphosphate-probing concentration[J]. Water Research.1999,33(1):257-265.
    [29]Lee N, Jansen J L, Aspegren H, et al. Population dynamics in wastewater treatment plants with enhanced biological phosphorus removal operated with and without nitrogen removal[J]. Water Science and Technology.2002,46(1-2):163-170.
    [30]Kong Y, Nielsen J L, Nielsen P H. Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants[J]. American Society for Microbiology.2005, 71(7):4076-4085.
    [31]Beer M, Stratton H M, Griffiths P C, et al. Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal system in Australia?[J]. Journal of Appllied Microbiology.2006,100(2): 233-243.
    [32]Nielsen A T, Liu W T, Filipe C, et al. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor[J]. Appllied Environment and Microbiology.1999,65(3):1251-1258.
    [33]Crocetti G R, Banfield J F, Keller J, et al. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes[J]. Microbiology. 2002(148):3353-3364.
    [34]Cech J S, Hartman P. Glucose induced breakdown of enhanced biological phosphate removal[J]. Environment Technology.1990(11):651-656.
    [35]Cech J S, Hartman P. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological Phosphate removal systems[J]. Water Research.1993,27(7):1219-1225.
    [36]Liu W T, Nakamura K, Matsuo T. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with minimized polyphosphate content[J]. Jounal of Fermentation Bioengineering.1994,77(5):535-540.
    [37]Satoh H, Mino T, Matsuo T. Deterioration of enhanced biological phosphorus removal by the domination of microorganisms without polyphosphate accumulation[J], Water Science and Technology.1994,30(6):203-211.
    [38]Wong M T, Tan F M, Ng W J, et al. Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes[J]. Microbiology.2004(150):3741-3748.
    [39]Fukase T, Shibata M, Miyaji Y. The role of the anaerobic stage on biological phoshorus removal[J]. Water Science and Technology.1985(17):69-80.
    [40]Tsai C S, Liu W T. Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems[J]. Water Science and Technology.2002,46(1-2):179-184.
    [41]Mino T, Liu W T, Kurisu F, et al. Modeling glycogen-storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J]. Water Science and Technology.1995,31(2):25-34.
    [42]Martin H G, Ivanova N, Kunin V, et al. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities[J]. Nature Biotechnology. 2006,24(10):1263-1269.
    [43]Mcmahon K D, Dojka M A, Pace N R, et al. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal[J]. Appllied Environment and Microbiology.2002,68(10):4971-4978.
    [44]Wilmes P, Bond P L. The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms[J]. Environment Microbiology.2004,6(9):911-920.
    [45]Wilmes P, Bond P L. Towards exposure of elusive metabolic mixed-culture processes:the application of metaprogeomic analyses to activated sludge[J]. Water Science and Technology.2006,54(1):217-226.
    [46]Comeau Y, Hall K. J., Hancock R. E. W, et al. Biochemical model for enhanced biological phosphorus removal.[J]. Water Research.1986(20):1511-1521.
    [47]Wentzel M C, Lotter L H, Loewenthal R E, et al. Metabolic behavior or Acinetobacter spp. in enhanced biological phosphate removal-a biochemical model. [J]. Water Science Abstract.1986,12(4):209-244.
    [48]Smolders G J F, Van Loosdrecht M C M, Heijnen J J. Model of the anaerobic metabolism of the biological phosphorus removal process:stoichiometry and pH influence[J]. Biotechnology and Bioengineering.1994(43):461-470.
    [49]Smolders G J F, Van Loosdrecht M C M, Heijnen J J. pH:key factor in the biological phosphorus removal process[J]. Water Science and Technology.1994,29(7): 71-74.
    [50]Lopez-Vazquez C M, Oehmen A, Hooijmans C M, et al. Modeling the PAO-GAO competition:Effects of carbon source, pH and temperature[J]. Water Research.2009, 43(2):450-462.
    [51]Mino T, Y T, Matsuo T. Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process.[C]. Oxford:Pergamon Press,1987.
    [52]Arun V, Mino T, Matsuo T. Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal system[J]. Water Research. 1988,22(5):565-570.
    [53]Kuba T, Murnleitner E, van Loosdrecht M C M, et al. A Metabolic Model for Biological Phosphorus Removal by Denitrifying Organisms[J]. Biotechnology and Bioengineering.1996,52(6):685-695.
    [54]Zeng R J, van Loosdrecht M C M, Yuan Z, et al. Metabolic Model for Glycogen-Accumulating Organisms in Anaerobic/Aerobic Activated Sludge Systems[J]. Biotechnology and Bioengineering.2003,81(1):92-105.
    [55]Mino T, Matsuo T. Principal mechanism of biological phosphate removal[J]. Japan Journal of Water Pollution Research.1984(7):605-609.
    [56]Satoh H, Mino T, Atsuo T M. Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbonhydrates under anaerobic conditions in the biological excess phosphate removal process[J]. Water Science and Technology.1992,26(5-6):933-942.
    [57]Satoh H, Ramey W D, Koch F A, et al. Anaerobic substrate uptake by the ennancea biological phosphorus removal activated sludge treating real sewage[J]. Water Science and Technology.1996,34(1):8-15.
    [58]Bordacs K, Chiesa C S. Carbon flow patterns in enhanced biological phosphorus accumulating activated sludge culture[J]. Water Science and Technology.1989(21): 387-396.
    [59]Pereira H, Lemos P C, Reis M A M, et al. Model for carbon metabolism in biological phosphorus removal processes based on in vivo 13C-NMR labelling experiments.[J]. Water Research.1996,30(9):2128-2138.
    [60]Liu W T, Mino T, Matsuo T, et al. Biological phosphorus removal processes-effect of pH on anaerobic substrate metabolism[J]. Water Science and Technology.1996,34(1): 24-31.
    [61]Smolders G J F, van der Meij J, van Loosdrecht M C M, et al. A structured metabolic model for the anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process[J]. Biotechnology And Bioengineering.1995(47): 1995.
    [62]Lu H, Keller J, Yuan Z. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions[J]. Water Research.2007(41):4646-4656.
    [63]Smolders G J F, van der Meij J, van Loosdrecht M C M, et al. Stoichiometric model of the aerobic metabolism of the biologicla phosphorus removal process[J]. Biotechnology and Bioengineering.1994(44):1994.
    [64]Van Loosdrecht M C M, Heijnen J J. Importance of bacterial storage polymers in bioprocesses[J]. Water Science and Technology.1997,35(1):1997.
    [65]Vlekke G J F M, Comeau Y, Oldham W K. Biological phosphate removal from wastewater with oxygen or nitrate in sequencing bacth reacors[J]. Environment Technology Letters.1988(9):791-796.
    [66]Kerrn-Jespersen J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Water Research.1993(27):617-624.
    [67]Kuba T, Smolders G J F, Van Loosdrecht M C M, et al. Biological phosphorus removal from waste water by anaerobic anoxic sequencing batch reactor[J]. Water Science and Technology.1993,27(5-6):241-252.
    [68]Kuba T, Van Loosdrecht M C M, Brandse F, et al. Occurence of denitrifying phosphorus removing bacteria in modified UCT-type waste water treatment plants[J]. Journal of Environment and Enggineering.1997,5(21):247-267.
    [69]Bortone G, Malaspina F, Stante L, et al. Biological nitrogen and phosphorus removal in an anaerobic/anoxic sequencing batch reacor with separated biofilm nitrification[J]. Water Science and Technology.1994,30(6):303-313.
    [70]Kuba T, Wachtmeister A, Van Loosdrecht M C M, et al. Effect of nitrate on phosphorus release in biological phosphorus removal system[J]. Water Science and Technology.1994,30(6):263-269.
    [71]Ahn J, Daidou T, Tsuneda S, et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay[J]. Water Research.2002,36(2):403-412.
    [72]Zeng R J, Saunders A M, Yuan Z, et al. Identification and Comparison of Aerobic and Denitrifying Polyphosphate-Accumulating Organisms [J]. Biotechnogy and Bioengineering.2003,83(2):140-148.
    [73]Mumleitner E, T Kuba M C M V, Heijnen J J. An Integrated Metabolic Model for the Aerobic and Denitrifying Biological Phosphorus Removal[J]. Biotechnology and Bioengineering.1997,54(5):434-450.
    [74]Tchobanoglous G, Burton F L, Stensel H D. Wastewater Engineering[M]. Newyork: Metcalf & Eddy Inc., McGraw-Hill Science Engineering,2002.
    [75]Henze M, Harremoes P, La Jansen J C, et al. Wastewater Treatment:Biological and Chemical Processes[M]. Berlin:Springer,1997.
    [76]Bortone G, Saltarelli R, Alonso V, et al. Biological anoxic phosphorus removal-the dephanox process[J]. Water Science and Technology.1996,34(1-2):119-128.
    [77]张波,高廷耀.倒置A^2/O工艺的原理与特点研究[J].中国给水排水.2000,16(7):11-15.
    [78]Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research.1996,30(7):1702-1710.
    [79]冷国华.城市污水脱氮除磷机理及微生物特性研究[D].青岛:青岛理工大学,2006.
    [80]黄丽珠.倒置A20工艺与常规A20工艺脱氮除磷机理及微生物代谢活性对比研究[D].青岛:青岛理工大学,2010.
    [81]曲艳慧.基于不同碳源类型条件下倒置A2O工艺与常规A20工艺脱氮除磷机理及微生物代谢活性对比研究[D].青岛:青岛理工大学,2011.
    [82]张波.生物硝化-反硝化工艺氮的脱除途径与脱出率[J].环境工程.1998,16(5):10-12.
    [83]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水.1997,13(3):7-10.
    [84]张波,苏玉民倒置A2/O工艺的氮磷脱除功能[J].环境工程.1999,17(2):7-12.
    [85]王振江,武鹏崑,毕学军.倒置A2/O生物脱氮除磷工艺的生产性实验[J].中国给水排水.2006,22(19):36-38.
    [86]刘长青,张峰,毕学军.倒置A2/O与改良A2/O工艺生产性实验比较[J].水处理技术.2008,34(5):53-56.
    [87]刘长青,毕学军,张峰,等.低温对生物脱氮除磷系统影响的试验研究[J].水处理技术.2006,32(8):18-21.
    [88]毕学军,张波,丁曰堂,等.长期低负荷运行对污水生物除磷的影响[J].中国给水排水.2002,18(7):83-85.
    [89]Kang X S, Liu C Q, Zhang B, et al. Application of reversed A2/O process on removing nitrogen and phosphorus from municipal wastewater in China[J]. Water Science and Technology.2011,63(10):2138-2142.
    [90]毕学军,高廷耀.缺氧/厌氧/好氧工艺的脱氮除磷研究[J].上海环境科学.1999, 18(1):19-21.
    [91]张波.生物脱氮除磷工艺系统的几个重要问题[J].青岛建筑工程学院学报.1998,19(1):1-6.
    [92]毕学军,高廷耀.生物脱氮除磷工艺好氧区硝化功能的强化试验[J].上海环境科学.2000,19(4):183-186.
    [93]黄理辉,张波,毕学军,等.倒置A2/O工艺的生产性试验研究[J].中国给水排水.2004,20(6):12-15.
    [94]陈洪斌,唐贤春,何群彪,等.倒置AAO工艺聚磷微生物的吸磷行为[J].中国环境科学.2007,27(1):49-53.
    [95]朱五星,汪诚文,施汉昌.倒置AAO工艺中物料及能量流向的研究[J].环境工程学报.2007,1(3):50-54.
    [96]勒德志.倒置A20工艺生物脱氮除磷中试及机理研究[D].青岛:青岛理工大学,2008.
    [97]Chen Y, Liu Y, Zhou Q, et al. Enhanced phosphorus biological removal from wastewater-effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture[J]. Biochemical Engineering Journal.2005,27(1):24-32.
    [98]Chen Y, Chen Y, Xu Q, et al. Comparison between acclimated and unacclimated biomass affecting anaerobic-aerobic transformations in the biological removal of phosphorus[J]. Process Biochemistry.2005,40(2):723-732.
    [99]Randall A A, Liu Y. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal[J]. Water Research.2002,36(14):3473-3478.
    [100]Oehmen A, Lemos P C, Carvalho G, et al. Advances in enhanced biological phosphorus removal:From micro to macro scale[J]. Water research.2007,41(11): 2271-2300.
    [101]张波,高廷耀.生物脱氮除磷工艺短时厌氧环境的生物特性[J].青岛建筑工程学院学报.1997,18(4):27-32.
    [102]Wang Y, Geng J, Ren Z, et al. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J]. Bioresource Technology.2010,102(10): 5674-5684.
    [103]Wu G, Rodgers M. Dynamics and function of intracellular carbohydrate in activated sludge performing enhanced biological phosphorus removal[J]. Biochemical Engineering Journal.2010,49:271-276.
    [104]Lopez C, Pons M N, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal [J]. Water research.2006,40(14):1519-1530.
    [105]Liu C, Qu Y, Chang G, et al. BIOLOGICAL NITROGEN AND PHOSPHATE REMOVAL UNDER HIGH AGITATION LEVEL IN A NON-AERATION TANK
    DURING REVERSED A(2)/O PROCESS[J]. Fresenius Environmental Bulletin.2012, 21(4):880-884.
    [106]Zeng R J, Yuan Z, Keller J. Model-Based Analysis of Anaerobic Acetate Uptake by a Mixed Culture of Polyphosphate-Accumulating and Glycogen-Accumulating Organisms[J]. Biotechnology and Bioengineering.2003,83(3):293-302.
    [107]Zeng W, Li L, Yang Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater[J]. Enzyme and Microbial Technology.2011,48(2): 134-142.
    [108]Kampschreur M J, Temmink H, Kleerebezem R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research.2009,43(17):4093-4103.
    [109]Butler M D, Wang Y Y, Cartmell E, et al. Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge[J]. Water Research.2009, 43(5):1265-1272.
    [110]Foley J, de Haas D, Yuan Z, et al. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J]. Water Research.2009,44(3):831-844.
    [111]任雪锋.复合铁酶促活性污泥强化城镇污水脱氮除磷技术研究[D].青岛理工大学,2010.
    [112]张鹏.城市污水脱氮除磷复合铁酶促活性污泥工艺优化及功能强化试验研究[D].青岛理工大学,2010.
    [113]高岩.城市污水脱氮除磷系统DHA与ATP监测及其应用实验研究[D].华东师范大学,2009.
    [114]马波.基于ATP的活性污泥系统关键参数优化研究[D].重庆大学,2008.
    [115]Pijuan M, Werner U, Yuan Z. Effect of long term anaerobic and intermintent anaerobic/aerobic starvation on aerobic granules[J]. Water research.2009,43(17): 3622-3632.
    [116]Liu C, Lin Y, Bai F. Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation[J]. Journal Of Biotechnology.2011(153):42-47.
    [117]周洪波,Cord-Ruwisch Ralf,陈坚,等.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J].中国沼气.2000(04):20-23.
    [118]蔡蒙蒙,蔡宏,胡文峰,等.不同ORP下活性污泥合成聚羟基烷酸酯的研究[J].中国给水排水.2008,24(11):8-11.
    [119]周威,郑璞,倪烨,等.氧化还原电位对Actinobacillus succinogenes厌氧发酵产生丁二酸的影响[J].生物加工工.程.2008,6(6):12-16.
    [120]Peng J, Wang B, Song Y, et al. Adsorption and release of phosphorus in the surface sediment of a wastewater stabilization pond[J]. Ecological Engineering.2007,31(2): 92-97.
    [121]黄志华,张延平,杜晨宇,等.利用氧化还原电位调控基因工程菌株Klebsiellapneumoniae F-1合成1,3-丙二醇[J].过程工程学报.2007,7(5):1014-1017.
    [122]唐玉朝,伍昌年.改良氧化沟活性污泥ORP的调控及对磷吸收/释放的影响[J].工业水处理.2012,32(3):19-22.
    [123]孙志浩.活性污泥法中应用氧化还原电位(ORP)控制和管理指标的简介[J].西南给排水.1997(5):13-15.
    [124]高景峰,彭永臻,王淑莹.DO和ORP与SBR法硝化反硝化的相关关系[J].给水排水.2002,28(9):40-43.
    [125]唐旭光,王淑莹,张婧倩.VFAs. TOC及COD作为生物除磷能力指标的探讨 [J].环境工程学报.2012(01):41-45.
    [126]魏民,郑国臣,李建政,等.表征水体中生物活性及脱氢酶检测方法研究[J].东北水利水电.2012(8):43-46.
    [127]朱小彪,许春华,高宝玉,等.曝气生物滤池生物量和生物活性的试验研究[J].环境科学学报.2007,27(7):1135-1140.
    [128]尹军,谭学军,任南琪.用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J].环境科学.2005,26(1):56-62.
    [129]南亚萍,袁林江,何志仙,等.生物除磷过程中活性污泥聚磷酶活性的变化[J].中国给水排水.2012(09):26-29.
    [130]唐旭光,王淑莹,袁志国,等.UniFed SBR工艺对生活污水除磷的研究[J].北京工业大学学报.2009(01):119-124.
    [131]上海市政工程设计研究总院.室外排水设计规范[S].新华书店北京发行所,上海市建设和交通委员会,2006.
    [132]章北平,颜岗,毛敏,等.CIBR工艺处理低碳磷比城市污水的除磷研究[J].中国给水排水.2008,24(9):30-37.
    [133]Zhang C, Chen Y, Randall A A, et al. Anaerobic metabolic models for phosphorus-and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources[J]. Water Research.2008,42(14):3745-3756.
    [134]Petersen B, Temmink H, Henze M, et al. Phosphate uptake kinetics in relation to PHB under aerobic conditions[J]. Water Research.1998,32(1):91-100.
    [135]Lucas A, Rodriguez L, Villasenor J, et al. Biodegradation kinetics of stored wastewater substrate by a mixed microbial culture[J]. Biochemical Engineering Journal. 2005,26:191-197.
    [136]Beun J J, Dircks K, van Loosdrecht M C M, et al. Poly-beta-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures[J]. Water Research.2002,36: 1167-1180.
    [137]尹军.消化污泥脱氢酶活性检测的若干问题[J].中国给水排水.2000,16(10):47-49.
    [138]胡子斌.TTC-脱氢酶活性常温萃取测定法及应用[J].工业水处理.2001,12(10):29-31.
    [139]安立超,钮红,衣海英.测定活性污泥脱氢酶活性的研究[J].污染防治技术.1996,3(9):186-188.
    [140]陈皓,陈玲,黄爱群.用INT2表征厌氧颗粒污泥ETS活性的方法及应用研究[C].中国上海:2005.
    [141]Zheng X, Wu R, Chen Y. Effects of ZnO Nanoparticles on Wastewater Biological Nitrogen and Phosphorus Removal[J]. Environmental Science & Technology.2011, 45(7):2826-2832.
    [142]Archibald F, Methot M, Young F, et al. A simple system to rapidly monitor activated sludge health and performance[J]. Water Research.2001,35(10):2543-2553.
    [143]Dalzell D J B, Christofi N. An ATP luminescence method for direct toxicity assessment of pollutants impacting on the activated sewage sludge process[J]. Water Research.2002,36:1493-1502.
    [144]Dai Y, Zhiguo Y, Wang X, et al. Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources[J]. Water Research.2007,41:1885-1896.
    [145]贺电,王峰.活性污泥活性的检测方法简述[J].科技信息.2010(01):381-382.
    [146]Zanetti L, Frison N, Nota E, et al. Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review[J]. Desalination.2012, 286(1):1-7.
    [147]生物脱氮影响因素及对污水厂升级改造工程的影响探讨[J].中国科技信息.2010(20).
    [148]刘勇,刘晓.ASBR-SBR工艺在废水处理中的探讨[J].天津建设科技.2012(02):64-65.
    [149]郭海燕,郭祯,柳志刚,等.不同曝气强度下SBMBBR和SBR脱氮除磷性能对比研究[J].环境科学学报.2012(03):568-576.
    [150]王峰.城市污水处理过程硝化菌群功能与群落特征研究[D].同济大学,2006.
    [151]余国忠,张大丽,常田聪,等.硝化颗粒污泥的成长特性[J].信阳帅范学阮字报(自然科学版).2006(04):434-437.
    [152]全晓泉.有硝化功能活性污泥系统能量代谢动力学方程应用研究[D].重庆大学,2006.
    [153]尹军,王建辉,解艳萃,等.SBR反应器中有机物去除与硝化反硝化过程INT-ETS活性变化[J].环境科学.2007,28(10):2255-2258.
    [154]崔卫华,宋英豪,倪文,等.SBR系统中活性污泥内源呼吸速率的研究[J].环境工程学报.2007(04):1 23-126.
    [155]陈洁,熊贞晟.红斑票页体虫对污泥内源呼吸耗氧速率的影响[J].贵州环保科技.2004(03):27-31.
    [156]皋德祥,邓欢欢,张明华,等.微生物胞外聚合物的研究进展[J].温州医学院学报.2012(03):297-301.
    [157]吴振宇,刘峙嵘,陶琴琴,等.有机底物对活性污泥胞外聚合物的影响[J].湿法冶金.2012(04):216-219.
    [158]罗宁.双泥生物反硝化吸磷脱氮系统工艺的试验研究[D].重庆大学,2003.
    [159]任健,李军,苏雷,等.酸化液对厌氧释磷好氧吸磷速率的影响研究[J].环境工程.2011(S1):103-107.
    [160]严媛媛,孙力平,冯雷雨.SBR法处理还原段DSD酸废水脱氢酶活性的研究[J].环境科学与技术.2007,30(3):87-89.
    [161]尹军,付瑶,王翠兰,等.活性污泥的基质代谢脱氢酶活性测定[J].中国给水排水.2002(09):50-52.
    [162]任雪峰,毕学军,程丽华,等.复合铁酶促活性污泥强化生物脱氮除磷研究[J].中国给水排水.2011,27(3):24-28.
    [163]刘长青,张鹏,毕学军,等.复合铁酶促活性污泥和普通活性污泥系统低温启动对比研究[J].水处理技术.2011,37(7):78-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700