用户名: 密码: 验证码:
云南高黎贡山国家自然保护区土壤微生物多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤微生物是生态系统的重要成员,它参与生态系统的物质循环和能量流动,是土壤中最活跃的部分,它们在土壤中的数量与分布一定程度上反映出土壤肥力状况与植物营养的密切关系,同时也反映土壤、植被和气候等综合因素对土壤微生物的影响。因此土壤微生物多样性的保护和研究对系统生态保护具有重要意义。高黎贡山国家级自然保护区位于云南西部中缅边境地区,海拔760-3100m,具有高山、亚高山生物气候垂直带谱自然景观和异常丰富的生物多样性,是中国生物多样性保护具有全球意义的关键区域,被喻为“世界物种基因库”。研究高黎贡山土壤微生物群落结构与功能,揭示其生态分布和区域特异性,为评价高黎贡山地区的生态环境、了解全球变化对高黎贡山地区土壤微生物的影响以及高黎贡山自然保护区保护策略的制定提供科学依据。
     本研究采用传统分离培养方法对高黎贡山生物多样性固定监测样地的土壤中主要微生物类群的数量进行研究,探讨其与土壤酶和生态因子的相关性;采用木端限制性酶切片段长度多态性分析(T—RFLP)和基因芯片(GeoChipⅡ)等分子生物学技术对土壤细菌群落、氮循环相关基因(nifH和nosZ)、降解纤维素真菌及11类功能基因的多样性及分布特点进行研究。分离培养了土壤中高效降解纤维素真菌并对其进行分子鉴定。同时探讨了不同植被和海拔高度土壤微生物群落结构与功能的多样性及其主要影响因子。其主要研究结果如下:
     (1)对高黎贡山海拔960—2 878m的8个生物多样性固定监测样地的土壤微生物进行培养分析,所有样地中细菌数>放线菌数>真菌数,细菌、真菌、放线菌数量随海拔不同而变化,各样地间差异极显著(P<0.05),最高点均出现在海拔2 000m左右的森林样地;好气性纤维素菌和嫌气性纤维素分解菌在低海拔的灌丛和咖啡林数量丰富,而高海拔森林样地中数量相对较低,好气性自生固氮菌和嫌气性自生固氮菌数量在玉米地最高,咖啡林最低,纤维素菌和固氮菌数量在样地间均差异显著(P<0.05)。土壤微生物量碳在玉米地、咖啡林和海拔2 000m的森林样地中偏高且所有样地间差异极显著(P<0.01)。
     土壤微生物随海拔高度变化且与土壤酶及生态因子呈现不同程度的相关性。细菌数、总菌数、微生物量碳分别与脲酶和淀粉酶活显著相关(P<0.05);真菌数与淀粉酶活显著相关(P<0.05);嫌气固氮菌与脲酶、蛋白酶、淀粉酶活都显著相关(P<0.05)。细菌数、微生物总数与土壤有机质含量显著相关(P<0.05),放线菌数与全氮、全磷、全钾、海拔、含水量、pH值及温度显著相关(P<0.05);纤维素菌与温度、海拔、含水量显著相关(P<0.05);好气固氮菌与全磷显著相关(P<0.05),嫌气固氮菌与有机质、全氮、全磷及含水量显著相关(P<0.05);微生物量碳与有机质含量显著相关(P<0.05)。说明影响高黎贡山土壤微生物数量和多样性垂直分布的主要生态因子是土壤酶、温度、有机质、含水量。人为耕作活动和土地利用方式的改变、植被类型等因素对微生物量有重要影响,且这种影响具有综合效应。
     (2)本研究首次采用核糖体DNA基因文库技术与T-RFLP技术相结合,分析高黎贡山8个不同海拔和植被类型的生物多样性固定监测样地中土壤细菌16S rDNA基因多样性。8个样地Msp I酶切共得到289个OTU,Rsa I酶得到216个OTU。基于Msp I酶切指纹图谱:海拔2 000m左右的森林土壤细菌多样性普遍高于其它海拔和植被的样地,样地内细菌多样性与可培养微生物数量显著相关。16S rDNA文库随机测序150个阳性克隆得到132条特异序列,它们分属细菌的7个门,其中酸杆菌门占总鉴定数的57%,为高黎贡山地区土壤细菌的优势菌群。土地利用方式的不同和温度是影响此地区土壤细菌多样性的主要因素。地理距离和植被类型的差异是影响此地区土壤细菌生态分布的主要因素。此外,土壤pH值可能对群落结构起重要作用,而其它生态因子均与土壤细菌群落结构多样性及生态分布有一定相关。
     (3)为了解高黎贡山地区土壤氮循环微生物的群落结构及其差异,利用T-RFLP技术对高黎贡山地区土壤微生物固氮酶基因nifH和反硝酶基因nosZ多样性及生态分布进行研究,研究选取了来自于不同海拔高度、植被类型的8个生物多样性固定监测样地。利用4种限制性内切酶(HaeⅢ、HhaⅠ、#saⅠ和MspⅠ)分别对这两个基因进行T—RFLP分析,两个基因均是用HhaⅠ酶切得到OTU数最多:8个样地共得到63个nifH基因OTU,156个nosZ基因OTU。样地内nifH基因多样性为0.454(样地10)—1.200(样地5),各样地均有3—4个优势菌群,nifH基因多样性与土壤pH值相关性较高,与其它生态因子有不同程度相关,受到土壤耕作制度、植被类型等诸多因素的影响;样地内nosZ基因多样性为0.760(样地10)—1.464(样地13),各样地均有2—4个优势菌群,nosZ基因多样性与温度、海拔、pH值、土壤含水量有较强相关。地理距离和植被类型对nifH和nosZ基因的分布有重要影响。
     (4)采用刚果红平板和PDA平板对研究样地土壤中降解纤维素类真菌进行分离培养,通过液体发酵测定其纤维素酶活差异,筛选相对酶活较高的菌株进行形态学和分子生物学鉴定,共得到35株具有较高纤维素酶活真菌,其96h液体发酵测量CMC酶活力范围在79.6(菌株6)-228.9IU(菌株3)。这些株菌分属15个属,其中4株归属于担子菌类(Basidiomycetes)的3个属,占筛选菌株数的11.4%,31株归属于子囊菌类(Ascomycetes)12个属,占筛选菌株数的88.6%。其中曲霉属(Aspergillus)、青霉属(Penicillium)、葡萄状穗霉属(Sttachybotrys)、毛壳霉属(Chaetomium)的真菌共计20株,占总分离菌株数的57.1%,是高黎贡山土壤中降解纤维素类真菌的优势菌群。其中菌株3被鉴定为扩展青霉,其在酶系和对底物利用都有突出特点,具有开发前景。
     (5)利用功能基因芯片(GeoChipⅡ)检测高黎贡山高黎贡山海拔960—2 878m的6个样地土壤微生物与碳、氮、磷、硫、磷循环、金属抗性,生物降解相关的11类功能基因。6个样地共检出功能基因1 515个及未知基因27个,各类功能基因检出数:ORG>MET>CDEG>NRED>NIT>DSR>methane ox>CFIX>NFIX>methane gen>PER。样地检出功能基因数目及多样性:样地5>样地10>样地7>样地13>样地15>样地8;土壤微生物功能基因多样性受人为干扰,植被类型、海拔、土壤生态因子等多方面因素共同影响,其中人为干扰和植被类型的变化明显改变了土壤微生物功能群。
     重点分析了高黎贡山6个样地土壤微生物与碳、氮循环相关的7类基因:CDEG、CFIX、methane ox、methane gen、NFIX、NIT、NRED。这些基因在各样地检出数、多样性和均匀度均不相同,并且同一类基因在各样地的检出情况也互不相同。碳氮循环基因多样性与土壤有机质、全氮、碳氮比、速效磷和土壤含水量等生态因子有不同程度的相关。不同强度的人为干扰和不同的植被类型,对土壤微生物碳氮循环基因种类与分布有显著差异。
Soil microorganism play integral and often unique roles in global material cycle of carbon, nitrogen,and so on,thus it affects the material balance,the composition of the atmosphere and geochemistry procedure in the global scale.Soil microbial diversity may represent the ability of a soil to cope with perturbations,and has been proposed as an indicator for soil quality. Understanding the structure and composition of microbial communities and their responses to environmental perturbations,such as toxic contamination,climate change,and land use changes, is critical for prediction,maintenance,and restoration of desirable ecosystem functions.Due to the extremely high diversity of environmental samples,microbial detection,characterization,and quantification are great challenges.The development and application of nucleic acid-based techniques have largely eliminated the reliance on cultivation-dependent methods for microbial detection and consequently have greatly advanced characterization of microorganisms in natural habitats.Gaoligongshan national natural reserve located in the southwestern part of Yunnan Province with altitude ranging from 760 to 3 100m.It is one of the key areas for biodiversity protection in the globe and was named "The Genebank of Earth" for its various species.The forest destruction and the global change caused the environmental deterioration in Gaoligongshan national natural reserve.Research on the distribution and regional character of soil microorganisms in this area could help to evaluate environment,understand the influence in global change and offer scientific data for making the protected policy.
     In this study,cultured and uncultured methods combined with advanced molecular technology such as microarray,T-RFLP and sequencing were used to investigate the diversity and community structure of microbe,bacteria,cellulose-decomposing fungi and functional genes. The influences of plant community type,altitude and environment factors were discussed.The key results from these studies are summarized as follows:
     (1) The quantities of soil microbe were studied in different vegetation types and altitudes in Gaoligongshan national natural reserve.The quantities of microbes,the activities of enzymes and the amount of nutrition were examined in 8 soils,which were collected from 8 fixed monitoring sample plots with different habitats and the elevation ranging from 960 to 2 878 meters.The results showed that the quantities of bacteria,actinomyces and fungi varied with elevation.The highest values occurred at the elevation of about 2 000 meters.The quantities of aerobic and anaerobic cellulose-decomposing fungi were plentiful in the scrub and coffee forest with low altitude,while the quantities were relatively few in the plot of primitive forest with high altitude.The quantities of aerobic and anaerobic nitrogen-fixing bacteria were the most in maize plot and the lowest in coffee plot.Therefore,the quantities of cellulose fungi and nitrogen-fixing bacteria were very different in different plots(P<0.05).Microbial biomass carbon in plots of maize,coffee and forest with the altitude of 2000m were quite plentiful,and the differences among all plots were significant(P<0.01).
     The change of soil microorganism with the altitude was relative to the enzyme and ecological factors in the soil.The bacteria quantity,the quantity of total microbe,and the microbial biomass carbon were significantly correlative to urease and amylase respectively(P<0.05);the quantity of fungi was correlative to amylase significantly(P<0.05);the anaerobic nitrogen-fixing bacteria was correlative to urease,protease and amylase significantly(P<0.05).The bacteria quantity and the quantity of total microbe were correlative to the contents of soil organic matters(P<0.05), and the quantity of actinomycetes was correlative to total nitrogen,total phosphorus,total potassium,altitude,water content,pH vale and temperature(P<0.05);cellulose-decomposing fungi was correlative to temperature,altitude and water content(P<0.05);aerobic nitrogen-fixing bacteria was in positive correlation to total phosphorus(P<0.05),and anaerobic nitrogen-fixing bacteria was also in positive correlation to organic matters,total nitrogen,total phosphorus and water content(P<0.05);carbon content was positively correlative to content of organic matters (P<0.05).All results suggested that the major ecological factors influencing on the quantity of soil microorganism and the vertical distribution of diversity were soil enzyme,temperature,soil organic matters and water content.The human cultivating activities,the change of soil utilization and the vegetation type also influenced the quantity of microorganism with the comprehensive effects.
     (2) Genetic diversity of 16s rDNA of soil bacteria in 8 plots with different altitudes and vegetations in Gaoligongshan national natural reserve was analyzed by the combination technology of ribosome DNA gene library and T-RFLP.There were 289 OTU restricted by MspⅠ,and 216 OTU by Rsa I in 8 plots.Resulting from the fingerprint map of MspⅠ,the diversity of soil bacteria with the altitude about 2000m was more than other plots with different altitudes and vegetations generally,and the bacteria diversity of plot was significantly correlative to the quantity of cultured microorganism.By random sequencing of 16s rDNA library,there were 132 special sequences from 150 positive clones,which belonged to seven phylums.Phylum Acidobacteria accounted for the 57%of total sequenced,which was the dominant bacteria in Gaoligongshan national natural reserve.The different land use and temperature were the major factors influencing on the diversity of soil bacteria.The geological distance and difference on vegetation type were the factors influencing on the ecological distribution of soil bacteria. Moreover,pH value of soil might play important role on the community structure,while other ecological factors were correlative to the diversity of community structure of soil bacteria and ecological distribution.
     (3) In order to investigate the community structure and difference of microbes related to nitrogen cycle in soil from Gaoligongshan national natural reserve,T-RFLP technology was applied for the analysis on the diversity and ecological distribution of nifH and nosZ and 8 samples with different altitudes and vegetations were selected for this study.There were four restriction enzymes(HaeⅢ,HhaⅠ,RsaⅠ,MspⅠ) applied on nifH and nosZ genes.The number of OTU was the most by restriction of HhaⅠ,63 OTU in nifH and 156 OTU in nosZ respectively.The diversity of nifH(H') was ranged from 0.454(Plot 10) to 1.200(Plot 5).There were 3-4 dominant floras in each plot.The diversity of nifH was highly correlative to pH value of soil,relative to other ecological factors with different degrees,and was influenced by soil cultivation system and vegetation type.The diversity of nosZ(H') was ranged from 0.760(Plot 10) to 1.464(Plot 13).There were 2-4 dominant floras in each plot.The diversity of nosZ was highly correlative to temperature,altitude,pH value and water content.The geological distance and vegetation type also greatly influenced the distribution of nifH and nosZ.
     (4) In order to understand the diversity of culturable cellulose-decomposing fungi(CCDF), Carboxymthyl cellulose-congo red(CMC-CR) plate and potato dextrose agar(PDA) plate were used to isolate and culture the cellulose-decomposing fungi from plots.The quantities and diversity of soil culturable cellulose-decomposing fungi are significantly correlated with organic matter and total nitrogen in the soil.Different plant community and human disturbance have effect on the quantities and diversity of CCDF.There were 35 strains with high activities,the CMC activity by 96h of liquid fermentation was ranged from 79.6 IU(strain 6) to 228.9 IU (strain 3).A total of thirty five independent isolates belongs to 15 genus,which are identified using both morphological characteristics and rDNA ITS sequence analysis.Thirty one(88.6%) isolates belongs to 12 genus from phylum Ascomycetes and four(11.4%) isolates belongs to 3 genus from the phylum Basidiomycetes.Aspergillus,Penicillium,Stachybotrys and Chaetomium were the dominant genus.Strain 3 was identified as the Penicillium expansuma,with great developmental potential since of its particular enzyme system and utilization on substrate.
     (5) GeoChipⅡwas applied in the detection of functional microorganism of 6 plots on the altitude of 960-2 878m of Gaoligongshan national natural reserve,which including 11 kinds of functional genes,such as carbon cycle,nitrogen cycle,phosphor cycle,sulfur cycle,metal resistance,organic degradation.There were 1 515 functional genes and 27 unknown genes detected out in 6 plots.The order of number of detected genes was ORG>MET>CDEG>NRED>NIT>DSR>methane_ox>CFIX>NFIX>methane_gen>PER.The order of plots according to the number of genes and diversity was Plot 5>Plot 10>Plot 7>Plot 13>Plot 15>Plot 8.The diversity of microorganism functional genes was influenced by various factors including human disturbance,vegetation type,altitude and ecological factors,among them,the human disturbance and the change of vegetation type greatly altered the functions of microorganism.
     Seven kinds of genes related to carbon and nitrogen cycles in microorganism of 6 plots in Gaoligongshan national natural reserve were analyzed,including CDEG,CFIX,methane_ox, methane_gen,NFIX,NIT and NRED.The number of genes detected out,diversity and evenness of these genes were different in different plots,and the number of the same gene detected from different plot are different.Genetic diversity of carbon-nitrogen cycle was relative to soil organic matters,total nitrogen,carbon-nitrogen ratio,available phosphor and water content with different degrees.The human disturbance with different strength and the different vegetation type also influenced the number and distribution of carbon and nitrogen cycle genes.
引文
[1]Dehong E F.Diversity of naturally occurring prokaryotes[A].In:Colwell RR.ed.Microbial Diversity in Time and Space[C].NewYork:Plenum,1996,125-133.
    [2]Amann N I,LudwigW,Schleifer KH.Pbylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiol Rev,1995,59(i):143-169
    [3]Watve M G,Gangal R M.Problems in measuring bacterial diversity and a possible solution[5].Appl Environ Microbiol,1996,62(11):4299-4301
    [4]Istock C A,Ferquson N.Bacterial diversity and evolution:theoretical and practical perspectives[J].5ournal of Industrial Microbiology,1996,17(3):137-150
    [5]东秀珠,洪俊华.原核微生物的多样性[J].生物多样性,200l,9(1):18-24
    [6]Whitman W B,Coleman D C,Wiebe W J.Prokaryotes:the unseen majority[J].Proc Nail Acad Sci U S A,1998,95(12):6578-6583
    [7]Tringe S G,Mering C,Kobayashi A.Comparative metagenomics of microbial communities[J].Science,2005,308(5721):554-557
    [8]任天志,Grego S.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75
    [9]Charles J K.Ecological Methodology[M].Harper and Row,1989,654
    [10]钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15(5):124-131
    [11]章家恩,蔡燕飞,高爱霞.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350
    [12]Ronald M,Richard B.Microbiology Ecology[M],1997
    [13]Borneman J,Wriplett E W.Molecular microbial diversity in soils from eastern amazonia:evidence for unusual microorganisms and microbial population shifts associated with deforestation[J].Appl.Environ.Microbiol,1997,2647-2653
    [14]张光亚,陈美慈.一株异养硝化细菌的分离及系统发育分析[J].微生物学报,2003,43(2):156-161
    [15]Tourna M,Freitag T E,Nicol G W.Growth,activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms[J].Environ Microbiol,2008,10(5):1357-1364
    [16] Tsuji T, Kawasaki Y, Takeshima S, Sekiya T, Tanaka S. A new fluorescence staining assay for visualizing living microorganisms in soil [J]. Appl Environ Microbiol, 1995, 61(9):3415-3421
    [17] Goffredi S K, Wilpiszeski R, Lee R, Orphan V J. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California [J]. Isme J, 2008, 2 (2): 204-220
    [18] Wang Y N, Wang B J, Dai X, Jiao N Z, Peng Z Y, Liu S J. Bacterial conversion of sulfur-and phosphorous-compounds and microbial diversity in sediments from a near-shore marine-cultural region [J]. Huan Jing Ke Xue, 2005, 26 (2): 157-162
    [19] Lim B L, Yeung P, Cheng C, Hill J E. Distribution and diversity of phytate-mineralizing bacteria [J]. Isme J, 2007, 1 (4): 321-330
    [20] Jin X, Jiang X, Yao Y, Li L, Wu F. Effects of organisms on the release of phosphorus at the interface between sediment and water [J]. Water Environ Res, 2006, 78 (12): 2405-2411
    [21] 池振明. 微生物生态学[M]. 北京: 科学技术出版社, 1999, 87
    [22] Mohanty S R, Bodelier P L, Conrad R. Effect of temperature on composition of the methanotrophic community in rice field and forest soil [J]. FEMS Microbiol Ecol, 2007, 62 (1): 24-31
    [23] Knief C, Vanitchung S, Harvey N W, Conrad R, Dunfield P F, Chidthaisong A. Diversity of methanotrophic bacteria in tropical upland soils under different land uses [J]. Appl Environ Microbiol, 2005, 71 (7): 3826-3831
    [24] Knief C, Lipski A, Dunfield P F. Diversity and activity of methanotrophic bacteria in different upland soils [J]. Appl Environ Microbiol, 2003, 69 (11): 6703-6714
    [25] Horz H P, Rich V, Avrahami S, Bohannan B J. Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change [J]. Appl Environ Microbiol, 2005, 71 (5): 2642-2652
    [26] Henckel T, Jackel U, Schnell S, Conrad R. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane [J]. Appl Environ Microbiol, 2000, 66 (5): 1801-1808
    [27] Hoffmann T, Horz H P, Kemnitz D, Conrad R. Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines [J]. Syst Appl Microbiol, 2002, 25 (2): 267-274
    [28] Lau E, Ahmad A, Steudler P A, Cavanaugh C M. Molecular characterization of methanotrophic communities in forest soils that consume atmospheric methane [J].FEMS Microbiol Ecol,2007,60(3):490-500
    [29]张品,张惠文,李新宇,苏振成,张成刚.土壤微生物生态过程与微生物功能基因多样性[J].应用生态学报,2006,17(6):1129-1132
    [30]Selesi D,Schmid M,Hartmann A.Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes(cbbL)in differently managed agricultural soils[J].Appl Environ Microbiol,2005,71(1):175-184
    [31]张晶,张晓君,张梦晖,陈小云,赵立平.土壤微生物在不同纤维素富集条件下的多样性[J].农业环境科学学报,2007,26(4):1449-1453
    [32]Yergeau E,Rang S,He Z,Zhou J,Rowalchuk G A.Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect[J].Isme J,2007,1(2):163-179
    [33]LeCleir G R,Buchan A,Maurer J,Moran M A,Hollibaugh J W.Comparison of chitinolytic enzymes from an alkaline,hypersaline lake and an estuary[J].Environ Microbiol,2007,9(1):197-205
    [34]Metcalfe k C,Rrsek M,Gooday G W,Prosser J I,Wellington E M.Molecular analysis of a bacterial chitinolytic community in an upland pasture[J].kppl Environ Microbiol,2002,68(10):5042-5050
    [35]张于光,王慧敏,李迪强,肖启明,刘学端.三江源地区不同植被土壤固氮微生物的群落结构研究[J].微生物学报,2005,45(3):420-425
    [36]Zhang Y,Dong J,Yang Z,Zhang S,Wang Y.Phylogenetic diversity of nitrogen-fixing bacteria in mangrove sediments assessed by PCR-denaturing gradient gel electrophoresis[J].Arch Microbiol,2008,
    [37]Yeager C M,Northup D E,Grow C C,Barns S M,Kuske C R.Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire[J].Appl Environ Microbiol,2005,71(5):2713-2722
    [38]Poly F,Ranjard L,Nazaret S,Gourbiere F,Monrozier L J.Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties [J].Appl Environ Microbiol,2001,67(5):2255-2262
    [39]Rnauth S,Hurek T,Brat D,Reinhold-Uurek B.Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice[J].Environ Microbiol,2005,7(11):1725-1733
    [40]Tan Z,Hurek T,Reinhold-Hurek B.Effect of N-fertilization,plant genotype and environmental condi tions on nifH gene pools in roots of rice [J]. Environ Microbiol, 2003, 5 (10): 1009-1015
    [41] Yeager C M, Kornosky J L, Housman D C, Grote E E, Belnap J, Kuske C R. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert [J]. Appl Environ Microbiol, 2004, 70 (2): 973-983
    [42] Mergel A, Kloos K, Bothe H. Seasonal fluctuations in the population of denitrifying and N2-fixing bacteria in an acid soil of a Norway spruce forest [J]. Plant Soil, 2001, 230(16) 145-160
    [43] Deslippe J R, Egger K N, Henry G H. Impacts of warming and fertilization on nitrogen-fixing microbial communities in the Canadian High Arctic [J]. FEMS Microbiol Ecol, 2005, 53 (1): 41-50
    [44] Shaffer B T, Widmer F, Porteous L A, Seidler R J. Temporal and Spatial Distribution of the nifH Gene of N(2) Fixing Bacteria in Forests and Clearcuts in Western Oregon [J]. Microb Ecol, 2000, 39 (1): 12-21
    [45] Burgmann H, Meier S, Bunge M, Widmer F, Zeyer J. Effects of model root exudates on structure and activity of a soil diazotroph community [J]. Environ Microbiol, 2005, 7 (11): 1711-1724
    [46] Hamelin J, Fromin N, Tarnawski S, Teyssier-Cuvelle S, Aragno M. nifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass [J]. Environ Microbiol, 2002, 4 (8): 477-481
    [47] Hery M, Philippot L, Meriaux E, Poly F, Le Roux X, Navarro E. Nickel mine spoils revegetation attempts: effect of pioneer plants on two functional bacterial communities involved in the N-cycle [J]. Environ Microbiol, 2005, 7 (4): 486-498
    [48] Oved T, Shaviv A, Goldrath T, Mandelbaum R T, Minz D. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil [J]. Appl Environ Microbiol, 2001, 67 (8): 3426-3433
    [49] Kowalchuk G A, Stienstra A W, Heilig G H, Stephen J R, Woldendorp J W. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands [J]. Environ Microbiol, 2000, 2 (1): 99-110
    [50] Risgaard-Petersen N P. Nitrication-denitrification dynamics and community structure of ammonia oxidizing bacteria in a high yield irrigated Philippine rice field[J].FENS Microbiol Ecol,2004,49 359-369
    [51]Philippot L,Piutti S,Martin-Laurent F,Hallet S,Germon J C.Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils[J].Appl Environ Microbiol,2002,68(12):6121-6128
    [52]Enwall K,Philippot L,Hallin S.Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J].Appl Environ Microbiol,2005,71(12):8335-8343
    [53]Mounier E,Hallet S,Cbeneby D,Benizri E,Gruet Y,Nguyen C,Piutti S,Robin C,Slezack-Deschaumes S,Martin-Laurent F,Germon J C,Philippot L.Influence of maize mucilage on the diversity and activity of the denitrifying community[J].Environ Microbiol,2004,6(3):301-312
    [54]Siciliano S D,Roy R,Greer C W.Reduction in denitrification activity in field soils exposed to long term contamination by 2,4,6-trinitrotoluene(TNT)[J].FEMS Microbiol Ecol,2000,32(1):61-68
    [55]谢龙莲,陈秋波,王真辉,刘小香.环境变化对土壤微生物的影响[J].热带农业科学,2004,24(3):39-47
    [56]陈华癸.土壤微生物学[M].上海:上海科学技术出版社,1979,311-314
    [57]张成娥,陈小莉,郑粉莉.子午岭林区不同环境土壤微生物生物量与肥力关系研究[J].生态学报,1998,18(2):218-222
    [58]夏北成.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300
    [59]Brookes P C,Wu J.The soil microbial biomass,its measurement,properties and role in soil nitrogen and carbon dynamics following substrate incorporation[J].Soil Microorganisms,1990,35 39-51
    [60]Matamala R,Gonzalez-Meler M A,Jastrow J D,Norby R J,Schlesinger W H.Impacts of fine root turnover on forest NPP and soil C sequestration potential[J].Science,2003,302(5649):1385-1387
    [61]Trumbore S E,Gaudinski J B.Atmospheric science.The secret lives of roots [J].Science,2003,302(5649):1344-1345
    [62]Blackwood C B,Marsh T,Kim S H,Paul E A.Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities[J].Appl Environ Microbiol,2003,69(2):926-932
    [63]Smith J L.The significance of soil microbial biomass estimations.Marcel Dekker,Inc New York,1990,357-396
    [64]Srivastava S C.Microbial C,N and P in dry tropical soils[J].Soil Biology &Biochemistry, 1991, 23 (2): 117-124
    [65] Lukow T, Dunfield P F, Liesack W. Use of the T-RFLP technique toassess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants [J]. FEMS M icrobiol Ecol, 2000, 32 (3): 241-247
    [66]DunbarJ, TicknorLO, Kuske C R. Phylogenetic specificity and rep roducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities [J]. Appl & Environ Microbiol, 2001, 67 (1): 190-197
    [67] Wu X L, Chin K J, Conrad R. Effect of temperature stress on the structure and function of the methanogenic archaeal community in a rice field soil [J]. FEMS Microbiol Ecol, 2002, 39 (3): 211-218
    [68] Hans-Peter H, Merlin T Y, Werner L. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling [J]. Appl Environ Microbiol, 2001, 67 (9): 4177-4185
    [69] 卢莉琼,徐亚同, 梁俊. Perspective of molecular biological techniques applied in microbiological diversity and microbiological ecology. [J]. 应用与环境生物学报, 2004, 10 (6): 826-830
    [70] Sebastianelli A, Sen T, Bruce I J. Extraction of DNA from soil using nanoparticles by magnetic bioseparation [J]. Lett Appl Microbiol, 2008, 46 (4): 488-491
    [71] Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics [J]. Appl Environ Microbiol, 2008, 74 (9): 2902-2907
    [72] Rojas-Herrera R, Narvaez-Zapata J, Zamudio-Maya M, Mena-Martinez M E. A simple silica-based method for metagenomic DNA extraction from soil and sediments [J]. Mol Biotechnol, 2008
    [73] Carrigg C, Rice O, Kavanagh S, Collins G, O'Flaherty V. DNA extraction method affects microbial community profiles from soils and sediment [J]. Appl Microbiol Biotechnol, 2007, 77 (4): 955-964
    [74] Sagova-Mareckova M, Cermak L, Novotna J, Plhackova K, Forstova J, Kopecky J. Innovative Methods for Soil DNA Purification Tested in Soils of Widely Differing Characteristics [J]. Appl Environ Microbiol, 2008
    [75] Braker G, Ayala-del-Rio H L, Devol A H, Fesefeldt A, Tiedje J M. Community structure of denitriflers, bacteria, and archaea along redox gradients n Pacific northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase(nirS)and 16S rRNA genes [J]. Applied and Environmental Microbiology, 2001, 67 (4): 1893-1901
    [76] Rosch C, Bothe H. Improved assessment of denitrifying, N2-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes [J]. Appl Environ Microbiol, 2005, 71 (4): 2026-2035
    [77] Egert M, Friedrich M W. Formation of pseudo-terminal restriction fragments, a PCR related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure [J]. Applied and Environm ental Microbiology, 2003, 69 (5): 2555-2562
    [78] O'Donnell AG, Gorres H E. Opening the black box of soil microbial diversity [J]. Applied Soil Ecology, 1999, 13 1109-1122
    [79] Hansel C M, Fendorf S, Jardine P M, Francis C A. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile [J]. Appl Environ Microbiol, 2008, 74 (5): 1620-1633
    [80] Pringault O, Duran R, Jacquet S, Torreton J P. Temporal variations of microbial activity and diversity in marine tropical sediments (New Caledonia lagoon) [J]. Microb Ecol, 2008, 55 (2): 247-258
    [81] Liu W T, Marsh T L, Cheng H, Forney L J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of gene coding 16S rRNA. Applied and Environmental Microbiology [J]. 1997, 63 4516-4522
    [82] Chan O C, Yang X, Fu Y, Feng Z, Sha L, Casper P, Zou X. 16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China [J]. FEMS Microbiol Ecol, 2006, 58 (2): 247-259
    [83] Buchan A, Newell S Y, Butler M, Biers E J, Hollibaugh J T. Moran M A. Dynamics of bacterial and fungal communities on decaying salt marsh grass [J]. Appl Environ Microbiol, 2003, 69 (1): 6676-6687
    [84] Ulrich A, Klimke G, Wirth S. Diversity and activity of cellulose-decomposing bacteria isolated from a sandy and a loamy soil after long-term manure application [J]. Microb Ecol, 2008, 55 (3): 512-522
    [85]Tom-Petersen A,Leser T D,Marsh T L,Nybroe O.Elects of copper amendment on the bacterial community in agricultural soil analyzed by the T-RFLP technique[J].FEMS Microb Ecol,2003,46(1):53-56
    [86]Kaplan C W,Kitts L C.Bacterial succession in a petroleum land tmatment unit [J].Appl Environ Microbiol,2004,70(3):1777-1786
    [87]Meier C,Wehrli B,Meer J R.Seasonal Fluctuations of Bacterial Community Diversity in Agricultural Soil and Experimental Validation by Laboratory Disturbance Experiments[J].Microb Ecol,2007,
    [88]罗海峰,齐鸿雁,薛凯,张洪勋.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570-1575
    [89]Fodor S P,Read J L,Pirrung M C,Stryer L,Lu A T,Solas D.Light-directed,spatially addressable parallel chemical synthesis[J].Science,1991,251(4995):767-773
    [901 Schena M,Shalon D,Davis R W,Brown PO.Quantitative monitoring of gene expression patterns with a complementary DNA microarray[J].Science,1995,270(5235):467-470
    [91]Zhou J,Thompson D.Microarrays:applications in environmental microbiology [J].Encyclopedia of Environmental Microbiology,2002,1968-11979
    [92]Zhou J,Palumbo A V,Tiedje J M.sensitive detection of a Hovel class of toluene degrading denitrifiers,Azoarcus tolulyticus,with small-subunit Rma primers and probes[J].Appl Environ Microbiol,1997,63(6):2384-2390
    [93]Wu L,Thompson D K,Li G,Hurt R A,Tiedje J M,Zhou J.Development and evaluation of functional gene arrays for detection of selected genes in the environment[J].Appl Environ Microbiol,2001,67(12):5780-5790
    [94]Zhou J,Thompson D K.Challenges in applying microarrays to environmental studies[J].Curr Opin Biotechnol,2002,13(3):204-207
    [95]Hamalainen H,Zhou H,Chou W,Hashizume H,Heller R,Lahesmaa R.Distinct gene expression profiles of human type 1 and type 2 T helper cells[J].Genome Biol,2001,2(7):0022.1-0022.11
    [96]Wu L,Liu X,Schadt C W,Zhou J.Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification[J].Appl Environ Microbiol,2006,72(7):4931-4941
    [97]Li X,He Z,Zhou J.Selection of optimal oligonucleotide probes for microarrays using multiple criteria,global alignment and parameter estimation[J].Nucleic Acids Res,2005,33(19):6114-6123
    [98]He Z,Wu L,Li X,Fields M W,Zhou J.Empirical establishment of oligonucleotide probe design criteria[J].Appl Environ Microbiol,2005,71(7):3753-3760
    [99]Small J,Call D R,Brockman F J,Straub T M,Chandler D P.Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays[J].Appl Environ Microbiol,2001,67(10):4708-4716
    [100]Dennis P,Edwards E A,Liss S N,Fulthorpe R.Monitoring gene expression in mixed microbial communities by using DNA microarrays[J].Appl Environ Microbiol,2003,69(2):769-778
    [101]Cook K L,Sayler G S.Environmental application of array technology:promise,problems and practicalities[J].Curr Opin Biotechnol,2003,14(3):311-318
    [102]Valinsky L,Della G,Scupham A J,Alvey S,Figueroa A,Yin B,Hartin R J,Chrobak M,Crowley D E,Jiang T,Borneman J.Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes[J].Appl Environ Microbiol,2002,68(7):3243-3250
    [103]张于光,张小全,刘学端,肖烨,Liyou,W.不同林型土壤微生物有机碳降解基因的多样性[J].生态学报,2007,27(4):1412-1419
    [104]张于光,李迪强,肖启明,刘学端.基因芯片及其在环境微生物研究中的应用[J].微生物学报,2004,44(3):406-410
    [105]张萍,郭辉军.高黎贡山土壤微生物生化活性的初步研究[J].土壤学报,2000,37(2):275-279
    [106]张萍,郭辉军.高黎贡山不同土地类型土壤中微生物的生化活性[J].山地学报,2000,18(5):457-461
    [107]张萍,郭辉军.高黎贡山土壤微生物的数量和多样性[J].生物多样性,1999,7(4):297-302
    [108]张萍,郭辉军.高黎贡山土壤微生物生态分布及其生化特性的研究[J].应用生态学报,1999,10(1):74-78
    [109]Jorstad,T.S.,Langaas,M.,Bones,A.M.Understanding sample size:what determines the required number of microarrays for an experiment?[J].Trends Plant Sci,2007,12(2):46-50
    [110]唐玉姝,魏朝富,颜廷梅,杨林章,慈恩.土壤质量生物学指标研究进展[J].土壤,2007,39(2):157-163
    [111]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986,103-128
    [112]刘光崧,蒋能慧,张连弟等.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996,123-125:166-167
    [113]周德庆.微生物学试验手册[M].上海:上海科学技术出版社,1996,
    [114]关松荫.土壤酶及其研究法[M].北京:北京农业出版社,1986,274-300
    [115]林启美,吴玉光.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):
    [116]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1996,
    [117]Kennedy A C,Elliott L F,Young F L,Douglas C L.Soil microbial diversity:Present and future considerations[J].Soil science society of America Journal,1997,162(9):607-617
    [118]Taylor P M,Medd J M,Schoenborn L,Hodgson B,Janssen P H.Detection of known and novel genes encoding aromatic ring-hydroxylating dioxygenases in soils and in aromatic hydrocarbon-degrading bacteria[J].FEMS Microbiol Left,2002,216(1):61-66
    [119]Miller C D,Child R,Hughes J E,Benscai M,Der J P,Sims R C,Anderson A J.Diversity of soil mycobacterium isolates from three sites that degrade polycyclic aromatic hydrocarbons[J].J Appl Microbiol,2007,102(6):1612-1624
    [120]李香真,曲秋皓.蒙古高原草原土壤微生物量碳氮特征[J].土壤学报,2002,39(1):97-104
    [121]Bossio D A,Girvan M S,Verchot L,Bullimore J,Borelli T,Albrecht A,Scow K M,Ball A S,Pretty J N,Osborn A M.Soil microbial community response to land use change in an agricultural landscape of western Kenya[J].Microb Ecol,2005,49(1):50-62
    [122]莫彬,曹建华,徐祥明,申宏岗,杨慧,李小方.岩溶山区不同土地利用方式对土壤活性有机碳动态的影响[J].生态环境,2006,15(6):1224-1230
    [123]邹仪明.植物纤维素化学[M].北京:北京中国轻工业出版社,1995,152-154
    [124]靳振江.纤维素酶降解纤维素的研究进展[J].广西农业科学,2007,38(2):127-130
    [125]Brocklehurst K R,Morby A P.Metal-ion tolerance in Escherichia coli:analysis of transcriptional profiles by genearray technology[J].Microbiol Ecol,2000,146(9):2277-2282
    [126]Linton D,Lawson A J,Owen R J,Stanley J.PCR detection,identification to species level,and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples[J].J Clin Microbiol,1997,35(10):2568-2572
    [127]http://mica.ibest.uidaho.edu/trflp.php.
    [128]张于光,李迪强,王慧敏,肖启明.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报,2005,16(5):956-960
    [129]http://www.ncbi.nlm.nih.gov/blast/Blast,cgi.
    [130]http://mica.ibest.uidaho.edu/pat.php.
    [131]Yu Z,Morrison M.Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PeR-denaturing gradient gel electrophoresis[J].Appl Environ Microbiol,2004,70(8):4800-4806
    [132]程海鹰,肖尘科,马光东,汪卫东,王修林.营养注入后油藏微生物群落16S rRNA 基因的T-RFLP对比分析[J].石油勘探与开发,2006,33(3):356-359,373
    [133]Harada A,Ohkusa T,Kushima K,Sakamoto M,Benno Y,Beppu K,Shibuya T,Sakamoto N,Watanabe S.Identification of bacteria from blood in febrile patients with ulcerative colitis by terminal restriction fragment length polymorphism profile analysis of 16S rRNA gene[J].Scand J 6astroenterol,2008,43(4):423-430
    [134]Moyer C L,Tiedje J M,Dobbs F C,Karl D M.A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes:efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature[J].Appl Environ Microbiol,1996,62(7):2501-2507
    [135]http://mica.ibest.uidaho.edu/enzyme.php.
    [136]Moeseneder M M,Winter C,Arrieta J M,Herndl G J.Terminal-restriction fragment length polymorphism(T-RFLP) screening of a marine archaeal clone library to determine the different phylotypes[J].J Microbiol Methods,2001,44(2):159-172
    [137]袁三青,薛燕芬,高鹏,汪卫东,马延和,李希明,许国旺.T-RFLP技术分析油藏微生物多样性[J].微生物学报,2007,47(2):290-294
    [138]Naeem S,Li S.Biodiversity enhance ecosystem reliability[J].Nature,1997,390:507-509
    [139]Tilman D.The ecological conseqences of changes in biodiversity:a search for general principles[J].Ecology,1999,80:1455-1474
    [140]Hartmann M,Widmer F.Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices [J].Appl Environ Microbiol,2006,72(12):7804-7812
    [141]Lupwayi N Z,Arshad M A,Rice W A.Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management[J]. Applied Soil Ecology,2001,16:251-261
    [142]Rosch C,Mergel A,Bothe H.Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J].Appl Environ Microbiol,2002,68(8):3818-3829
    [143]Firestone M K.Biological denitrification.In Stevenson F J.(ed),Nitrogen in agricultural soils:Agronomy monograph 22[J].American Society for Agronomy,Madison,Wis,1982,289-326
    [144]Seitzinger S P.Denitrification in aquatic sediments.In Revsbech N P and Sorensen J(ed.),Denitrification in soil and sediment.FEMS symposium[J].Plenum Press,New York,N.Y,1990,301-322
    [145]Deslippe J R,Egger K N.Molecular diversity of nifH genes from bacteria associated with high arctic dwarf shrubs[J].Microb Ecol,2006,51(4):516-525
    [146]Zhang Y G,Wang H M,Li D Q,Xiao Q M,Liu X D.The community and structure of nitrogen-fixing microorganism in Sanjiangyuan natural reserve[J].Wei Sheng Wu Xue Bao,2005,45(3):420-425
    [147]Zehr J P,Jenkins B D,Short S M,Steward G F.Nitrogenase gene diversity and microbial community structure:a cross-system comparison[J].Environ Microbiol,2003,5(7):539-554
    [148]Rich J J,Heichen R S,Bottomley P J,Cromack K,Myrold D D.Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils[J].Appl Environ Microbiol,2003,69(10):5974-5982
    [149]Firestone M K.Biological denitrification.In:Stevenson F J,ed.Nitrogen in agricultural soils.American Society for Agronomy,Madison:Wis,[M].1982,289-326
    [150]Stres B,Mahne I,Avgustin G,Tiedje J M.Nitrous oxide reductase(nosZ) gene fragments differ between native and cultivated Michigan soils[J].Appl Environ Microbiol,2004,70(1):301-309
    [151]Liu X,Tiquia S M,Holguin G,Wu L,Nold S C,Devol A H,Luo K,Palumbo A V,Tiedje J M,Zhou J.Molecular diversity of denitrifying genes in continental margin sediments within the oxygen-deficient zone off the Pacific coast of Mexico[J].Appl Environ Microbiol,2003,69(6):3549-3560
    [152]张于光,李迪强,王慧敏,肖启明,刘学端.青藏高原三江源地区高寒草甸土反硝化细菌多样性的初步研究[J].科学通报,2006,51(6):715-723
    [153]Stres B,Mahne I,Avgustin G,Tiedje J M.Nitrous oxide reductase(nosZ) gene fragments differ between native and cultivated Michigan soils[J].Appl Environ Microbiol,2004,70(1):301-309
    [154]Rich J J,Dale O R,Song B,Ward B B.Anaerobic ammonium oxidation(anammox)in Chesapeake Bay sediments[J].Microb Ecol,2008,55(2):311-320
    [155]Nowak J,Nowak D,Chevallier P,Lekki J,Van Grieken R,Kuczumow A.Analysis of composite structure and primordial wood remains in petrified wood[J].Appl Spectrosc,2007,61(8):889-895
    [156]Karboune S,Geraert P A,Kermasha S.Characterization of selected cellulolytic activities of multi-enzymatic complex system from Penicillium funiculosum[J].J Agric Food Chem,2008,56(3):903-909
    [157]魏景超.真菌鉴定手册[M].上海:科学技术出版社1979
    [158]杨涛,马美湖.生物质降解酶酶活的测定方法[J].中国酿造,2006,11 67-69
    [159]周小玲,沈微,饶志明等.一咱快速提取真菌染色体DNA的方法[J].微生物学通报,2004,31(4):89-92
    [160]Kubartova A,Moukoumi J,Beguiristain T,Ranger J,Berthelin J.Microbial diversity during cellulose decomposition in different forest stands:Ⅰ.microbial communities and environmental conditions[J].Microb Ecol,2007,54(3):393-405
    [161]李振红,陆贻通.高效纤维素降解菌的筛选[J].环境污染与防治,2003,25(3):133-135
    [162]Kim K H,Brown K M,Harris P V,Langston J A.,Cherry J R.A proteomics strategy to discover beta-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry[J].J Proteome Res,2007,6(12):4749-4757
    [163]Shah M,Nagee A,Kunjadia P,Mukhopadhyaya P N,Kothari I L.Identification of an anonymous RFLP DNA probe through multiple arbitrary amplicon profiling and its use for strain differentiation in a field isolate of cellulose-degrading Aspergillus niger[J].Bioresour Technol,2006,97(18):2335-2339
    [164]Puchart V,Vrsanska M,Svoboda P,Pohl J,Ogel Z B,Biely P.Purification and characterization of two forms of endo-beta-1,4-mannanase from a thermotolerant fungus,Aspergillus fumigatus IMI 385708(formerly Thermomyces lanuginosus IMI 158749)[J].Biochim Biophys Acta,2004,1674(3):239-250
    [165]Saibi W,Amouri B,Gargouri A.Purification and biochemical characterization of a transglucosilating beta-glucosidase of Stachybotrys strain[J].Appl Microbiol Biotechnol,2007,77(2):293-300
    [166]Li Y L,Li D C,Teng F C.Purification and characterization of a cellobiohydrolase from the thermophilic fungus Chaetomium thermophilus CT2[J].Wei Sheng Wu Xue Bao,2006,46(1):143-146
    [167]Karapetyan K N,Fedorova T V,Vasil'chenko L G,Ludwig R,Haltrich D,Rabinovich M L.Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp.INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases[J].J Biotechnol,2006,121(1):34-48
    [168]Fujii K,Takeshi K.Penicillium strains as dominant degraders in soil for coffee residue,a biological waste unsuitab]e for fertilization[J].J Appl Microbiol,2007,103(6):2713-2720
    [169]White G J,Traquair J A.Necrotrophic mycoparasitism of Botrytis cinerea by cellulolytic and ligninocellulolytic Basidiomycetes[J].Can J Microbiol,2006,52(6):508-518
    [170]Yoon J J,Cha C J,Kim Y S,Son D W,Kim Y K.The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose[J].J Microbiol Biotechnol,2007,17(5):800-805
    [171]王蔚,高培基.褐腐真菌木质纤维素降解机制的研究进展[J].微生物学通报,2002,29(3):90-93
    [172]Ghosh A,Malty B,Chakrabarti K,Chattopadhyay D.Bacterial diversity of East Calcutta Wet land area:possible identification of potential bacterial population for different biotechnological uses[J].Microb Ecol,2007,54(3):452-459
    [173]Wilson J W,Ramamurthy R,Porwollik S,McClelland M,Hammond T,Allen P.Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon[J].Proc Natl Acad Sci U S A,2002,99(21):13807-13812
    [174]Gentry T J,Wickham G S,Schadt C W,He Z,Zhou J.Microarray applications in microbial ecology research[J].Nicrob Ecol,2006,52(2):159-175
    [175]Li X,He Z,Zhou J.Selection of optimal oligonucleotide probes for microarrays using multiple criteria,global alignment and parameter estimation[J].Nucleic Acids Research,2005,33(19):6114-6123
    [176]He Z,Gentry T J,Schadt C W,Wu L,Liebich J,Chong S C,Huang Z,Wu W, Gu B, Jardine P, Criddle C, Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes [J]. ISME J, 2007, 1 (1): 67-77
    [177] Liebich J, Schadt C W, Chong S C, He Z, Rhee S K, Zhou J. Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications [J]. Appl Environ Microbiol, 2006, 72 (2): 1688-1691
    [178] Krebs C J. Ecological Methodology [M]. New York: Harper and Row, 1989, 654
    [179] Zhou J. Microarrays for bacterial detection and microbial community analysis [J]. Curr Opin Microbiol, 2003, 6 (3): 288-294
    [180] Schadt C W, Liebich J, Chong S C, Gentry T J, He Z L, Pan H B, Zhou J Z. Design and use of functional gene microarrays (FGAs) for the characterization of microbial communities, p. 331-368. [J]. In T. Savidge and C. Pothubakis (ed.), Methods in microbiology, vol. 34. Microbial imaging. Elsevier, San Diego, Calif., 2005,
    [181] Rhee S K, Liu X, Wu L, Chong S C, Wan X, Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays [J]. Appl Environ Microbiol, 2004, 70 (7): 4303-4317
    [182] Cho J C, Tiedje J M. Quantitative detection of microbial genes by using DNA microarrays [J]. Appl Environ Microbiol, 2002, 68 (3): 1425-1430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700