用户名: 密码: 验证码:
QDs-SA量子点荧光成像阿尔茨海默病细胞模型APP、Aβ蛋白的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     阿尔茨海默病是以进行性认知功能障碍和行为损害为主要特征的中枢神经系统退行性病变。β-淀粉样蛋白是阿尔茨海默病特征性的病理改变老年斑的主要成分,已有研究表明阿尔茨海默病发病早期即存在Aβ蛋白的沉积,其沉积部位、面积和量与AD认知功能障碍程度密切相关。量子点是一种新型的荧光分子探针,与传统的荧光染料相比,具有荧光强度高、光学稳定性好等优势,将量子点与APP、Aβ蛋白特异结合,发展AD分子光学成像技术,指导阿尔茨海默病的早期诊断具有广阔的发展前景。本项目拟构建pcDNA3.1/APP595/596并列突变质粒,稳定转染入人胚肾HEK293细胞,建立阿尔茨海默病转基因细胞模型;应用量子点对APP、Aβ蛋白靶向标记,并将其与传统荧光染料对比,在评估量已点生物相容性的同时,获取量子点荧光成像强度和荧光稳定性的相关资料,为量已点早期应扩于阿尔茨海默病的分子影像诊断打下基础。
     方法
     1)对pcDNA3.1/APP质粒(美国Pittsburgh大学的Perez博士惠赠)进行测序,证实除质粒本身第595和596位氨基酸密码子存在并列突变外,序列的第4位碱基有意外突变(C→G),并影响到正常氨基酸的表达,亮氨酸(Leu)变成了缬氨酸(Val)。因此实验拟行质粒APPcDNA第4位碱基的定点突变。从原始质粒克隆模板中,利用PCR方法扩增目的基因APP695cDNA,将目的基因和目的载体pcDNA3.1分别酶切;纯化酶切产物后定向连接,并将其转化细菌感受态细胞,对长出的克隆行PCR鉴定,PCR鉴定为阳性的克隆送测序并行比对分析。2)将点突变后pcDNA3.1/APP595/596质粒转染至HEK293细胞建立稳定表达株,细胞免疫荧光和Western-blot方法检测转染细胞APP的表达和Aβ蛋白生成情况。3)采用细胞形态学、MTT分析法结合流式细胞检测凋亡技术,系统考察QDs-SA量子点(浓度2.5~25nm)对稳定转染pcDNA3.1/APP595/596质粒的HEK293细胞的毒性作用。4)应用激光共聚焦荧光成像和流式细胞技术,对QDs-SA量子点靶向标记阿尔茨海默病转基因细胞模型中APP、Aβ蛋白的荧光进行检测,同时与基于传统荧光染料标记的免疫荧光分析方法进行比较。
     结果
     1)应用DNAStar软件对阳性克隆测序结果与GenBank中APP基因序列比对,证实原序列中的错义突变G已被突变回C,第4位点碱基定点突变完成,pcDNA3.1/APP595/596并列突变质粒构建成功。2)Western-blot在稳定转染了pcDNA3.1/APP595/596质粒的细胞中检测到目的条带,而转染空载体组细胞未见APP蛋白表达。细胞免疫荧光染色后,共聚焦荧光显微镜下观察APP基因转染后能够生成APP和Aβ蛋白,前者主要定位于细胞胞膜,Aβ蛋白主要表达于近膜胞浆,细胞膜上也有表达。3)在2.5~25nm浓度范围内,与QDs-SA量子点共育24小时后,转染质粒的HEK293细胞形态学无明显改变;MTT示量子点作用细胞吸光度值与对照组相比未见明显差异;不同浓度量子点组间吸光度值比较亦无统计学意义(P>0.05)。流式细胞检测空白对照组与各浓度组间凋亡早期细胞百分率差异无统计学意义(P>0.05)。4)在波长为388nm紫外光激发下,QDs-SA量子点的最大荧光发射峰波长约为605±10nm,半峰宽小于35nm。激光共聚焦显微镜荧光分析示QDs-SA量子点标记APP和Aβ蛋白相较于传统Cy3荧光染料的平均荧光密度值更大(P<0.05);488nm激发光连续激发12分钟,QDs-SA量子点荧光标记的APP和Aβ蛋白仍发射较强的橙红色荧光,荧光强度分别下降了27.87%、29.25%,而传统荧光染料Cy3荧光强度下降幅度高达79.60%和76.82%。流式细胞仪检测QDs-SA量子点和Cy3活细胞标记膜蛋白APP阳性率差异无统计学意义(P<0.05),QDs-SA量子点荧光标记APP蛋白的流式荧光图形呈宽端型,Cy3标记的APP流式荧光图形呈扁平形,平均荧光强度差异有统计学意义(P<0.05)。
     结论
     1)成功构建了在真核细胞中能高效表达人APP和Aβ蛋白的真核表达载体,并稳定转染HEK293细胞建立阿尔茨海默病转基因细胞模型。2)在一定的浓度范围内,QDs-SA量子点对细胞形态学、细胞生长和增殖活性无明显影响,具有较好的生物相容性。3) QDs-SA量子点能有效识别阿尔茨海默病转基因细胞模型中APP和Aβ蛋白;QDs-SA量子点标记APP和Aβ蛋白荧光成像在光稳定性和荧光强度等方面均优于传统的Cy3荧光染料标记的免疫荧光成像。
Objectives:Alzheimer's disease is a degenerative disease of the nervous system which is characterized by deficits in memory and cognition.The clinical diagnosis of AD depends on the clinical findings, scale measuring and image examination.However,because of low sensitivity and specificity,the conventional structure or function imaging techniques have not been widespread used yet in the field of clinical diagnosis of AD.Senile plaques is the characteristic pathological features. Amyloidβ-peptide as the chief component of senile plaques,has currently been identified that it existed in the Pathogenesis of early acute AD and its deposit areas and quantity were closely related to cognitive-assessing.Therefore,detection of Amyloidβ-peptide is meaningful for diagnosis of AD.Quantum Dot is a new fluorescence probe that has significant advantages in fluorescent intensity and ray stability when compared to traditional fluorescent dye.Thus,Quantum Dot may be used as a powerful method for Aβprotein detection and early diagnosis of AD.This study was designed to evaluate the biocompatibility and get the preliminary data of Quantum Dot used as a molecular probe of APP、Aβproteins.The pcDNA3.1/APP595/596 plasmid with coordinate bas-mutation was constructed and stably transfected into HEK293 cells to set up the cell model of AD.Then,Quantum Dots were targeted into APP、Aβproteins respectively and the biocompatibility as well as fluorescence intensity and duration of Quantum Dot were compared with that of traditional fluorochromes.
     Methods:1) The pcDNA3.1/APP plasmid was gifted by Pro.Perez, University of Pittsburgh,USA.The Coordinate bas-mutations(G→T,A→C) and a accidental mutation(C→G) had been confirmed by DNA sequencing.In this experiment,APP was PCR-amplified,digested by HindⅢand XbaⅠ,and ligated into purified pcDNA3.1 vector.This recombinant plasmid was transfected into E.colo SH5αby means of heat shock.The recombinant plasmid was identified by PCR,and the positive cloning was identified by DNA sequence analysis.2) The construct was transfected into HEK293 cell lines,screened by G418.The interest protein(including APP and Aβ) were identified by immunofluorescence and Western blot.3) The toxicity of QDs-SA to HEK293 cells stably transfected pcDNA3.1/APP595/596 plasmid was investigated by cell morphology,MTT analysis and flow cytometry technology.4) With the help of Laser Scanning Confocal Microscope and Flow Cytometry,this kind of flurescence probe based on the QDs-SA had been used to detect APP and Aβproteins in HEK293 cells stably transfected pcDNA3.1/APP595/596 plasmid,and compared with conventional fluroimmunoassay.
     Results:1)The positive cloning gene sequence were aligned to the complete gene sequence of APP by DNAStar software.The result confirmed that the accidental mutation(C→G) had been mutated back(G→C).The recombinant pcDNA3.1/APP595/596 plasmid was constructed successfully.2)The detection verified that recombinant plasmid group expressed APP protein,the specific protein bands was only detected in HEK293 Cells stably transfected pcDNA3.1/APP595/596 plasmid,but no expression was found in control groups.The immunofluorescence staining detection indicated APP expression in the plasma membrane,but the Aβmainly located in the endochylema near the cell membrane,and slight Aβexpression also located in the plasma membrane.3) The HEK293 cells were incubated with QDs-SA on different concentrations between 2.5nm and 25nm and lasted for 24 hours, there was no evident morphological deviations.The QDs-SA group's cell activity assayed by MTT had no any apparente difference compared to control group.Meanwhile,the difference of absorbance intensity among the different concentration groups had no any statistical significance(P>0.05 ).We used AnnexinV/FITC staining flow cytometry to observe the percentage of apoptosis.The percentage of apoptosis had no any significant difference among groups(P>0.05 ).4) under the stimulation by 388nm excitation light,The maximal Emission of the QDs-SA was 605±10nm,and the full width at half maximum<35nm.The mean fluorescence intensity of QDs-SA was greater than the Cy3's under confocal fluorescence microscopy(P<0.05) There was no notable quench of exciting quantum dots for 12 minutes,and the APP and Aβproteins stained by QDs-SA showed intensive orange red fluorescence under confocal fluorescence microscopy.The fluorescence intensity decreased nearly 27.87%、29.25%respectively.The other stained by Cy3 decreased 79.60%and 76.82%.The positive rate of APP staining had no significant difference between the QDs-SA and Cy3 by flow cytometry, but the Mean fluorescence intensity had statistical significance(P<0.05).
     Conclusions:1) The recombinant plasmid containing the APP 595/596 Coordinate bas-mutations was successfully constructed.Then the recombinant plasmid was stably transfected into HEK293 cells to construct the transgenic cellular model of Alzheimer's disease.2) The QDs-SA were biocompatible with HEK293 cells in appropriate concentration rang,which provided basis for further biological applications of QDs.3) The QDs-SA fluorescence probes can effectively recognize APP and Aβproteins and exhibited good sensitivity and exceptional photostability,suggesting that QDs-SA fluorescence probes could be a potential method in Aβdetection and offer a novel way for the diagnosis of Alzheimer's disease.
引文
[1] Cummings JL. Alzheimer's disease. The New England journal of medicine, 2004,351(1):56-67.
    [2] Karlawish J. Alzheimer's disease-clinical trials and the logic of clinical purpose. The New England journal of medicine, 2006,355(15):1604-6.
    [3] Prigerson HG. Costs to society of family caregiving for patients with end-stage Alzheimer's disease. The New England journal of medicine, 2003, 349 (20): 1891-2.
    [4] Wise J. Scientists call for more funding for research into Alzheimer's disease. BMJ (Clinical research ed.), 2009,338:bl 183.
    [5] Diagnosis and management of Alzheimer's disease and related diseases. Revue neurologique,2008,164(8-9):754-74.
    [6] Perneczky R, Kurz A. [Diagnosis and therapy of Alzheimer's disease: what's important for the family doctor?]. MMW Fortschr Med, 2008,150(49-50):42-5; quiz 46.
    [7] Checler F, Buee L.Fundamental data on the pathologies amyloid and Tau in Alzheimer's disease: Which therapeutic perspectives?. Annales pharmaceutiques francaises, 2009,67(2): 136-53.
    [8] Richner M, Bach G, West MJ. Over expression of amyloid beta-protein reduces the number of neurons in the striatum of APPswe/PSlDeltaE9. Brain research, 2009.
    [9] van de Hoef DL, Hughes J, Livne-Bar 1, et al. Identifying genes that interact with Drosophila presenilin and amyloid precursor protein. Genesis (New York, N.Y: 2000), 2009.
    [10] Zhang CE, Wei W, Liu YH, et al. Hyperhomocysteinemia Increases {beta}-Amyloid by Enhancing Expression of {gamma}-Secretase and Phosphorylation of Amyloid Precursor Protein in Rat Brain.The American journal of pathology, 2009.
    [11] Selkoe DJ. Biochemistry and Molecular Biology of Amyloid beta-Protein and the Mechanism of Alzheimer's Disease. Handbook of clinical neurology / edited by P.J. Vinken and G.W. Bruyn, 2008,89:245-60.
    [12] Egerhazi A. The early diagnosis and differential diagnosis of Alzheimer's disease with clinical methods. Orvosi hetilap, 2008,149(51):2433-40.
    [13] Lovestone S, Thambisetty M. Biomarkers for Alzheimer's disease trials - biomarkers for what? A discussion paper. The journal of nutrition, health & aging, 2009,13(4):334-6.
    [14] Blennow K, Zetterberg H. Use of CSF Biomarkers in Alzheimer's Disease Clinical Trials. The journal of nutrition, health & aging, 2009,13(4):358-61.
    [15] Klunk WE, Lopresti BJ, Dconomovic MD, et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer's disease brain but not in transgenic mouse brain. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2005,25(46): 10598-606.
    [16] Higuchi M, Iwata N, Matsuba Y, et al. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nature neuroscience, 2005,8(4):527-33.
    [17] Drzezga A, Grimmer T, Henriksen G, et al. Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer's disease. Neurolmage, 2008,39(2):619-33.
    [18] Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science (New York, N.Y.), 2005,307(5709):538-44.
    [19] Xing Y, Xia Z, Rao J. Semiconductor Quantum Dots for Biosensing and In Vivo Imaging. IEEE transactions on nanobioscience, 2009.
    [20] Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews, 2001,81(2):741-66.
    [21] Nussbaum RL, Ellis CE. Alzheimer's disease and Parkinson's disease. The New England journal of medicine, 2003,348(14):1356-64.
    [22] 22 Bertram L, Hiltunen M, Parkinson M, et al. Family-based association between Alzheimer's disease and variants in UBQLN1. St George-Hyslop PH, Tanzi RE, Polinsky RJ, et al. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science (New York, N.Y.), 1987,235 (4791): 885-90.
    [23] Bird TD. Genetic factors in Alzheimer's disease. The New England journal of medicine, 2005,352(9):862-4.
    [24] Shepherd C, McCann H, Halliday GM. Variations in the neuropathology of familial Alzheimer's disease. Acta neuropathologica, 2009.
    [25] Haass C, Selkoe DJ. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell, 1993,75(6): 1039-42.
    [26] Wisniewski T, Ghiso J, Frangione B. Biology of A beta amyloid in Alzheimer's disease. Neurobiology of disease, 1997,4(5):313-28.
    [27] Johnson-Wood K, Lee M, Motter R, et al. Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease.
    [28] Proceedings of the National Academy of Sciences of the United States of America, 1997,94(4): 1550-5.
    [29] Tanzi RE, Kovacs DM, Kim TW, et al. The gene defects responsible for familial Alzheimer's disease. Neurobiology of disease, 1996,3(3): 159-68.
    [30] Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 1991,349(6311 ):704-6.
    [31] Mullan M, Crawford F, Axelman K, et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nature genetics, 1992,1(5):345-7.
    [32] Hendriks L, van Duijn CM, Cras P, et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nature genetics, 1992,1(3):218-21.
    [33] Crawford F, Chartier-Harlin MC, Mullan M, et al. Alzheimer's~a correction. Nature, 1992,356(6368):390.
    [34] Citron M, Oltersdorf T, Haass C, et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature, 1992,360(6405):672-4.
    [35] Lefterov IM, Koldamova RP, Lazo JS. Human bleomycin hydrolase regulates the secretion of amyloid precursor protein. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2000,14(12):1837-47.
    [36] Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences of the United States of America, 1985,82(2):488-92.
    [37] Fletcher MC, Kuderova A, Cygler M, et al. Creation of a ribonuclease abzyme through site-directed mutagenesis. Nature biotechnology, 1998,16(11):1065-7.
    [38] Cline J, Braman JC, Hogrefe HH. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic acids research, 1996,24(18):3546-51.
    [39] Adereth Y, Champion KJ, Hsu T, et al. Site-directed mutagenesis using Pfu DNA polymerase and T4 DNA ligase. BioTechniques, 2005,38(6):864, 866, 868.
    [40] McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984,34(7):939-44.
    [41] Roychaudhuri R, Yang M, Hoshi MM, et al. Amyloid beta-protein assembly and Alzheimer disease. The Journal of biological chemistry, 2009,284(8): 4749-53.
    [42] McFarlane I, Georgopoulou N, Coughlan CM, et al. The role of the protein glycosylation state in the control of cellular transport of the amyloid beta precursor protein. Neuroscience, 1999,90(1): 15-25.
    [43] Citron M, Haass C, Selkoe DJ. Production of amyloid-beta-peptide by cultured cells: no evidence for internal initiation of translation at Met596. Neurobiology of aging, 1993,14(6):571-3.
    [44] Gotz J. Tau and transgenic animal models. Brain research. Brain research reviews, 2001,35(3):266-86.
    [45] Selkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annual review of neuroscience, 1994,17:489-517.
    [46] Loffler J, Langui D, Probst A, et al. Accumulation of a 50 kDa N-terminal fragment of beta-APP695 in Alzheimer's disease hippocampus and neocortex. Neurochemistry international, 1994,24(3):281-8.
    [47] van Duijn CM, Hendriks L, Cruts M, et al. Amyloid precursor protein gene mutation in early-onset Alzheimer's disease. Lancet, 1991,337(8747):978.
    [48] Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science (New York, N.Y.), 2006,313(5793): 1642-5.
    [49] Watson A, Wu X, Bruchez M. Lighting up cells with quantum dots. BioTechniques, 2003,34(2):296-300, 302-3.
    [50] Tsay JM, Michalet X. New light on quantum dot cytotoxicity. Chemistry & biology, 2005,12(11): 1159-61.
    [51] Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. The Journal of investigative dermatology, 2007,127(1):143-53.
    [52] Shiohara A, Hoshino A, Hanaki K, et al. On the cyto-toxicity caused by quantum dots. Microbiology and immunology, 2004,48(9):669-75.
    [53] Lovric J, Bazzi HS, Cuie Y, et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of molecular medicine (Berlin, Germany), 2005,83(5):377-85.
    [54] Su Y, He Y, Lu H, et al. The cytotoxicity of cadmium based, aqueous phase - Synthesized, quantum dots and its modulation by surface coating. Biomaterials, 2008.
    [55] Hoshino A, Manabe N, Fujioka K, et al. Use of fluorescent quantum dot bioconjugates for cellular imaging of immune cells, cell organelle labeling, and nanomedicine: surface modification regulates biological function, including cytotoxicity. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs, 2007,10(3):149-57.
    [56] Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (New York, N.Y.), 2002,298(5599): 1759-62.
    [57] Jaiswal JK, Goldman ER, Mattoussi H, et al. Use of quantum dots for live cell imaging. Nature methods, 2004,l(l):73-8.
    [58] Huang KS, Lin YC, Su KC, et al. An electroporation microchip system for the transfection of zebrafish embryos using quantum dots and GFP genes for evaluation. Biomedical microdevices, 2007,9(5):761-8.
    [59] Hall M, Kazakova I, Yao YM. High sensitivity immunoassays using particulate fluorescent labels. Analytical biochemistry, 1999,272(2): 165-70.
    [60] Dubertret B. [Quantum dots in biology: recent progress]. Medecine sciences : M/S, 2004,20(8-9):737-40.
    [61] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 1983,65(1-2):55-63.
    [62] Darzynkiewicz Z, Bruno S, Del Bino G, et al. Features of apoptotic cells measured by flow cytometry. Cytometry, 1992,13(8):795-808.
    [63] Nellemann C, Dalgaard M, Lam HR, et al. The combined effects of vinclozolin and procymidone do not deviate from expected additivity in vitro and in vivo. Toxicological sciences: an official journal of the Society of Toxicology, 2003,71(2):251-62.
    [64] CHAIET L, WOLF FJ. THE PROPERTIES OF STREPTAVIDIN, A BIOTIN-BINDING PROTEIN PRODUCED BY STREPTOMYCETES. Archives of biochemistry and biophysics, 1964,106:1-5.
    [65] Patel T, Polikar R, Davatzikos C, et al. EEG and MRI data fusion for early diagnosis of Alzheimer's disease. Conference proceedings . Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2008,2008:1757-60.
    [66] Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology, 2007,68(20):1718-25.
    [67] Pike KE, Savage G, Villemagne VL, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain : a journal of neurology, 2007,130(Pt 11):2837-44.
    [68] Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Annals of neurology, 1997,42(1):85-94.
    [69] Killiany RJ, Gomez-Isla T, Moss M, et al. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Annals of neurology, 2000,47(4):430-9.
    [70] Walling MA, Novak JA, Shepard JR. Quantum dots for live cell and in vivo imaging. International journal of molecular sciences, 2009,10(2):441-91.
    [71] Rosenthal SJ, McBride JR. Quantum dots: putting the squeeze on nanocrystals. Nature nanotechnology, 2009,4(1): 16-7.
    [72] Kawas CH. Clinical practice. Early Alzheimer's disease. The New England journal of medicine, 2003,349(11): 1056-63.
    [73] Connor DM, Benveniste H, Dilmanian FA, et al. Computed tomography of amyloid plaques in a mouse model of Alzheimer's disease using diffraction enhanced imaging. Neurolmage, 2009.
    [74] Shin J, Lee SY, Kim SH, et al. Multitracer PET imaging of amyloid plaques and neurofibrillary tangles in Alzheimer's disease. Neurolmage, 2008,43(2):236-44.
    [75] Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & development, 2003,17(5):545-80.
    [76] Weiner MW. Editorial: Imaging and Biomarkers Will be Used for Detection and Monitoring Progression of Early Alzheimer's Disease. J Nutr Health Aging, 2009,13(4):332.
    [77] Duyckaerts C, Panchal M, Delatour B, et al. Morphologic and molecular neuropathology of Alzheimer's disease. Annales pharmaceutiques francaises, 2009,67(2): 127-35.
    [78] Hampel H, Broich K. Enrichment of MCI and Early Alzheimer's Disease Treatment Trials Using Neurochemical and Imaging Candidate Biomarkers. The journal of nutrition, health & aging, 2009,13(4):373-375.
    [79] Nichols L, Pike VW, Cai L, et al. Imaging and in vivo quantitation of beta-amyloid: an exemplary biomarker for Alzheimer's disease? Biological psychiatry, 2006,59(10):940-7.
    [80] Yang M, Baranov E, Moossa AR, et al. Visualizing gene expression by whole-body fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(22): 12278-82.
    [81] Hu Y, Cai JY. The progress of applications of quantum dots in bio-imaging. Sheng li ke xue jin zhan [Progress in physiology], 2007,38(3):280-2.
    [82] Ai X, Xu Q, Jones M, et al. Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2007,6(9): 1027-33.
    [83] Rhyner MN, Smith AM, Gao X, et al. Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine (London, England), 2006, 1(2):209-17.
    [1]Hall M,Kazakova I,Yao YM.High sensitivity immunoassays using particulate fluorescent labels.Analytical biochemistry,1999,272(2):165-70.
    [2]Jovin TM.Quantum dots finally come of age.Nature biotechnology,2003,21(1):32-3.
    [3]Kim S,Fisher B,Eisler HJ,et al.Type-Ⅱ quantum dots:CdTe/CdSe(core/shell)and CdSe/ZnTe(core/shell) heterostructures.Journal of the American Chemical Society,2003,125(38):11466-7.
    [4]Farias PM,Santos BS,Thomaz AA,et al.Fluorescent Ⅱ-Ⅵ semiconductor quantum dots in living cells:nonlinear microspectroscopy in an optical tweezers system.The journal of physical chemistry.B,2008,112(9):2734-7.
    [5]Guyot-Sionnest P.Quantum dots:a new quantum state?.Nature materials,2005,4(9):653-4.
    [6]Daneshvar H,Nelms J,Muhammad O,et al.Imaging characteristics of zinc sulfide shell,cadmium telluride core quantum dots.Nanomedicine(London, England), 2008,3(1):21-9.
    [7] Li ZB, Cai W, Chen X. Semiconductor quantum dots for in vivo imaging. Journal of nanoscience and nanotechnology, 2007,7(8):2567-81.
    [8] Chen CY, Cheng CT, Lai CW, et al. Type-Ⅱ CdSe/CdTe/ZnTe (core-shell-shell) quantum dots with cascade band edges: the separation of electron (at CdSe) and hole (at ZnTe) by the CdTe layer. Small (Weinheim an der Bergstrasse, Germany), 2005,1(12):1215-20.
    [9] Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental health perspectives, 2006,114(2): 165-72.
    [10] Liu T, Liu B, Zhang H, et al. The fluorescence bioassay platforms on quantum dots nanoparticles. Journal of fluorescence, 2005,15(5):729-33.
    [11] Klimov VI VI, Mikhailovsky AA, McBranch DW, et al. Quantization of multiparticle auger rates in semiconductor quantum dots. Science (New York, N.Y.),2000,287(5455):1011-3.
    [12] Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science (New York, N.Y.), 2002,298(5599): 1759-62.
    [13] Spinicelli P, Mahler B, Buil S, et al. Non-Blinking Semiconductor Colloidal Quantum Dots for Biology, Optoelectronics and Quantum Optics. Chemphyschem : a European journal of chemical physics and physical chemistry, 2009.
    [14] Rosenthal SJ. Bar-coding biomolecules with fluorescent nanocrystals. Nature biotechnology, 2001,19(7):621-2.
    [15] Whiteside MD, Treseder KK, Atsatt PR. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology, 2009,90(1): 100-8.
    [16] Chen C, Peng J, Xia HS, et al. Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials, 2009,30(15):2912-8.
    [17] Chen H, Gai H, Yeung ES. Inhibition of photobleaching and blue shift in quantum dots. Chemical communications (Cambridge, England), 2009,(13):1676-8.
    [18] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels. Nature methods, 2008,5(9):763-75.
    [19] Karabanovas V, Zakarevicius E, Sukackaite A, et al. Examination of the stability of hydrophobic (CdSe) ZnS quantum dots in the digestive tract of rats. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2008,7(6):725-9.
    [20] Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annual review of physical chemistry, 2007,58:409-31.
    [21] Chan WC, Maxwell DJ, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Current opinion in biotechnology, 2002,13(1):40-6.
    [22] Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature biotechnology, 2001,19(7):631 -5.
    [23] Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science (New York, N.Y.), 1998,281(5385):2016-8.
    [24] Gao X, Nie S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends in biotechnology, 2003,21(9):371-3.
    [25] Biju V, Itoh T, Anas A, et al. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Analytical and bioanalytical chemistry, 2008,391(7):2469-95.
    [26] Sharma H, Sharma SN, Kumar U, et al. Formation of water-soluble and biocompatible TOPO-capped CdSe quantum dots with efficient photoluminescence. Journal of materials science. Materials in medicine, 2008.
    [27] Wang YH, Chen Z, Zhou XQ. Synthesis and photoluminescence of ZnS quantum dots. Journal of nanoscience and nanotechnology, 2008,8(3): 1312-5.
    [28] MA Hines, P Guyot-Sionnest. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem, 1996,100:468-471.
    [29] Crouch D, Norager S, O'Brien P, et al. New synthetic routes for quantum dots. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2003,361 (1803):297-310; discussion 310.
    [30] T Rajh, OI Micic, AJ Nozik. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots. J. Phys. Chem, 1993,97(46): 11999-12003.
    [31] Z Lin, S Cui, H Zhang, Q Chen, B Yang, X Su. Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction. Anal Biochem, 2003,319(2):239-243.
    [32] Ganesh N, Zhang W, Mathias PC, et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nature nanotechnology, 2007,2(8):515-20.
    [33] Mancini MC, Kairdolf BA, Smith AM, et al. Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. Journal of the American Chemical Society, 2008,130(33): 10836-7.
    [34] Grabolle M, Ziegler J, Merkulov A, et al. Stability and fluorescence quantum yield of CdSe-ZnS quantum dots-influence of the thickness of the ZnS shell. Ann N Y Acad Sci JT - Annals of the New York Academy of Sciences, 2008,1130:235-41.
    [35] Li QS, Zhang RQ, Lee ST, et al. Optimal surface functionalization of silicon quantum dots. The Journal of chemical physics, 2008,128(24):244714.
    [36] Dembski S, Graf C, Kruger T, et al. Photoactivation of CdSe/ZnS quantum dots embedded in silica colloids. Small (Weinheim an der Bergstrasse, Germany), 2008,4(9): 1516-26.
    [37] Bruchez M J, Moronne M, Gin P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998,281:2013-2016.
    [38] Warnement MR, Tomlinson ID, Chang JC, et al. Controlling the reactivity of ampiphilic quantum dots in biological assays through hydrophobic assembly of custom PEG derivatives. Bioconjugate chemistry, 2008,19(7): 1404-13.
    [39] Toita S, Hasegawa U, Koga H, et al. Protein-conjugated quantum dots effectively delivered into living cells by a cationic nanogel. Journal of nanoscience and nanotechnology, 2008,8(5):2279-85.
    [40] Lin Z, Su X, Mu Y, et al. Methods for labeling quantum dots to biomolecules. Journal of nanoscience and nanotechnology, 2004,4(6):641-5.
    [41] Skaff H, Sill K, Emrick T. Quantum dots tailored with poly(para-phenylene vinylene). Journal of the American Chemical Society, 2004,126(36):11322-5.
    [42] Smith AM, Duan H, Mohs AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced drug delivery reviews, 2008,60(11):1226-40.
    [43] Xingyong Wu, Hongjian Liu, Jianquan Liu, Kari N. Haley, Joseph A. Treadway, J Peter Larson, Nianfeng Ge, Frank Peale & Marcel P. Bruehez. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots.Nature Biotechnology, 2002,21:44-46.
    [44] Shi W, Ma X. The detection application of CdS quantum dots in labeling DNA molecules. Biomedical materials (Bristol, England), 2006,1(2): 81-4.
    [45] Kim MJ, Park HY, Kim J, et al. Western blot analysis using metal-nitrilotriacetate conjugated CdSe/ZnS quantum dots. Analytical biochemistry, 2008,379(1):124-6.
    [46] Chang CF, Chen CY, Chang FH, et al. Cell tracking and detection of molecular expression in live cells using lipid-enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy. Optics express, 2008,16(13):9534-48.
    [47] M P Bruchez, M Moronne, P Gin, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998,281:2013-2016.
    [48] Quantum dot bioconjugates for ultrasensitive nonisotopic detection . Science, 1998,281:2016-2018.
    [49] M Y Han, X H Gao, J Z Su and S M Nie. Lab-on-a-bead: optically encoded microspheres for massively parallel analysis of genes and proteins.Nature Biotech, 2001,19:631-635.
    [50] Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature biotechnology, 2003,21(1):41-6.
    [51] Tokumasu F, Dvorak J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc, 2003,211:256-261.
    [52] Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001,19(7):631-635.
    [53] MANSSON A,SUNDBERG M,BALAZ M,et al. n vitro Sliding of Actin Filaments Labeled with Single Uantum Dots. Biochemical and Biophysical Research Communications, 2004, 314:529-534.
    [54] Misra RD. Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine (London, England), 2008,3(3):271-4.
    [55] Yang D, Chen Q, Wang W, et al. Direct and indirect immunolabelling of HeLa cells with quantum dots. Luminescence : the journal of biological and chemical luminescence, 2008,23 (3): 169-74.
    [56] Weng J F, Song XT, Li L, et al. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta, 2006,70(2):397-402.
    [57] Zhelev Z, Ohba H, Bakalova R, et al. Fabrication of quantum dot-lectin conjugates as novel fluorescent probes for microscopic and flow cytometric identification of leukemia cells from normal lymphocytes. Chem Commun(Camb), 2005,15:1980-1982.
    [58] Xing Y, Xia Z, Rao J. Semiconductor Quantum Dots for Biosensing and In Vivo Imaging. IEEE transactions on nanobioscience, 2009.
    [59] M E Akerman, W C W Chan, P Laakkonen,et al. Nanocrystal targeting in vivo. Science Applied Biological, 2002,99:12617-12621.
    [60] Ballou B, Lagerholm B C, Ernst A L, Bruchez M P, Waggoner A S. Noninvasive imaging of quantum dots in mice. Bioconj. Chem, 2004,15:79- 86.
    [61] Iga AM, Robertson JH, Winslet MC, et al. Clinical potential of quantum dots. Journal of biomedicine & biotechnology, 2007,2007(10):76087.
    [62] Zhang H, Yee D, Wang C. Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine (London, England), 2008,3(1):83-91.
    [63] Robe A, Pic E, Lassalle HP, et al. Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC cancer, 2008,8:111.
    [64] Peng B, Chu M. Application of quantum dots fluorescent nanoprobes in following the migration of inflammatory cells from local tissue to draining lymph node. Shengwu yixue gongchengxue zazhi, 2008,25(1):72-6.
    [65] Gao X,Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology. Nature Biotechnology, 2004,22:969-976.
    [66] Hoshino A,Hanakik,Suzuki K,et al. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochemcal and Biophysical Research Communications, 2004,314:46-53.
    [67] S Kim, YT Lim, EG Soltesz, AM De Grand, J Lee. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nature Biotechnology, 2004,22(1):93-97.
    [68] Pathak S, Cao E, Davidson MC, et al. Quantum dot applications to neuroscience: new tools for probing neurons and glia. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006,26(7): 1893-5.
    [69] Dahan M, Levi S, Luccardini C, Rostaing P,Riveau B, Triller A. Diffusion dynamicsof glycine receptors revealed by singlequantum dot tracking. Science, 2003,302:442-445.
    [70] Vu TQ, Maddipati R, Blute TA, et al. Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth. Nano letters, 2005,5(4):603-7.
    [71] Winter BJ, Liu TY, Korgel BA. Adv Mater, 2001,13(22):16732-1677.
    [72] Howarth M, Takao K, Hayashi Y, et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(21):7583-8.
    [73] Fan H, Leve EW, Scullin C, Gabaldon J, Tallant D, Bunge S, Boyle T, Wilson MC, Brinker CJ. Surfactant-assisted synthesis of watersoluble and biocompatible semiconductor quantum dot micelles. NanoLett, 2005,5:645-648.
    [74] Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science (New York, N.Y.), 2003,302(5644):442-5.
    [75] Swadeshmukul Santra et al. Rapid and effective labeling of brain tissue using TAT - conjugated CdS: Mn/ZnS quantum dots. Chem.Commun, 2005:3144-3166.
    [76] Akerman ME, Chan WC, Laakkonen P, et al. Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(20):12617-21.
    [77] Corbin JG, Haydar TF. Quantum dots for neuroscience research: new tools for old problems?. Nanomedicine (London, England), 2007,2(5):579-81.
    [78] Goldman ER, Balighian ED, Mattoussi H, et al. Avidin: a natural bridge for quantum dot-antibody conjugates. Journal of the American Chemical Society, 2002,124(22):6378-82.
    [79] Medintz IL, Uyeda HT, Goldman ER, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature materials, 2005,4(6):435-46.
    [80] Bentzen EL, House F, Utley TJ, et al. Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano letters, 2005,5(4):591-5.
    [81] Du D, Chen S, Song D, et al. Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosensors & bioelectronics, 2008,24(3):475-9.
    [82] A Y Nazzle, L H Qu, X G Peng, et al. Nano Lett, 2003,3:819-822.
    [83] Medintz IL, Clapp AR, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature materials, 2003,2(9):630-8.
    [84] Nechyporuk Zloyv, Stockc, Schillers H, et al.A . single plasma membrane K~+ channel detection by using dualcolor quantum dot labeling. Am J Physiol Cell Physiol, 2006, 291: 266-269.
    [85] Liu YJ, Yao DJ, Chang HY, et al. Magnetic bead-based DNA detection with multi-layers quantum dots labeling for rapid detection of Escherichia coli O157:H7. Biosensors & bioelectronics, 2008,24(4):558-65.
    [86] Crut A, Geron-landre B, Bonnet I, et al. Detection of single DNA molecules by multicolor quantumdot end-labeling. Nucleic Acids Res, 2005,33(11):98.
    [87] Yin F, Gao Y, Chen C, et al. Toxicological study of quantum dots. Journal of hygiene research, 2008,37(6):760-3.
    [88] Shiohara A, Hoshino A, Hanaki K, et al. On the cyto-toxicity caused by quantum dots. Microbiology and immunology, 2004,48(9):669-75.
    [89] Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier A M, Gaub H E, Fertig N, Parak W J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett, 2005,5(2):331-338.
    [90] Derfus A M, Chan C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett, 2004,4(1):11-18.
    [91] Cho S J, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik F M. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir, 2007, 23 (4): 1974-1980.
    [92] Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature biotechnology, 2003,21(1):47-51.
    [93] Smith JD, Fisher GW, Waggoner AS, et al. The use of quantum dots for analysis of chick CAM vasculature. Microvascular research, 2007,73(2):75-83.
    [94] Medintz IL, Mattoussi H, Clapp AR. Potential clinical applications of quantum dots. International journal of nanomedicine, 2008,3(2):151-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700