用户名: 密码: 验证码:
红条毛肤石鳖齿舌主侧齿齿尖矿化过程及矿化机理研究初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石鳖的齿舌被发现有磁铁矿沉积以来,齿舌成为生物矿化研究尤其是铁矿化研究的最佳材料,其齿舌中矿化了大量铁化物包括以纳米颗粒形式存在的磁铁矿。磁性纳米颗粒在很多领域有着广泛的应用前景。红条毛肤石鳖是我国沿海潮间带习见的石鳖物种,本文以其齿舌为研究对象,利用光学显微镜、扫描电镜、生物透射电镜、高分辨率透射电镜、超导量子干涉磁强计、X-射线衍射、红外光谱及显微硬度计等技术从多个角度对齿舌主侧齿齿尖的矿化过程及机理开展研究。首先,形态学上对主侧齿齿尖的产生、矿化过程及磁铁矿颗粒的微结构进行研究;其次,磁学上对处于不同矿化段的齿舌段的起始磁化曲线、磁滞回线及磁铁矿含量进行测定,材料学上对处于不同矿化阶段的齿尖显微硬度进行测定;随后从组织化学和组织免疫学上对组织内的铁还原酶及铁蛋白进行定位,最后,从生物化学角度对铁蛋白进行提取纯化。
     研究结果显示,在长约1.5cm,宽约2~3mm,约有~60排齿列的齿舌上有形态和颜色明显不同于其他齿片的两列主侧齿纵贯其中。主侧齿齿片由形态迥然不同的两部分结构组成——齿尖和齿基,齿尖三尖齿状,齿基长柄状,两部分由连接区结合在一起。不同部段上的主侧齿齿尖在颜色有明显差异,反映了齿舌矿化历程。齿舌大体可分为四个矿化程度不同的部段,矿化程度的轻重使主侧齿齿尖内组分及结构随之发生变化。生成越早的主侧齿齿尖颜色越深,呈亮黑色,矿化程度重;越晚的颜色越浅,呈红棕色,矿化程度轻;新生成的几乎白色,无矿化。齿片的生成由齿舌囊末端生长点细胞群完成,细胞有规则地分布于囊壁四周并沿壁纵向分布,具很强的分裂能力和分泌功能,齿片形成过程中各司其职,有的负责齿舌基膜合成,有的负责齿片形成,有的则负责功能酶分泌。新生齿片齿尖内部大量的有机纤维细丝构成网眼状结构,结构内无矿化物;初矿化齿尖的有机结构内开始出现颗粒状矿化物,有机纤维细丝逐渐成束,矿化物沉积于纤维束结构之中;随矿化程度不断加深,矿化物随之不断地积累于齿尖中,齿尖也不断成熟。齿尖的矿化分为两个途径,即内外途径。齿尖外围齿舌囊上皮细胞形成胞外微突起与齿尖外表面连接形成微突起层,细胞内分泌物可通过突起层不断地将有机质和矿化物元素转运到齿尖内,为外部途径;齿尖后齿面内侧近齿尖与齿基连接处有形如一梳状的结构,齿基内腔通道内上皮细胞可通过梳状结构运送有机物和矿化物到齿尖内部,称谓内途径。齿舌囊上皮细胞内有大量的被膜包裹的含铁蛋白颗粒的聚集体,聚集体的表现形态不一,有完全充满的,有部分填充的,充满的聚集体中还有颗粒密集的和松散的之分,聚集体多椭圆形,直径一般在~600nm。上皮细胞组织中有高铁(三价铁)还原酶存在,此酶对齿尖矿化可能起关键作用。
     成熟齿尖长(上下轴)~250μm,宽(左右轴)~150μm,厚(前后轴)~100μm,齿基长~400μm,两者间为宽~2μm的连接区。齿尖结构分为内外共三层,表层(外层)由黑色的磁铁矿(Fe_3O_4)包裹,其中部分磁铁矿氧化转化为同样具磁性的磁赤铁矿(γ-Fe_2O_3),前后齿面的磁铁矿层厚度不同,后齿面最厚处~20μm,前齿面则薄些,最厚处~5μm;磁铁矿层由长条状的磁铁矿构成,条状磁铁矿长达几个微米,宽~100nm,顺齿尖长轴方向排布,由晶体状磁铁矿组成,晶体大小不一,单晶平均大小为~52nm,晶体中有单晶、孪晶和多晶形式,晶体间有层错现象发生,晶体(111)和(022)晶面间距分别为~0.48nm和0.29nm。紧贴磁铁矿层的内侧为砖红色纤铁矿层(α-Fe_2O_3),厚度~1μm;内芯为矿化程度低的有机基质层,厚~80μm,矿化了少量的钙矿物;齿基矿化成分很少,成分主要是α-几丁质。齿基近两个端点处各有一椭圆形开口,向内连接齿基内腔通道,通道直径~50μm,在齿基前端,通道直达齿尖与齿基连接处下方。
     矿化结果使齿舌各矿化段(Ⅰ-Ⅳ段)的磁铁矿含量不同,Ⅰ段为零,Ⅱ-Ⅳ段分别为干重的6.83%、16.39%、14.71%,饱和磁化强度分别为6.5 emu/g、15.1 emu/g、14.0 emu/g,相应各段齿尖的饱和磁化强度分别为68.6 emu/g、79.2 emu/g、76.0 emu/g。对整个齿舌而言,磁铁矿含量约为干重的13%,矿物重量的57%,每个齿舌约含10~(11-12)个磁铁矿颗粒,齿舌中铁元素的89.04%(13%/14.60%)以磁铁矿(或磁性物质)形式存在。相应各段(Ⅱ-Ⅳ)齿尖表面显微硬度分别为124.38 kg/mm~2、473.04 kg/mm~2、646.80 kg/mm~2,以第三、四段成熟齿尖的显微硬度计算,其平均显微硬度为559.92 kg/mm~2。齿舌囊内组织提取的铁蛋白每个分子约含铁原子~1000个,Fe/P值~,分子量~340KD,pI为5.0~6.0,分子大小~10nm,蛋白分子由两种亚基构成,分别为25.4KD和34.8KD。结果表明红条毛肤石鳖齿舌主侧齿齿尖的矿化在时空上是连续进行的,矿化有两条途径,齿基有内腔通道,齿舌囊上皮细胞组织中有高铁还原酶和铁蛋白,两者对齿尖矿化极为重要,齿舌的磁铁矿含量较大,磁铁矿以结晶体形式存在矿层内,矿化结果使齿尖具磁性和硬度。
Since biogenic magnetite was first found in the teeth of chitons (Polyplacophora, Mollusca), the radular teeth have been good materials for biomineralization research, particularly for iron mineralization, as massive iron biomierals including magnetite nanoscale particles are deposited in the major lateral teeth, and that magnetic nanoparticles have been widely applied to many fields. The Acanthochiton rubrolineatus Lischke (1873) is one familiar chiton species which lives in the rocky intertidal zones in China. In this article, the process and mechanism of biomineralization of cusp of the major lateral tooth, together with some physical, chemical and material characteristics determinations of the radula were undertaken detailed investigation using a combination of light microscopy, scanning and transmission electron microscopy, superconducting quantum interference device magnetometer, powder X-ray diffraction and Fourier transform infrared spectroscopy. At first, in the morphology aspects, a holistic approach has been adopted that encompasses observations over a range of spatial scales, from whole radula mineralization process to those occurring within individual tooth cusps at various stages of development, also observation of microstructure of magnetite crystals in the magnetite layer. Secondly, in the magnetism aspects, the initial magnetization curves of radular segments and tooth cusps at various stages of development were measured, the hysteresis loops of radular segments were also measured, as a consequence of measurement, the contents of magnetite within the cups and radular segments were calculated; in addition, in the materials science aspects, microhardness of tooth cusps at various stages of development was determined. Thirdly, in the histochemistry and immunohistology aspects, the locations of chiton ferritin and ferric iron reductase in radular sac epithelia were identified. Finally, in the biochemistry aspects, the ferritin was isolated and purified.
     Investigation results showed that chiton A.rubrolineatus has a length of 1.5cm and width of 2—3mm tongue-like radula which bears about 60 transverse rows of teeth. Among these teeth, two lines of major lateral teeth that are obviously distinguished from others by shape and color distribute along the length of the radula. Major lateral tooth consists of two parts, cusp and tooth base, which are different from each other in shape, and the two parts connect by a joint zone. Cusp presents tricuspid shape, while tooth base presents long handle shape. According to mineralization degree, the radula can be divided into four stages of development (I-IV segments), and the cusps of major lateral teeth at various stages appear different colors range from white, red brown to shinny black, indicating the process of radula mineralization. Accompanying mineralization development, the cusp undergoes substantial changes in composition and framework. New formed cusp shows white color and no minerals are deposited in; while incipient mineralizing cusp shows red-brown color and minerals starts to be deposited in; for mature cusp, it shows shiny-black color and lots of minerals are deposited in.
     The formation of new teeth is taken place at the terminal end of radular sac, at which the cells of so-called sac odontoblasts distribute regularly within the sac in three dimensional organization, and they are of strong ability of cell division and secretory functions, cells at different regions of sac perform various roles, some are responsible for formation of radular membrane, some for formation of new teeth, and some for secretion of functional enzymes. Within newly formed cusp, massive organic microfibrils constitute mesh-like framework, in the structure there are no minerals; within incipient mineralizing cusp, organic fibrous filaments represent bundle forms, mineral granules starts to be biomineralized inside the fibres; with development of biomineralization, more of minerals granules are accumulated into the organic matrix and results in high biomierlization of mature cusp. Cusp mineralization has two pathways, namely internal and external pathways. By the external pathway, the superior sac epithelia surrounding the cusp via microvillus-like structure may unceasingly transport organic materials and mineral elements into the cusp; by the internal pathway, the inferior sac epithelia in the stylus canal of tooth base can provide materials via a comb-like structure occurring below the joint zone between the cusp and tooth base. Radular sac epithelium contains numerous membrane bound iron-containing aggregates, these aggregate exhibit various statuses in morphology, some of them are fully filled, and some of them are partly filled; in general, aggregates are oval shaped, and on average are about~600nm in diameter. Immunohistology reaction indicates the iron-containing granules are ferritin nature. Ferric iron reductase exists in membrane of the epithelium, which possibly plays important roles in ironbiomineralization of cusp, also may be responsible for the transformation of magnetite from other phases of iron minerals.
     The mature cusp is about~250μm in length (vertical axis),~150μm in width (horizontal axis) and~100μm in thickness (longitudinal axis); while tooth base is approximately~400μm in length. Cusp may be divides into three layers in structure, the magnetite (Fe3O4) layer (outer layer), is in different thickness on the posterior and anterior surface respectively, and partial magnetite in the layer transforms to maghemite (γ-Fe2O3) as magnetic as magnetite by oxidation. On the posterior surface, the maximum thickness of magnetite layer reaches approximately~20μm, on the contrary, the maximum thickness is only approximately~5μm; Inside the magnetite layer, magnetite present in a form of lath-shaped pieces that are several microns in length and about~100nm in width, these pieces arrange parallel to the vertical axis direction of cusp and are composed of many magnetite crystals, magnetite crystals vary in size, and mean size is approximately~52nm in diameter, crystals exhibit single, twinned and polycrystalline forms, fault phenomenon also occurs between the crystals, the d-spacing of (111) and (022) in single crystal is~0.48nm and 0.29nm respectively. Adjacent to the magnetite layer is lepidocrocite layer (α-Fe_2O_3), which is about~1μm in thickness and appears in brick red color; the core mainly is organic matrix, about~80μm thick, in which a few of calcium minerals and so on are mineralized. The tooth base deposits little minerals compared to the cusp, main composition is ofα-chitin in nature. Inside the tooth base, there is a long stylus canal that is about~50μm in diameter, and one apex of the canal directly reaches the site just below the joint zone; two openings are situated on the two ends of the tooth base respectively. For II-IV segments of radula, the saturated magnetization value is 6.5emu/g, 15.1emu/g and 14.0emu/g respectively; while for cusps, the saturated magnetization value is 68.6emu/g, 79.2emu/g and 76.0emu/g respectively. As a result, the magnetite content calculated within each of radula segments (II-IV segments) is 6.83%, 16.39% and 14.71% by dry weight, for the whole radula, magnetite content arrives at approximately 13% by dry weight, 57% by minerals weight, being equal to approximately 1011-12 magnetite crystals, approximately 89.04% iron (13%/14.60%) presents in the magnetite (or other magnetic material) form. Therefore, the value of microhardness of cusps of corresponding segments is 124.38 kg/mm2, 473.04 kg/mm2, 646.80 kg/mm2 respectively, taking account of the cusps within II segment are not fully mature, so the mean value of microhardness of cusps of III-IV segments as whole is calculated to be 559.92 kg/mm2. The chiton ferritin has been isolated and purified from radula sac to electrophoretic purity by ion-exchange chromatography and electrophoresis, and the native ferritin contains 1000 Fe atoms per molecule of protein and considerable amounts of phosphate (Fe/P =30). The molecule size is 8.2 (±1.0) nm. The ferritin has Mr of 300kDa, pI of 4.2-5.3 and is composed of two subunits Mr 25.4kDa and Mr 34.8kDa. Conclusion is that biomineralization of the cusp of major lateral tooth of chiton A. rubrolineatus is a progressive process which develops temporally and spatially, and mineralization has two pathways, ferric iron reductase and ferritin occurs in radular sac epithelia, they are important for the mineralization. In addition, magnetite content within radula is large, and magnetite presents in crystalline form. Therefore, the biomineralization causes the cusps are of magnetic, and have somemechanical hardness.
引文
Aisen P and Listowsky I. Iron transport and storage proteins.Annu Rev Biochem, 1980,49:357-393.
    
    Amann R, Peplies J, Schuler D. Diversity and taxonomy of magnetotactic bacteria. In: Schuler D, eds.Magnetoreception and magnetosomes in bacteria. Berlin: Springer-Verlag, 2006, pp.25-36.
    
    Andrews SC, Arosio P, Bottke W, Briat JF, Von DM, Harrison PM. Structure, function, and evolution of ferritins. J. Inorg.Biochem, 1992, 47: 161-174.
    
    Anonymous 1970 Landolt-Bo¨rnstein new series: group III, volume 4b, Magnetic and other properties of oxides and related compounds. Berlin: Springer.
    
    Albrecht M, Janke V, Sievers S, Siegner U, Sch(?)(?)ler D, Heyen U.Scanning atomic force microscopy study of biogenic nanoparticles for medical applications. J. Magnetism and Magnetic Materials, 2005, 290-291:Part 1,269-271.
    
    Alves OC, Wajnberg E, De Oliveira JF, Esquivel DM. Magnetic material arrangement in oriented termites: a magnetic resonance study. J Magn Reson, 2004,168: 246-51.
    
    Arakaki A, Webb J, Matsunaga T. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. Journal Biological Chemistry, 2003,278: 8745-8750.
    
    Arosio P, Levi S, Gabri E, Stefanini S, Finazzi-Agro A, Chiancone E. Properties of ferritin from the earthwormOctolasium complanatum. Biochim Biophys Acta, 1984,787:264-269.
    
    Asai S, Koumoto K, Matsushita Y, Yashima E, Morinaga M, et al. Advances in nature-guided materials processing. Science and Technology of Advanced Materials, 2003,4: 421-433.
    
    Asmatulu R, Zalich M A, Claus R O, et al. Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J. Magnetism and Magnetic Materials,2005,292:108-119.
    
    Baba A. Crystallization of ferritin from coelomics fluid of Corbicula sandai with ammonium sulfate. J Biochem (Tokyo) 1969, 65: 915-923.
    
    Baba A, May M E and Fish W W.The properties of Corbicula apoferritin.Biochemica et. Biophysica Acta,1977,491:491-496.
    
    Babincova M, Cicmanec P, Altanerova V, Altaner C, Babinec P. AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochemistry, 2002,55: 17-9.
    
    Baeuerlein E and Schuler D. Biomineralization iron transport and magnetite crystal formation in Magnetospirillum gryphiswaldense. J. Inorg. Biochem, 1995, 59:107-110.
    Bazylinski D A, Bazylinski D A and Frankel R B. Biologically Controlled Mineralization in Prokaryotes.Reviews in Mineralogy and Geochemistry, 2003, 54: 217-247.
    
    Bazylinski D A. (a) Structure and function of the bacterial magnetosome.ASM News, 1995, 61: 337-343.
    
    Bazylinski D A.(b) Controlled biomineralization of magnetite (Fe_3O_4) and greigite (Fe_3S_4) in a magnetotactic bacterium. Appl. Environ. Microbiol, 1995, 61: 3232-3239.
    
    Beaumont C, Torti S V, Torti F M, Massover W H. Novel Properties of L-type Polypeptide Subunits in Mouse Ferritin Molecules. American Society for Biochemistry and Molecular Biology, 1996, 271: 7923-7926.
    
    Beniash E, Addadi L, Weiner S. Cellular control over spicule formation in sea urchin embryos: A structural approach. J. Structural Biology, 1999, 125: 50-62.
    
    Bertani LE, Weko J, Phillips KV, Gray RF, Kirschvink JL. Physical and genetic characterization of the genome of Magnetospirillum magnetotacticum, strain MS-1. Gene, 2001; 264: 257-263.
    
    Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, Sturba L. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials, 2005, 26: 4085-4089.
    
    Bilkenroth U, Taubert H, Riemann D, Rebmann U, Heynemann H, Meye A. Detection and enrichment of disseminated renal carcinoma cells from peripheral blood by immunomagnetic cell separation. International Journal of Cancer, 2001, 92: 577-82.
    
    Blakemore RP. Magnetotactic bacteria. Science, 1975,190: 377-379.
    
    Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials, 2006, 27:4428-4433.
    
    Bootsma N, Macey D J, Webb J and Talbot V. Isolation and characterization of ferritin from the hepatopancreas of the mussel Mytilus edulis. Biol Metals, 1988, 1:106-111.
    Bottke W. Immuno-localization of ferritin polypeptides in oocytes and somatic tissue of the freshwater snails Lymnaea stagnalis L. and Planorbarius correus L. Cell Tissue Res, 1986, 243: 397-404.
    
    Bottke W, Burschyk M and Volmer J. On the origin of the yolk protein ferritin in snails.Development Genes and Evolution, 1988, 197: 377-382.
    
    Brooker L R, Gardner L, Macey D J, Elizur A.Genes and biomineralization in the radular teeth of chitons.72nd Annual American Malacological Society, Seattle, 2006.
    
    Brooker L R, Lee A D, Macey D J, Webb J, Van Bronswijk W L. In situ studies of biomineral deposition in the radula teeth of chitons of the suborder chitonina.Venus 2006, 65:71-80.
    
    Bucak S, Jones D A, Laibinis P E, Hatton T A. Protein separations using colloidal magnetic nanoparticles.Biotechnol. Prog., 2003,19: 477-484.
    
    Bulte JWM, Brooks RA Magnetic nanoparticles as contrast agents for imagining, in Scientific and Clinical Applications of Magnetic Carriers (eds. Hafeli U, Sch(?)tt W, Teller J Et al.), New York, London: Plenum,1997, 527-543.
    
    Burford M A, Macey D J, Webb J. Hemolymph ferritin and radula structure in the limpets Patelloida alticostata and Patella peronii (Mollusca: Gastropoda). Comp. Biochem Physiol, 1986, 83A: 353-358.
    
    Caruso F, Spasova M, Susha A, Giersig M, Caruso RA. Magnetic nanoparticles and hollow spheres constructed by a sequential layering approach. Chem. Mater., 2001, 13:109-116.
    
    Chasteen ND. Ferritin: Uptake, storage, and release of iron.Metal Ions Biol. Syst, 1998, 35: 479-514.
    Chasteen ND, Harrison PM. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol.,1999, 126: 182-194.
    
    Chelazzi G, Santina PD and Parpagnoli D. The role of trail following in the homing of intertidal chitons:A comparison between three Acanthopleura spp. Marine Biology, 1990, 105: 445-450.
    
    Cheng FY, Su CH, Yang YS,Yeh CS, Tsai HY, Wu CL. Characterization of aqueous dispersions of Fe_3O_4 nanoparticles and their biomedical applications.Biomaterials, 2005, 26: 729-738.
    
    Chiya N, Yoshiyuki T and Kichiro K. Characterization of Iron Components in the Radula of the Japanese Chiton Acanthopleura japonica.Venus, 2006, 65:153-163.
    
    Clegg G A, Fitton J E, Harrison P M and Treffry A.Ferritin: molecular structure and iron-storage mechanisms.Prog.Biophys.Mol.Biol., 1980, 36: 56-86.
    
    Cowley JM, Janney DE, Gerkin RC, Buseck PR. The structure of ferritin cores determined by electron nanodiffraction. J. Structural Biology, 2000,131: 210-216.
    
    Curry PPM, Chasteen ND. Molecular aspects of iron uptake and storage in ferritin.Coordination Chemistry Reviews, 1995, 144: 347-366.
    
    De Araujo T F F, Pires M A, Frankel R B. Magnetite and magnetotaxis in algae. Biophysics J, 1986, 50:375-378.
    
    Diebel CE, Proksch R, Green CR, et al. Magnetite defines a vertebrate magnetreceptor. Nature, 2000,406:299-302.
    
    Devouard B, Posfai M, Hua X, Bazylinski DA, Frankel RB, Buseck PR. Magnetite from magnetotactic bateria: size distributions and twinning. Am. Mineral., 1998, 83: 1387-1398.
    Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Letters, 2001,496: 1-5.
    
    Dobson J, Grassi PP. Magnetic Properties of Human Hippocampal Tissue - Evaluation of Artefact and Contamination Sources. Brain Res. Bull., 1996, 39: 255-259.
    
    Duan H, Wang D, Sobal NS, Giersig M, Kurth DG, Mohwald H. Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett., 2005, 5: 949-952.
    
    Dunin-Borkowski RE. Magnetic microstructure of magnetotactic bacteria by electronholography. Science,1998,282:1868-1870.
    
    Esquivel DMS, Wanjnberg E, Cernicchiaro GE, Alves OC. Comparative magnetic measurement of migrantory ant and its only termite prey. J. Magnetism and magnetic materials, 2004, 278: 117-121.
    
    Evans L A, Macey D J and Webb J. Characterisation and structural organization of the organic matrix of the radula teeth of the chiton Acanthopleura hirtosa. Philosophical Transaction of the Royal Society, 1990,329 B: 87-96.
    
    Evans L A, Macey D J and Webb J. Distribution and composition of matrix protein in the radula teeth of the chiton Acanthopleura hirtosa. Marine Biology, 1991,109: 281-286.
    
    Evans L A, Macey D Jand Webb J. Calcium biomineralization in the radula teeth of the chiton Acanthopleura hirtosa. Calcified Tissue International, 1992, 51: 78-82.
    
    Evans L A, Macey DJ and Webb J.Matrix heterogeneity in the in the radula teeth of the chiton Acanthopleura hirtosa. Acta Zoologica, 1994, 75: 75-79.
    
    Farina M, Schemmel A, Weissmuller G, Cruz R, Kachars B and Bisch P M. Atomic force microscopy study of tooth surfaces. J. structural biology,1999,125: 39-49.
    
    Feng Q L, Su, X W, Cui F Z. et al. Crystallographic orientation domains of flat tablets in nacre. Biomimetics,1995,3: 159-67.
    
    Ferreira J, Cernicchiaro G, Winklhofer M, Dutra H, de Oliveira P S. Comparative magnetic measurements on social insects. J.Magnetism and Magnetic Materials, 2005, 289: 442-444.
    
    Frankel R B. Magnetic Guidance of Organisms Annual Review of Biophysics and Bioengineering, 1984, 13:85-103.
    
    Frankel R B, Blakemore R P. Iron biominerals. New York: Plenum Press, 1990, 193-220.
    
    Frankel R B, Frankel R B and Bazylinski D A. Biologically Induced Mineralization by Bacteria. Reviews in Mineralogy and Geochemistry, 2003, 54: 95-114.
    Frankel R B, Blakemore R P,Wolfe R S.Magnetite in freshwater magnetotactic bacteria.Science, 1979,203:1355-1356
    
    Frankel R B, Buseck P R. Magnetite biomineralization and ancient life on Mars. Current Opinion in Chemical Biology, 2000,4: 171-176.
    
    Fricker J. Drugs with a magnetic attraction to tumours.Drug Discov Today, 2001,6: 387-89.
    
    Friedman I E, Wierzchos J, Ascaso C and Winklhofer M. Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc. Natl. Acad. Sci., 2001, 98: 2176-2181.
    
    Geetha C. Vijay Deshpande. Purification and characterization of fish liver ferritins. Comparative Biochemistry and Physiology Part B, 1999,123: 285-294.
    
    Gorby Y A, Beveridge T J, Blakemore R P. Characterization of the bacterial magnetosome membrane.J.Bacteriol., 1988,170: 834-841.
    
    Gordon RT, Hines JR, Gordon D. Intracellular hyperthermia: a biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med. Hypotheses, 1979, 5: 83-102.
    
    Gould J L, Kirschvink JL, Deffeyes KS. Bees have magnetic remanence. Science, 1978, 201: 1026-1028.
    
    Grunberg K E C, Wawer C, Tebo B M. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria.Applied Environment Microbiology, 2001, 67:4573-4582.
    
    Grunberg KEC. Muller AO, Reszka R, Linder D, Kube M, Reinhardt R, Schuler D. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl. Environ.Microbiol, 2004, 70: 1040-1050.
    
    Guerin WF, Blakemore RP. Redox cycling of iron supports growth and magnetite synthesis by Aquaspirillum magnetotacticum. Appl. Environ. Microbiol, 1992, 58: 102-1109.
    
    Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 2005, 26: 1565-1573.
    
    Chasteen N D, Harrison P M. Mineralization in ferritin: An efficient means of iron storage. J Struct Biol,1999, 126: 182-194.
    
    Harrison P M, Arosio P. The ferritin: molecular properties, iron storage function and cellular regulation.Biochim.Biophys.Acta, 1996, 1275: 161-203.
    
    Heneine I F, Gazzinelli G & Tafuri W L. Iron metabolism in the snail Biomphalaria glabrata: storage and transfer. Comp. Biochem. Physiol, 1969, 28:391-399.
    Hsu CY. The processes of iron deposition in the common hornet (vespa affinis).Biology of the Cell, 2004, 96:529-537.
    
    Hsu CY, Li CW. Magnetoreception in honeybees.Science, 1994,265: 95-96.
    
    Hou Y, Kondoh H, Shimojo M, Sako EO, Ozaki N, Kogure T, Ohta T. Inorganic nanocrystal self-Assembly via the inclusion interaction of P-cyclodextrins: Toward 3D spherical magnetite. J. Phys. Chem. B., 2005,109: 4845-4852.
    
    Hur H G Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp.strainHN-41. PNAS,2007, 104:20410-20415.
    
    H(?)tten A, Sudfeld D, Ennen I, Reiss G, Hachmann W. Magnetic nanoparticles for biotechnology. J.Biotechnology, 2004,112:47-63.
    
    Igartua M, Saulnier P, Heurtault B, Pech B, Proust J E, Pedraz J L, Benoit J P. Development and characterization of solid lipid nanoparticles loaded with magnetite. International Journal of Pharmaceutics, 2002,233:149 - 157.
    
    Isambert A, Menguy N, Larquet E, Guyot F and Valet J P. Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. American Mineralogist, 2007, 92,621-630
    
    Ito A, Hibino E, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T.A new methodology of mesenchymal stem cell expansion using magnetic nanoparticles. Biochemical Engineering Journal, 2004,
    
    Jacobs DL, Watt GD, Frankel RB, Papaefthymiou GC. Redox reactions associated with iron release from mammalian ferritin. Biochemistry, 1989, 28: 1650-1655.
    
    Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W, Sander B, Vogl T, Felix R. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int. J. Hyperthermia, 1997, 13:587-605.
    
    Kato K, Radbruch A. Isolation and characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting. Cytometry,1993, 14: 384-92.
    
    Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, et al. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials, 2005, 26: 2231-2238.
    
    Keeton WT. Magnets interfere with pigeon homing. Proc. Natl. Acad. Sci., 1971, 68: 102-106.
    
    Kim DK, Mikhaylova M, Wang FH, Kehr J, Bjelke B, Zhang Y, et al. Starch coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater., 2003, 15: 4343-4351.
    
    Kim K S, Webb J, Macey D J, Cohen D D. Compositional changes during biomineralization of the radula of the chiton Clavaricona hirtosa. J. Inorganic Biochemistry, 1986, 28: 337-345.
    Kim K S, Macey D J, Webb J, Mann S. Iron biomineralization in the radula teeth of the chiton Acanthopleura hirtosa. Proc. R. Soc. Lond. B., 1989, 237: 335-346.
    
    Kim K S, Mun H R and Lee J H. Iron cores of tadpole ferritin: native, reconstituted and recombinant H-chain ferritins. Inorganica Chimica Acta, 2000, 298: 107-111.
    
    Kim K S, Webb J, Macey D J. Properties and role of ferritin in the hemolymph of chiton Clavarizona hirtosa.Biochim Biophys Acta, 1986, 884: 387-394.
    
    Kirschvink J L. Homing on Vertebrates.Nature, 1997, 390: 339-340.
    
    Kirschvink J L, Gould J L.Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems,1981,13:181-201.
    
    Kirschvink J L, Kirschvink A K, DiazRicci J C, Kirschvink S J.Magnetite in Human Tissues: A mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics, 1992, Supplement 1:101-113.
    
    Kirschvink J L, Kirschvink A K, Woodford B J. Magnetite biomineralization in the human brain. Proc. Natl.Acad. Sci., 1992, 89: 7683-7687.
    
    Kirschvink J K, Lowenstam H A. Mineralization and magnetization of chiton teeth: Paleomagnetic,sedimentologic and biologic implications of organic magnetite.Earth planet. Sci. letts, 1979,44: 193-204.
    
    Kirschvink J L, Walker M M, Diebel C E. Magnetite-based magnetoreception.Current Opinion in Neurobiology, 2001,11: 462-467.
    
    Kirschvink J L, Walker M M, Chang S B, Dizon A E, Peterson K A. Chains of single domain magnetite particles in chinook salmon Oncorhynchns tshawytscha. J. Comparative Physiology A: Neuroethology,Sensory, Neural and Behavioral Physiology, 1985, 157: 375-381.
    
    Koenig U, Gelinsky M, Pompe W. Biomimetic bone graft material-biodegradable, mineralized 3D-collagen-scaffolds. European Cells and Materials, 2003, 5: (Suppl. 2) 74-78.
    
    Kong B, Huang H Q, Lin Q M, Kim W K , Cai Z W, Cao T M, Miao H and Luo D M. Purifiaction,Electrophoretic Behavior, and Kinetics of Iron Release of Liver Ferritin of Dasyatis Akajei. Journal of Protein Chemistry, 2003, 32: 61-70
    
    Konhauser K O. Diversity of bacterial iron mineralization.Earth Science Reviews, 1998, 43: 91-121
    
    Kokubo T. Design of bioactive bone substitutes based on biomineralization process.Materials Science & Engineering C, 2005, 25: 97-104.
    Koneracka M, Kopcansky P, Timko M, Ramchand C N, de Sequeira A, Trevan M. Direct binding procedure of proteins and enzymes to fine magnetic particles. J Mol Catal B - Enzym, 2002, 689:1-6.
    
    Kozloff E N.Invertebrates. Philadelphia: Saunders College Publishing. 1990, 376-382.
    
    Kroger N, Deutzmann R, Bergsdorf C, and Sumper M. Species-specific polyamines from diatoms control silica morphology. PNAS 2000, 97: 14133-14138.
    
    Kroger N, Deutzmann R, and Sumper M. Silica-precipitating Peptides from Diatoms. The chemical structure of silaffin-la from cylindrotheca fusiformis. J. Biol. Chem., 2001,276: 26066-26070.
    
    Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y, Murakami T. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Int. J. Oncol., 2000,17: 309-15.
    
    Lawsona D M, Treffrya A, Artymiuka P J, Harrisona P M, Yewdalla S J, Luzzagob A, Cesarenic G, Levid Sand Arosiod P. Identification of the ferroxidase centre in ferritin. FEBS Letters, 1989, 254: 207-210.
    
    Lee A P, Brooker L R, Van Bronswijk W, Macey D J, Webb J. Apite mineralization in the chiton Acanthopleura echinata. Calcified Tissue International, 2000, 67: 408-415.
    
    Lee A P, Brooker L R, Webb J, Van Bronswijk W, Macey D J. A new biomineral identified in the cores of teeth from the chiton plaxiphora albida. J. biological Inorganic Chemistry, 2002, 8: 256-262.
    
    Leong L M, Tan B H and Ho K K. A specific stain for the detection of nonheme iron proteins in polyacrylamidegels.Anal.Biochem, 1992, 207: 317-320.
    
    Lewin A, Moore G R, Le Brun N E. Formation of protein-coated iron minerals. Dalton Trans., 2005, 22:3597-610.
    
    Li C W, Chin T S, Li J S, Huang S H.Growth of chiton teeth evidenced from magnetic measurement and microstructure characterization.IEEE Transactions on Magnetics, 1989, 25: 3818-3821.
    
    Liao S, Cui F Z, Zhang W, Feng Q L. Hierarchically Biomimetic Bone Scaffold Materials:Nano-HA/Collagen/PLA Composite. J.Biomed Mater Res Pt B Appl Biomater, 2004, 69B: 158-165.
    
    Liao S, Ngiam M, Watari F, Ramakrishna S, Chan CK. Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts. Bioinspir Biomim, 2007, 2: 37-41.
    
    Lins U and Farina M. Magnetosome size distribution in uncultured rod-shaped bacteria as determined by electron microscopy and electron spectroscopic imaging Microscopy. Research and Technique, 1998, 42:459-464.
    
    Lohmann K J, Johnsen S. The neurobiology of magnetoreception in vertebrate animals.Trends in Neurosciences,2000,23: 153-159.
    Lopez P J, Descl(?)s J, Allen A E, Bowler C.Prospects in diatom research.Current Opinion in Biotechnology,2005,16:180-186.
    
    Lowenstam H A.Magnetite in denticle capping in recent chitons (Polyplacophora).Geol.Soc.Am.Bill., 1962,435-438.
    
    Lowenstam H A. Lepidocrocite, an apatite mineral and magnetite in teeth of chitons (polyplacophora).Science, 1967,156: 1373-1375.
    
    Lowenstam HA. Minerals formed by organisms. Science, 1981,211: 1126-1131.
    
    Lowenstam H A, Lowenstam H A and Weiner S.Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of Chitons. Science, 1985,227: 51-53.
    
    Lowenstam HA, Weiner S. On biomineralization.Oxford: Oxford University Press, 1989,1-336.
    
    Lu H K, Huang C M and Li C W. Translocation of ferritin and biomineralization ofgoethite in the radula of the limpet Cellana toreuma Reeve. Experimental cell research, 1995, 219: 137-145.
    
    Luxembourg AT, Borrow P, Teyton L, Brunmark A B, Peterson PA, Jackson MR. Biomagnetic isolation Macey D J, Brook L R,Webb J, St. Pierre T G. Structureal organization of the the cusp of the radula teeth of the chiton Plaxiphora albida. Acta Zoological (Stockholm), 1996, 77: 287-294.
    
    Manfred S, Eike B, Gerhard L. Biomineralization in diatoms: Characterization of novel polyamines associated with silica. FEBS Letters, 2005, 579: 3765-3769.
    
    Maher B A. Magnetite biomineralization in termite. Proc. Roy. Soc. Lond. B, 1998,265: 733-738.
    
    Mann S and Sparks N H C. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon oncorhynchus nerk: implications for magnetoreception J. exp. Biol., 1988,140: 35-49.
    
    Mann S, Sparks N H C, Frankel R B, Bazylinski D A, Jannasch H W. Biomineralization of ferrimagnetic greigite (Fe_3S_4) and iron pyrite (FeS_2) in a magnetotactic bacterium. Nature, 1990, 343: 258-260.
    
    Mann S, Frankel R B, Blakemore R P. Structure, morphology and crystal growth of bacterial magnetite.Nature, 1984,310:405-407.
    
    Mann S, Sparks N H C, Wade V J. Crystallochemical control of iron oxide biomineralization, In: Frankel R B, Blakemore R P, eds. Iron biominerals. New York: Plenum Press, 1990b, 21-49.
    
    Mann S, Perry C C, Webb J, Luke B, Williams R J P. Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proceedings of the Royal Society B, 1986, 227: 179-190.
    
    Mann S, Bannister J V, Williams R J P. Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgate) hemolymph and bacterial (Pseudomonas aeruginosa) cells. J. Mol. Biol.,1986, 188:225-232.
    Mann S, Sparks NHC. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon (oncorhynchus nerka): implications for magnetoreception. J. exp. Biol., 1988, 140: 35-49.
    
    Mann S, Weiner S. Biomineralization: Structural questions at all length scales. J. Structural Biology, 1999,126: 179-181.
    
    Mark T, Johnson W. Ferric redutases of Legionella pneumophila. Biometals, 1993, 6: 107-114.
    
    Martinettil R, Dolcini L, Merello L, Scaglione S, Quarto R, Pressato D. Biomimetic Bone Graft With Higher Bioactivity. Key Engineering Materials, 2007, 330-332: 943-946.
    
    Massover W H. Ultrastructure of ferritin and apoferritin: A review. Micron, 1993,24: 389-437.
    
    Matsunaga T. Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem. Biophys.Res. Commun., 2000,268: 932-937
    
    Matsunaga T, Higashi Y, Tsujimura N. Drug delivery by magnetoliposomes containing bacterial magnetic particles. Cell Eng., 1997,2: 7-11.
    
    Matsunaga T, Kawasaki M, Yu X, Tsujimura N, Nakamura N. Chemiluminescence enzyme immunoassay using bacterial magnetic particles. Anal Chem., 1996,68: 3551-3554.
    
    Matsunaga T, Okamura Y. Genes and proteins involved in bacterial magnetic particle formation. Trends in Microbiology, 2003,11: 536-541.
    
    Matsunaga T, Takeyama H. Biomagnetic nanoparticle formation and application. Supramolecular Science,1998, 5: 391-394.
    
    Meldrum F C, Mann S, Heywood B R, Frankel RB, Bazylinski DA.Electron microscopy study of magnetosomes in two cultured vibroid magnetotacic bacteria. Proc. R. Soc. Lond. B, 1993, 251:237-242.
    
    Michel F M, Ehm L, Antao S M, Lee P L, Chupas P J, Liu G, Strongin D R, Schoonen M A, Phillips B L,Parise J B.The structure of ferrihydrite, a nanocrystalline material. Science, 2007, 5832: 1704-1705.
    
    Michael W, Humberto D and Paulo O S.Comparative magnetic measurements on social insects J. Magnetism and Magnetic Materials, 2005, 289: 442-444.
    
    Mikhaylova M, Kim D K, Bobrysheva N. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir, 2004, 20: 2472-7.
    
    Mizota M, Maeda Y. Magnetite in the radular teeth of chitons. Hyperfine interactions, 1986, 29: 1423-1426.
    
    Moody M D, Dailey H A.Ferric iron reductase of Rhodopsevdomonas sphaeroides. J. Bacteriol., 1985, 163:1120-1125.
    Mora C V, Davidson M, Wild J M. Magnetoreception and its trigeminal mediation in the homing pigeon.Nature, 2004,432:508-511.
    
    Moskowitz B M. Biomineralization of magnetic minerals.Rev.of Geophysics, 1995,33: 123-128.
    
    Mouritsen H, Ritz T. Magnetoreception and its use in bird navigation. Current Opinion in Neurobiology,2005,15: 406-414.
    
    Mrazek F, Petrek M. Processing of mRNA from human leukocytes by biomagnetical separation: comparison with current methods of RNA isolation. Acta Univ Palacki Olomouc Fac Med., 1999, 42: 23-28.
    
    Mutvei H. Ultrastructural evolution of molluscan nacre. In: Westbroke P, de Jong EW, eds. Biomineralization and biological metal accumulation. Amsterdam: D Reidel Publishing Company, 1983,267-271.
    
    Nagabhushanam R, Deshpande U D. Reproductive cycle of the chiton Chiton iatricus and environmental control of its gonad growth. Mar. Biol., 1982, 67: 9-13.
    
    Nakamura C. An iron-regulated gene: magA, encoding an iron transport protein of Magnetospirillum sp.strain AMB-1. J. Biol. Chem., 1995, 270: 28392-28396.
    
    Nakamura C, Kikuchi T, Burgess JG, Matsunaga T. Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J. Biochem., 1995, 118: 23-27.
    
    Nancollas G H, Wu W J. Biomineralization mechanisms: a kinetics and interfacial energy approach. J.Crystal Growth, 2000,211: 137-142.
    
    Nardi G, Muzii E O and Puca M. Ferritin in the hepatopancreas of Octopus vulgaris Lam. Comp Biochem Physiol,(1971),40: 199-205.
    
    Neilands JB. Microbiological iron compounds. Annu.Rev. Biochem., 1981, 50: 715-731.
    
    Nesson MH, Lowenstam H A. Biomineralization processes of the radula teeth of chitons. In: Kirschvink J L,Jones D S, McFadden B J, eds. Magnetite biomineralization and magnetore-ception in organisms: A new biomagnetism. New York: Plenum Press, 1989, 333-363.
    
    Nesterova M, Moreau J, Banfield JF. Model biomimetic studies of templated growth and assembly of nanocrystalline FeOOH. Geochimica et Cosmochimica Acta, 2003, 67:1185-1195.
    
    Noguchi Y, Fujiwara T, Yoshimatsu K, Fukumori Y. Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J. Bacteriol., 1999, 181: 2142-2147.
    
    Norimitsu W. Crystal growth of calcium carbonate in the invertebarates. Prog. Crystal growth charact., 1981,4: 99-147.
    
    Pankhurst Q A, Connolly J, Jones S K, Dobson J. Applications of magnetic nanoparticles in biomedicine. J.Phys. D: Appl. Phys., 2003, 36: 167 - 181.
    Pattanaik S. X-ray diffraction, XAFS and scanning electron microscopy study of otolith of a crevalle jack fish (caranx hippos). Nuclear Inst.and Methods in Physics Research B, 2005,229: 367-374.
    
    Pinna N, Grancharov S, Beato P, Bonville P, Antonietti M, Niederberger M. Magnetite nanocrystals:Nonaqueous synthesis, characterization, and solubility. Chem. Mater, 2005, 17: 3044-3049.
    
    Pessolan M C V, Smith D R, Rivoire B, McCormick J and Hefta S A. Purification, charatreization, gene sequence, and significance of a baterioferritin from Mycobaterium leprae. J. Exp. Med., 1994, 180:319-327.
    
    Phonwong A, Rujiravanit R and Hudson S D. Preparation and characterization of chitin /cellulose bent films.J. Metals Materials and Minerals, 2000, 10: 1-22.
    
    Pojeta J. Class Polyplacophora, In: Fossil Invertebrates. Boardman R, Cheetham A, Rowell A, eds. Palo Alto:Blackwell Scientific Publications. 1987, 293-297.
    
    Qian X, Zhao J G, Liu C L, et al. Magnetic anisotropy of the radula of chiton Acanthochiton rubrolinestus.Bioelectromagnetics, 2002,23: 480-484
    
    Qiu G M, Xu Y Y, Zhu B K, Qiu G L. Novel, fluorescent, magnetic, polysaccharide-based microsphere for orientation, tracing, and anticoagulation: preparation and characterization. Biomacromolecules, 2005, 6:1041-1047.
    
    Quintana C, Cowley J M, Marhic C. Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin. J. Structural Biology,2004,147: 66-178.
    
    Robert JP, Williams D.The inorganic chemistry of biominerals.In: Antonio V X, eds. Frontiers in Bioinorganic chemistry. VCH: Weinheim, Federal Republic of Germany Press, 1985, 431-440.
    
    Rousseau M, Lopez E, Stempfl(?) P. Multiscale structure of sheet nacre Biomaterials, 2005, 26: 6254-62.
    
    Runham N W, Thornton P R, Shaw D A, Wayte R C. The mineralization and hardness of the radular teeth of the limpet Patella vulgate L. Cell and Tissue Research, 1969, 99: 608-626.
    
    Ruppert E E, Barnes R D. Invertebrate Zoology (6th ed). Fort Worth: Saunders College Publishing, 1994,372-378.
    
    Sader K, Pan Y, Bleloch A L, Brydson R, Brown A. Structural characterisation of protein-caged iron minerals in biological systems. Journal of Physics: 2008, Conference Series 126.
    
    Safarik I, Safarikova M. Cell isolation: magnetic techniques. In: Wilson ID, Adlard TR, Poole C F, Cool M,eds. In: Encyclopedia of Separation Science. London: Academic Press, 2000, pp. 2260-2267.
    
    Safarik I, Safarikova M. Magnetic nanoparticles and biosciences.Mon Chem. 2002, 133: 737-759.
    Sahoo Y, Goodarzi A, Swihart M T, Ohulchanskyy T Y, Kaur N. Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control. J. Phys. Chem. B, 2005, 109:3879-3885.
    
    Saravanan M, Bhaskar K, Maharajan G, Pillai KS. Ultrasonically controlled release and targeted delivery of diclofenac sodium via gelatin magnetic microspheres. International Journal of Pharmaceutics, 2004, 283:71-82.
    
    Sarikaya M. Biomimetics: Materials fabrication through biology. PNAS, 1999, 96: 14183-14185.
    
    Scharnweber D, Born R, Flade K, Roessler S, Stoelzel M. Mineralization behavior of collagen type I immobilized on different substrates. Biomaterials, 2004,25: 2371-2380.
    
    Scheffel A, Gruska M and Faivre D. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature, 2006, 440:110-114.
    
    Sch(?)ler D. Formation of magnetosomes in magnetotactic bacteria J. Molec. Microbiol.Biotechnol, 1999, 1:79-86.
    
    Schiiler D and Baeuerlein E. Dynamics of iron uptake and Fe_3O_4 biomineralization during aerobic and microaerobic growth of Magnetospirilium gryphiswaldense. Journal of Bacteriology, 1998,180:159-162.
    
    Schiiler D, Frankel RB. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 1999, 52: 464-473.
    
    Schultheiss-Grassi PP, Dobson J. Magnetic analysis of human brain tissue. BioMetals, 1999,12: 67-72.
    
    Sharma S K, Sehgal N, Kumar A. Biomolecules for development of biosensors and their applications.Current Applied Physics, 2003, 3: 307-316.
    
    Shaw J A, Macey D J, Brooker L R, Stockdale E J, Saunders M and Clode P L.The chiton stylus canal: an element delivery pathway for tooth cusp biomineralization. Journal of Morphology, 2008, Online: 2008
    
    Shieh D B, Cheng F Y, Su C H, et al. Aqueous dispersions of magnetite nanoparticles with NH~(3+) surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials, 2005, 26: 7183-7191.
    
    Shimizu K, Cha J, Stucky G D and Morse D E. Silicatein alpha: Cathepsin L-like protein in sponge biosilica.PNAS, 1998,95:6234-6238.
    
    Simon Z, Watson P A. Biomimetic Dental Implants: New Ways to Enhance Osseointegration. J. Can. Dent.Assoc, 2002, 68: 286-288.
    
    Sinha A, Nayar S, Nath B K, Das D, Mukhopadhyay, P K. Magnetic field induced synthesis and self-assembly of superparamagnetic particles in a protein matrix. Colloids and Surfaces B:Biointerfaces, 2005, 43: 7-11.
    Smith D A. Radular kinetics during grazing in Helisoma trivolvis (Gastropoda: Pulmonata). J. exp. Biol.,1988, 136: 89-102.
    
    Sollner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C and Nicolson T. Control of crystal size and lattice formation by starmaker in otolith biomineralization.Science, 2003, 302: 282-286.
    
    SpringS, SchleiferKH.Diversity of magnetotactic bacteria. System.Appl.Microbiol., 1995, 18: 147-153.
    
    Stamp P. Magnets get their act together. Nature, 1992, 359: 365-366.
    
    Stockdale E J, Shaw J A, Macey D J and Clode P L. Imaging organic and mineral phases in a biomineral using novel contrast techniques. Scanning, 2009, 31: online.
    
    St. Pierre T G, Bell S H, Dickson D P E, Mann S, Webb J, Moore G R, Williams R J P. Mossbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins. Biochimica et Biophysica Acta,1986, 870: 127-134.
    
    St. Pierre T G., Evans L A, Webb J. Non-stoichiometric magnetite and maghemite in the mature teeth of the chiton Acanthopleura hirtosa. Hyperfine Interactions, 1992; 71:1275-1278.
    
    St. Pierre T G, Kim K S, Webb J, Mann S, Dickson D P E. Biomineralization of iron: Mossbauer spectroscopy and electron microscopy of ferritin core from chiton Acanthopleura hirtosa and the limpet Patella laticostata. Inorganic Chemistry, 1990, 29: 1870-1874.
    
    St. Pierre T G, Webb J, Mann S. Ferritin and hemosiderin: Structural and magnetic studies of the iron core, In:Mann S, Webb J, William R J P, eds. Biominralization: Chemical and Biochemical Perspectives. New York: Oxford University Press, 1989, 295-344.
    
    St. Pierre T G, Webb J, Mann S, Dickson D P E, Runham N W, Williams R J P. Iron oxide biomineralizationn in the radula teeth of the limpet Patella vulgate, mossbauer spectroscopy and high resolution transmission electron microscopy studies. Proc. R. Soc. Lond. B, 1986, 228: 31-42.
    
    St. Pierre TG, Chan P, Bauchspiess KR, Webb J, Betteridge S, Walton S, et al,. Synthesis, structure and magnetic properties of ferritin cores with varying composition and degrees of structural order: Models for iron oxide deposits in iron-overload diseases. Coordination Chemistry Reviews, 1996, 151: 125-143.
    
    Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc, 2002, 124:8204-8205.
    
    Suryakala S. Purification and characterization of liver ferritins from different animal species. Veterinary Research Communications, 1999,23: 165-181.
    
    Theil E C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms.Annu Rev Biochem, 1987, 56: 289-315.
    
    Theil E C, Huynh B H. Ferritin mineralization: ferroxidation and beyond. J. Inorganic Biochemistry, 1997, 67: 30-30(1).
    Theil E C. Iron, ferritin, and nutrition. Annu.Rev. Nutr. 2004, 24: 327-343.
    
    Thomas-Keprta KL. Elongated prismatic magnetite (Fe_3O_4) crystals in ALH84001 carbonate globules:potential Martian magnetofossils. Geochim.Cosmochim. Acta, 2000,64: 4049-4081.
    
    Thorne M J.Studies on homing in the chiton Acanthozostera gemmata.Australian Journal of Marine and Freshwater Research, 1968,19: 151-160.
    
    Tiefenauer LX, Tschirky A, K(?)hne G, Andres RY. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magnetic Resonance Imaging, 1996,14: 391-402.
    
    Towe K M, Lowenstam H A and Nesson M H. Invertebrate ferritin: Occurrence in mollusca. Science, 1963,142: 63-64.
    
    Towe K M and Lowenstam H A. infrastructure and development of iron mineralization in the radula teeth of Cryptochiton stelleri (Mollusca) J. Ultrastructure Research, 1967, 17: 1-13.
    
    Treffry A and Harrison P M. Incorporation and release of inorganic phosphate in horse spleen ferritin.Biochem. J, 1978,171: 313-320.
    
    Treffry A, Hirzmann J, Yewdall SJ, Harrison PM. Mechanism of catalysis of Fe (II) oxidation by ferritin H-chains. FEBS Lett, 1992,302: 108-112.
    
    Treffry A, Zhao Z W, Quail M A, Guest J R. Harrison PM. Dinuclear center of ferritin: Studies of iron binding and oxidation show differences in the two iron sites. Biochemistry, 1997,302: 432-441.
    
    Ullrich S, Kube M, Sch(?)bbe S. A. Hypervariable 130-Kilobase genomic region of magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. Journal of Bacteriology, 2005,187: 7176-7184.
    
    Veis A. and Veis A. Mineralization in Organic Matrix Frameworks.Reviews in Mineralogy and Geochemistry,2003, 54: 249-289.
    
    Viroonchatapan E, Sato H, Ueno M, Adachi I, Tazawa K, Horikoshi I. Magnetic targeting of thermosensitive magnetoliposomes to mouse livers in an in situ on-line perfusion system. Life Sciences IncludingPharmacology Letters, 1996, 58: 2251-2261.
    
    Wade V J, Treffry A, Laulhere J P, Bauminger E R, Cleton M I. Structure and composition of ferritin cores from pea seed (Pisum sativum). Biophys.Biochim. Acta, 1993, 1161: 91-96.
    
    Wal P V D, Giesen H J, Videler J J. Redular teeth as models for the improvement of industrial cutting devices.Materials Science and Engineering: C, 2000, 7: 129-142.
    
    Walcott C, Gould JL, Kirschvink JL. Pigeons have magnets. Science 1979; 205:1027-1029
    Walker M M, Kirschvink J L, Chang S B R and Dizon A E. A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science, 1984, 224: 751-753.
    
    Walker M M, Dennis T E, Kirschvink J L.The magnetic sense and its use in long-distance navigation by animals. Current Opinion in Neurobiology, 2002,12: 735-744.
    
    Walker MM, Quinn TP, Kirschvink JL, Groot C. Production of single domain magnetite throughout life by sockeye salmon Oncorhynchus nerka. J.exp. Biol. 1988, 140: 51-63.
    
    Wang XM, Cui FZ, Ge J, Ma C. Alterations in mineral properties of zebrafish skeletal bone induced by Iiliputdtc232 gene mutation. J. Crystal Growth, 2003, 258: 394-401.
    
    Watabe N, Dunkelberger DG Ultrastructural studies on calcification in various organisms. Scanning Electron Microscopy, 1979, 2: 403-416.
    
    Wealthall R J, Brooker L R, Macey D J, Griffin B J. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora). J.Morphology, 2005,265: 165-75.
    
    Weaver JC, Pietrasanta LI, Hedin N, Chmelka BF, Hansma PK, et al. Nanostructural features of sponge biosilica. J. Structural Biology, 144, 2003, 271-281.
    
    Webb J. A bioinorganic view of the biological mineralization of iron, In: Westbroke P, de Jong EW (eds),Biomineralization and biological metal accumulation. Amsterdam: D Reidel Publishing Company, 1983,413-422.
    
    Webb J, Evans L A, Kim K S, St. Pierre T G, Macey D J. Controlled deposition and transformation of iron biominerals in chiton radula teeth, In: Suga S, Nakahara H, eds. Mechanism and phylogeny of mineralization in biological systems. Tokyo: Springer-Verlag, 1990,283-289.
    
    Webb J, Macey D J, Chua-anusorn W, St. Pierre T G, Brooker L R, Rahman I, Noller B. Iron biominerals in medicine and the environment. Coordination Chemistry Reviews, 190-192, 1999, 1199-1215.
    
    Webb J, Macey D J, Mann S. Biomineralization of iron in molluscan teeth, In: Mann S, Webb J, Williams R J P, eds. Biomineralization: Chemical, and biochemical perspectives. Weinheim: VCH, 1989, 345-399.
    
    Webb J, Mann S, Bannister J V, Williams R J P. Biomineralization of iron: isolation of ferritin from the hemolymph of the limpet Patella vulgata. Inorg Chim Acta, 1986, 124: 37-40.
    
    Weiner S, Weiner S and Dove P M. An overview of biomineralization processes and the problem of the vital effect.Reviews in Mineralogy and Geochemistry, 2003, 54: 1-29.
    
    Weiss B P, Kim, S, Kirschvink J L, Kopp R E, Sankaran M.Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth and Planetary Science Letters, 2004, 224: 73-89.
    
    Westbroke P, de Jong E W. Biomineralization and biological metal accumulation.Amsterdam: D Reidel Publishing Company, 1983, 511-514.
    Whitney T M,Jiang J S,Searson P C,Chien C L.Fabrication and magnetic properties of arrays of metallic nanowires.Sciences,1993,261:1316-1319.
    Woo K,Hong J,Choi S,Lee H W,Ahn J P,Kim C S,Lee S W.Easy synthesis and magnetic properties of iron oxide nanoparticles.Chem.Mater.,2004,16:2814-2818.
    Xie A J,Yuan Z W,Shen Y H.Biomimetie morphogenesis of calcium carbonate in the presence of a new amino carboxyl chelating agent.J.Crystal Growth,2005,276:265-274.
    Yamashita I.Fabrication of a two dimensional array of nanoparticles using ferritin molecule.Thin Solid Films,2001,393:12-18.
    Yang H H,Zhang S Q,Chen X L,Zhuang Z X,Xu J G.,Wang X R.Magnetite containing spherical silica nanoparticles for biocatalysis and bioseparations.Anal.Chem.,2005,77:354-354.
    Yang L,Zhang X Y,Liao Z J,Guo Y M,Hu Z G,Cao Y.Interracial molecular recognition between polysaccharides and calcium carbonate during crystallization.J.Inorganic Biochemistry.,2003,97,377-383.
    Yazdankhah S P,Hellenmann A L,Ronningen K,Olsen E.Rapid and sensitive detection of Staphylococcus species in milk by ELISA based on monodisperse magnetic particles.Vet Microbiol,1998,62:17-26.
    Yoshioka E.Annual reproductive cycle of the chiton Acanthopleura japonica.Mar.Biol.,1987,96:371-374.
    Zhang C F,Cao J Q,Yin D Z,Wang Y X,Feng Y L,Tan J J.Preparation and radiolabeling of human serum albumin(HSA)-coated magnetite nanoparticles for magnetically targeted therapy.Applied Radiation and Isotopes,2004,61:1255-1259.
    Zhang C L,Vali H,Romanek C S,Phelps T J,Liu S V.Formation of single domain magnetite by thermophilie bacterium.Am.Mineral.,1998,83:1409-1418.
    Zhang Y,Kohler N,Zhang M Q.Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials,2002,23:1553-1561.
    Zhang Y,Meng QX,Jiang TM,Wang HZ,Xie LP,Zhang RQ.A novel ferritin subunit involved in shell formation from the pearl oyster(Pinctada fucata).Comparative Biochemistry and Physiology Part B,2003,135:43-54.
    Zhao J G,Qian X.Liu W,Liu C H and Guo C H..Magnetic anisotropy in the radula of chiton.Chin.Phys.Lett.,2000,17:542-543.
    陈旭,黄河清,孔波,曹廷明,肖志群.鲨鱼和魟鱼肝铁蛋白电泳纯的制备技术.海洋科学,2004,28:15-19
    崔福斋等.生物矿化.北京:清华出版社,2007,1-356.
    贾玉海.中国海洋湖沼药物学.北京:学苑出版社,1995,90-91.
    姜炜,李凤生,杨毅,刘宏英,楚建军.纳微米磁性复合粒子在放射治疗中的应用研究进展.现代化工,200424:19-25.
    姜在阶,刘凌云.烟台海滨无脊椎动物实习手册.北京:北京师范大学出版社,1986,1-465。
    洪霞.磁性纳米材料的合成、组装及应用:[博士学位论文].长春:吉林大学,2004.
    李永洪,高愈尊,张泰宋.离子减薄法对纳米金属材料微结构的影响.电子显微学报,1998,17:187-189.
    刘传林,赵见高,崔龙波等.红条毛肤石鳖齿舌形态及矿物成分含量.动物学报,2001,47:553-557.
    马恒辉,章如松,周航波,周晓军.介绍一种改良的Neutral EDTA脱钙液.诊断病理学杂志,2005,12:390-391.
    马明,朱毅,张宇,张东生,唐祖明,张海黔,顾宁.四氧化三铁纳米粒子与癌细胞相互作用的初步研究.东南大学学报(自然科学版),2003,33:205-207.
    欧阳健明.生物矿化的基质调控及其仿生应用.北京:化学工业出版社,2006,1-224.
    齐钟彦,马锈同,王祯等.黄渤海的软件动物.北京:农业出版社,1989,4-13.
    邱广亮,李咏兰.纳米级磁性微粒的制备及固定化纤维素酶的研究.药物生物技术,2001,8:197-199.
    谭家驹,张春富,冯彦林,曹金全,曹本洪,尹端,汪勇先.靶向治疗Fe_3O_4及其白蛋白包被磁性纳米粒子的制备(英文).中国医学工程,2003,11:30-32.
    王明海,董有海,冯庆玲等.纳米组织工程骨与兔骨髓基质干细胞体外生物相容性的实验研究.中国骨与关节损伤杂志,2008,23:545-547.
    王贺,易翠林,张福锁.一种在光学和电子显微镜下显示细胞内外铁还原酶活性的方法.植物学报,1997,39:411-414.
    夏晓晖.拟南芥中铁还原酶基因家族的组织表达模式分析:[硕士学位论文].咸阳:西北农林科技大学,2006.
    张阳德.纳米生物技术学.北京:科学出版社,2005,1-200.
    赵勇.海洋细菌YSC-1及其高铁还原酶的研究:[硕士学位论文].济南:山东大学,2005.
    钟妮娜,耿毅,彭西.PAS染色技术的改进.解剖学杂志,2005,28:45-47.
    赵颖,罗漩,钟晓凌,王金华.红酵母细胞壁中几丁质及壳聚糖的红外光谱研究.红外,2007,28:20-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700