用户名: 密码: 验证码:
生物滴滤法净化挥发性有机废气(VOCs)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机化合物(VOCs)是仅次于颗粒污染物的又一大类气态污染物。对于低浓度VOCs废气的控制较难。寻求合理的治理途径和控制方案已成为世界各国亟待解决的热点课题。生物法净化VOCs废气是近年来发展起来的工艺,与传统净化工艺相比,具有设备简单、投资少、运行费用低、无二次污染等优点,因而受到学者的重视。
     本文分别以活性炭、拉西环作为填料,考察了混合菌滴滤塔对含苯废气、含二甲苯废气的净化效果;然后又以两种陶粒为填料,以筛选出的二甲苯降解菌——坚硬芽孢杆菌对滤塔挂膜,考察滤塔的净化效果,并研究了喷淋液流量、喷淋液中氮源的浓度等因素对净化效果的影响,对净化过程的动力学进行了分析,并用试验数据进行了验证。最后,通过将坚硬芽孢杆菌包埋后制成的固定化颗粒作为滤塔的填料,考察了滤塔对含二甲苯废气的净化效果。
     混合菌生物滴滤塔净化含苯废气的研究结果表明:滤塔填料的体积去除负荷随体积负荷的增加而增加,但二者并非线性关系;气体停留时间越短,滤塔的净化效率越低;活性炭滤塔的净化效率较高,但压降要远高于拉西环滤塔的压降。
     混合菌生物滴滤塔净化含二甲苯废气的研究结果表明:以拉西环为填料的滤塔的净化效果较差,而且数据波动较大。
     高效生物滴滤塔净化含二甲苯废气的研究结果表明:采用纯种细菌可以显著提高滤塔的净化效果。在气体停留时间为84.8和28.3s,入口二甲苯浓度一定时,随着喷淋液流量的增加,滤塔的净化效果降低;在气体停留时间为17.0s时,喷淋液流量变化对滤塔的净化效果无显著影响。气体停留时间为84.8s和28.3s时,在本试验的范围内(浓度≤3000mg/m~3),两座滤塔均能保持较高的净化效率(≥97%);当气体停留时间为17.0s时,随着入口中二甲苯浓度的增加,净化效率逐渐降低。对于滤塔1,当入口浓度增加到3000mg/m~3时,净化效率下降到80%左右;对于滤塔2,当入口浓度增加到3000mg/m~3时,净化效率下降到82%左右。增加喷淋液中氮源的浓度可以提高滤塔的净化效果;以氨氮作为氮源容易造成硝化细菌在滤塔中的累积,影响去除效果。随着滤塔的运行,填料层的压降逐渐升高,因此,应当采
    
     西安建筑科技大学博士学位论文
    一
    取措施控制生物膜的厚度。滤塔各单元填料层单位质量填料的可挥发性生物膜干重
    的测量结果表明,生物在滤塔高度方向不均匀。对比两种填料可以发现,2#陶粒无
    论是挂膜性能、净化效率,还是抗冲击负荷能力,都是优于1#陶粒,尽管2#陶
    粒的压降是1#陶粒的2倍左右,但尚在可以接受的范围之内。
     动力学分析表明生物降解一级反应动力学模型能较好地与实验数据吻合,常数
    f·a/Q随入口浓度 C。;的增大而升高。
     对于优势菌种生物滴滤塔(两种陶粒为填料)净化工甲苯废气的过程,个。/Q
     F。(C_。\___.
    与C。;的关系为 y=5689.4exP15ful 适用范围为C。;<4500mg/m\
     ’g‘””””””O“t 2453.5)“”
     对于混合菌群生物滴滤塔(大拉西环为填料)净化二甲苯废气的过程,个a心
     F。(C_。\__._
    与 C。,的关系为 y-12980.3exPI SLI 适用范围为 C。;$3500 mg/m飞
     一g’—”—”O“[1651.3)“”
     对于混合菌群生物滴滤塔H拉西环为填料)净化二甲苯废气的过程,f·。/Q
     f._(C_:\___
    与C。;的关系为y=18379.oexpl二千三1 适用范围为C。<3200m咖。
     -g’”-”O“\1564.5)”‘一
     固定化生物滴滤塔净化二甲苯废气的研究结果表明:固定化生物颗粒滤塔对二
    甲苯废气有相当的净化能力,但比陶粒滤塔的净化效果差。固定化颗粒的制作条件
    对于净化效果及颗粒的使用寿命有很大影响;颗粒包埋的菌体量多,则滤塔的净化
    效果较好;颗粒的活化可以提高滤塔的净化效果;增加钙化时间可以提高固定化颗
    粒的强度和使用寿命。
     本研究表明,通过人工筛选菌种进行VOCS废气净化,在技术上是可行的,并
    能有效提高空塔气速,减小设备尺寸,这为该技术的最终应用指明了研究方向
Volatile Organic Compounds (VOCs) is another kind of contamination junior to particles. They do great harm to human health and cause heavy pollution, however, are hard to control, especially for waste gases borne with low-concentration VOCs. So, an effective control approach is urgent. Biotreatment of air-borne contaminants offer an alternative to conventional air treatment technologies. Because of its advantages, such as simple equipment, low investments & operational spending and no secondary-pollution, it has received increased attention of scholars around the world.
    Two biofilters packed respectively with the activated carbon and rasching rings, inoculated with the activated sludge, which was domesticated by contamination, were used to purify the waste gases contained benzene and xylene vapor individually. And then another two kinds of ceramic pellets were filled into the filters and inoculated with
    xylene biodegraded bacteria-Bacillus firmus, which was screening by incubator
    shaker experiment. The purifying performances of reactors were investigated. Moreover, the trickling flux and the N concentration in the trickling liquid's effects on biofilters' performance were thoroughly examined. Finally, the purifying efficiency of reactor packed with grains, in which the Bacillus firmus were immobilized, was examined.
    The results of trickling biofiltration experiments purging benzene vapor show that volume removal loadings of biofilters are increased along with the volume loadings, but the relationship between them are non-linear. The lower EBCT (empty bed contract time) is, the worse the reactors' performance is. The filter packed with activated carbon gain a better performance compared with the one packed with rasching rings, but the former own a much higher pressure drop when the fluid passes through it.
    The results of trickling biofiltration experiments purging xylene vapor show that the filters packed with rasching rings have low removal efficiency, and the performance of reactors are highly fluctuant.
    
    
    The results of high-effective trickling biofiltration experiments purging xylene vapor show that the biofilters inoculated with Bacillus firmus can get increased removal efficiency. For certain inlet concentration, when the EBAT (empty bed attained time) were 84.8s and 28.3s, the removal efficiency decreased along with the increase of drenching density of nutrient liquid. When the EBAT reduced to 17.0s, the drenching density of nutrient liquid had no significant effect on the performance of biofilters. At the EBAT of 84.8s and 28.3s, the biofilters can maintenance the removal efficiency no less than 97% when the inlet concentration was no more than 3000mg/m3. But, at the EBAT of 17.0s, the performance of biofilters deteriorated as the inlet concentration increased. For the biofilter 1 and 2, a removal efficiency of 80% and 82% can respectively be obtained when the inlet concentration was up to 3000mg/m3. Results show that higher removal efficiency can be obtained when the concentration of N in the nutrient liquid was increased. And, usage of NH4-N as the N source can cause the notified bacterium's accumulation in the biofliters. The pressure drop of the biofliters will be higher and higher because of the bacterium 's propagation, so some efforts should be made to control the biofilm's thickness. The measure results of biofilm's volatile suspended solid in the filters' unit show an uneven distribution of biofilm along the height in the biofilters. Compare with the 1# ceramic pellet, the 2# ceramic pellet owned a better inoculation and anti-impulse loadings ability, moreover, higher removal efficiency. Although the pressure drop of filter packed with 2# ceramic pellet are as twice as that packed with 1# ceramic pellet, there are low enough to be accepted.
    The results of Dynamic analysis show that one-stage biodegradation kinetic model coincide with experiment results well. And, the constant /Q changed along with the inlet concentration Cgi.
    For the biofilters inoculated with Bacillus firmus and were
引文
[1] 叶代启、梁红:环境催化技术在大气污染治理中的应用,环境保护,No7,40~42,1997.
    [2] Noel de Nevers:Air pollution control Engineering(second edition),清华大学出版社,北京,2000.
    [3] 胡望均:常见有毒化学品环境事故应急处理技术与监测方法,中国环境科学出版社,北京,1993.
    [4] 李建:涂料和胶粘剂中有毒物质及其检测技术,中国计划出版社,北京,2002.
    [5] M.鲁格什科著,张宏才译;大气中工业排放有害有规化合物手册。中国环境科学出版社,北京,1990.
    [6] 洪紫萍:挥发性有机化合物的污染与防治,环境污染与防治Vol54,No3,24~26,1994.
    [7] 日本化学会编,李芥春、宁振东、王子亮译:碳氢化合物污染物及其对策,科学出版社,北京,1987.
    [8] 高莲、谢永恒:控制挥发性有机化合物污染的技术,化工环保Vol18,No6,343~346,1998.
    [9] 陶有胜:“三苯”废气治理技术,环境保护,No8,20~21,1999.
    [10] 闫勇:有机废气中VOC的回收方法,化工环保Vol17,No,332~335,1997.
    [11] 董志权,陈焕钦:工业废气污染与利用,化学工业出版社,北京,1989.
    [12] 张文俊、李华芳、杨存金等:吸附、催化燃烧法治理有机废气的研究,北京轻工业学院学报Vol15,No6,91~98,1997.
    [13] 何滢滢、潘涌璋:吸附浓缩—催化燃烧法处理有机废气,环境工程Vol15,No4,834-36,1997.
    [14] 李志松、蔡复礼:催化焚烧处理挥发性有机物技术进展,工业催化,Vol13,No5,18~21,1998.
    [15] 张文俊、邓九兰、韩国君:低浓度、大风量有机废气治理技术发展和现状,劳动保护科学,Nol,7~10,1999.
    [16] 北川律夫、中原伸一:燃烧法リ·サ—ム蓄热式脱臭ッステム,环境管理(日),Vol31,No2,35~42,1995.
    [17] VanOsdell D W,Owen M K,Jaffe L B,et al.:VOC removi at low contaminant concentration using granular activatedcarbon.Journal of the Air & Waste Management,Vol46,N09,883~890,1996/
    [18] 李坚、马广大:电晕法处理易挥发性有机化合物(VOCs)的实验研究,环境工程Vol14,
    
    No6,30~32,1996.
    [19] 李国锋、吴彦:脉冲电晕等离子体化学(PPCP)处理有害气体反应器的研究进展,环境科学进展Vol17,No4,54~60,1999.
    [20] 侯健、潘循皙、赵太杰等:常压非平衡等离子体降解挥发性烃类污染物,中国环境科学 Vol19,No3,277~280,1999.
    [21] 姚恕等:用固体膜净化含苯废气的研究,环境科学Vol8,No6,47~50,1987.
    [22] 姚恕等:管式膜分离器净化含苯废气的研究,环境科学Vol12,No1,50~54,1991.
    [23] Jacoby W A,Blake D M.et al:Heterogeneous photo catalysis for Control of Volatile Organic Compounds in Indoors Air.Journal of the Air & Waste Management,Vol46,No5,441~457,1996.
    [24] 何坚、季学李、羌宁:生物滴滤池法处理挥发性有机污染物的进展,上海环境科学Vol18,No6,261~263,1999.
    [25] 羌宁:气态污染物的生物净化技术及应用,环境科学Vol17,No3,87-90,1996.
    [26] 贾小成、王静斌:废气污染控制高新技术的研究与应用,重庆环境科学Vol19,No5,31~33,1997.
    [27] 周琪:生物过滤技术在大气污染控制中的应用,城市环境与城市生态Vol11,No3,17~21,1998.
    [28] 王家德、陈建孟、唐翔宇:有机废气的生物处理概述,上海环境科学Vol17,No4,21~24,1998.
    [29] 陈建孟、王家德、唐翔宇:生物技术在有机废气处理中的研究进展,环境科学进展Vol6,No3,30~35,1998.
    [30] 张晓辉:国外生物过滤器处理化工有机废气进展,化工环保Vol19,No2,84~88,1999.
    [31] Warren J.Swanson,Raymond V.Loehr:Biofilteration:Fundamentals,design and operations principles,and applications,Journal of Environmental Engineering,1997,June.
    [32] A,Paul Togna,Manjari Singh:Biological Vapor-Phase Treatment Using Biofilter and biotrickling Filter Reactor:Practical Operating Regimes,Environmental Progress Vol13,No2, 94~97,1994.
    [33] Fouhy K: Cleaning Waste Gas Naturally,Chemistry Engineering,Vol99,No1,42~48,1992.
    [34] 张彭义、余刚、蒋展鹏:挥发性有机物和臭味的生物过滤处理,环境污染治理技术与设备,Vol1,No1,1~5,2000.
    [35] 谢冰,史家墚:恶臭的微生物处理概述,环境导报,Vol10,No1,6~10,1997.
    [36] 孙佩石、杨显万等:生物降解工业废气中甲苯的研究,环境科学动态,No3,13~16,1996.
    [37] 孙佩石、杨显万等:生物填料塔净化有机废气研究,中国环境科学Vol16,No2,92~95,
    
    1996.
    [38] 孙佩石、杨显万等:生物膜填料塔对低浓度甲苯废气净化性能的研究,环境污染与防治Vol19,No3,8~11,1997.
    [39] 孙佩石、杨显万等:生物法净化废气中低浓度挥发性有机物的过程机理研究,中国环境科学Vol17,No6,545~549,1997.
    [40] 黄兵、孙佩石等:生物化学法净化低浓度甲苯废气的传质研究,环境污染与防治,Vol20,No5,11~14,1998.
    [41] 孙佩石、杨显万等:生物法净化低浓度挥发性有机废气的动力学问题探讨,环境科学学报Vol19,No2,153~158,1999.
    [42] 魏在山、孙佩石等:生物法处理低浓度有机废气的填料选择研究,重庆环境科学Vol23,No2,40~41,2001.
    [43] 李国文、马广大:生物过滤塔降解VOCs动力学模型,第六届海峡两岸环境保护研讨会论文集,高雄,1999.12.
    [44] 李国文、胡洪营等:生物滴滤塔中挥发性有机物降解模型及应用,中国环境科学Vol21,Nol,81~84,2001.
    [45] 李国文:生物法净化挥发性有机废气(VOCs)的研究,西安建筑科技大学博士学位论文,1999.6.
    [46] 季学李、羌宁等:生物滴滤器净化甲苯废气研究,第六届海峡两岸环境保护研讨会论文集,高雄,677~682,1999,12.
    [47] 李晓梅:生物膜填料塔净化低浓度甲苯废气研究,环境科学与技术Vol19,No3,8~11,1998.
    [48] 姜安玺、王小辉等:生物处理硫系恶臭气体的现状及展望,哈尔滨建筑大学学报Vol34,Nol,59~62,1998.
    [49] 杨义飞:填充塔脱除H_2S恶臭气体的微生物学分析及其净化技术研究,哈尔滨工业大学博士学位论文,2001.7.
    [50] 于尔捷、杨义飞等:生物脱臭技术发展趋势,哈尔滨建筑大学学报Vol31,Nol,59~62,1998.
    [51] 朱枕华、林明瑞等,以生物滤床法处理含BTEX废气之研究,第六届海峡两岸环境保护研讨会论文集,高雄,725~730,1999,12.
    [52] Douglas S.Hodge,Joseph S.Devinny:Biofilter treatment of ethanol vapors,Environmental Progress,Vol13,No3,167~173,1994.
    [53] George A.Sorial,Francis L.Smith et al:Evaluation of trickle bed air biofilter performance for BTEX removal,Journal of Environmental Engineering Vol123,No6,577~585,1997.
    
    
    [54] W.J.H.Okkerse, S.P.P.Ottengraf et al: Biomass accumulation and clogging in biotrickling filters for waste gas treatment. Evaluation of a dynamic model using dichloromethane as a model pollutant, Biotechnology and Bioengineering, Vol63, No4, 412~421, 2000.
    [55] Ricardo Lobo, Sergio Revah et al: An analysis of a trickle-bed bioreactor: Carbon disulfide removal, Biotechnology and Bioengineering Vol63, Nol, 97~109, 2000.
    [56] Christos J.Mpanias, Basil C.Baltzis: An experimental and modeling study on the removal of mono-chlorobenzen vapor in biotrickling filters, Biotechnology and Bioengineering, 1998.8.
    [57] Matthew J.Gribbins, Raymond C.Loehr: Effect of Media Nitrogen Concentration on Biofilter Performance, Journal of the Air & Waste Management Association Vol48, No3, 216~226, 1998.
    [58] Fernando Morgan-Sagerume, Brent E.Sleep et al: Effects of biomass growth on gas pressure drop in biofilters, Journal of Environmental Engineering Vol127, No5, 3884396, 2001.
    [59] Francis L. Smith, George A. Sorial et al: Evaluation of trickle bed air biofilter performance as a function of inlet VOC concentration and loading, and biomass control, Journal of the Air & Waste Management Association, 1998.7.
    [60] Huub H.J.Cox, Marc A.Deshusses: Biomass control in waste air biotrickling filters by protozoan predation, Biotechnology and Bioengineering Vol62, No2, 216~224, 1999.
    [61] Jihyeon Song, Kerry A. Kinney: Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity: Linking biofilm properties to bioreactor performance, Biotechnology and Bioengineering Vol48, No7, 627~636, 2000.
    [62] Lichuan Zhu, Riyadh J. Abumaizar et al: Biofiltration of benzene contaminated air Streams using compost-activated Carbon Filter Media, Environmental Porgress, Vol17, No3, 168~172,1998.
    [63] Douglas S. Hodge, Joseph S.Devinny: Modeling removal of air contaminants by biofilteration, Journal of Environmental Engineering Vol121, No1, 21~32, 1995.
    [64] John W.Barton, Brian H. Cavison et al: Estimation of mass transfer and kinetics in operating trickle-bed bioreactors for removal of VOCs, Environmental PorgressVol118, No2, 87~91, 1999.
    [65] Hanneke F.Ockeloen, Thomas J.Overcamp et al: Engineering model for fixed-film bioscrubbers, Journal of Environmental EngineeringVol122, No3, 191-197, 1996.
    [66] Cristina Alonso, Xueqiang Zhu et al: Parameter estimation in biofilter systems, Environmental Science & Technology Vol34, No6, 2318~2323,2000.
    [67] Cristina Alonso, Makram T.Suidan: Dynamic mathematical model for the biodegradation of VOCs in a biofilter: Biomass accumulation study, Environmental Science & Technology, Vol32,
    
    No20,3118~3123, 1998.
    [68] Basil C.Baltzis, Steven M.Wojdyla: Modeling biofiltration of VOC mixture under steady-state conditions, Journal of Environmental Engineering, Vol123, No7, 599~605, 1997.
    [69] Hsiu-Mu Tang, Shyh-Jye Hwang: Transient behavior of the biofilters for toluene removal, Journal of the Air & Waste Management Association, Vol47, Nol 1, 1142~1151, 1997.
    [70] Wayme J.Parker: A muti-parameter sensitivity analysis of a model describing the fate of volatile organic compounds in trickling filters, Journal of the Air & Waste Management Association, Vol47, No9, 861~870, 1997.
    [71] Kenneth F.Reardon, Douglas C.Mosteller et al: Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1, Biotechnology and Bioengineering Vol169, No4, 385~400, 2000.
    [72] Wayne J. Parker, Hugh D. Monteith et al: VOCs in fixed film processes.Ⅰ: Pilot studies, Journal of Environmental Engineering Vol122, No7, 557~563, 1996.
    [73] Wayne J. Parker, Hugh D. Monteith et al: VOCs in fixed film processes.Ⅱ: Model studies, Journal of Environmental Engineering Vol122, No7, 564~570, 1996.
    [74] C.Alonso, X.zhu et al: Mathematical model for the biogradation of VOCs in Trickle Bed biofilters, Water Science & Technology, Vol39, No7, 139~146, 1999.
    [75] 王连生:环境健康化学,科学出版社,北京,1994.
    [76] 中国环境优先监测研究课题组:环境优先污染物,中国环境科学出版社,北京,1989.
    [77] 王连生:有机污染化学,上册,科学出版社,北京,1990.
    [78] W.J.莱曼,W.F.雷尔,D.H.罗森布拉特:化学性质估算方法手册(有机化合物的环境性质),化学工业出版社,北京,1991.
    [79] 陈坚、任洪强、堵国成等:环境生物技术应用与发展,中国轻工业出版社,北京,2001.
    [80] 孙艳、钱世均,芳香族化合物生物降解的研究进展,生物工程进展Vol21,Nol,42~45,2001.
    [81] 杨平、潘永亮等:废水生物处理中生物膜的形成及动力学模型研究进展,环境科学研究Vol13,No5,50~53,2000.
    [82] 魏复盛,徐晓白,阎吉昌等:水和废水监测分析方法指南(下),中国环境科学出版社,北京,1997.
    [83] 崔九思、王钦源等:大气污染物监测方法(第二版),化学工业出版社,北京,1997.
    [84] 陆军、王思菊等,苯系化合物好氧降解菌的驯化和筛选,环境科学Vol16,No6,1~4,1996.
    [85] 布坎南、吉本斯等著,中国科学院微生物研究所“伯杰细菌鉴定手册”翻译组译:伯杰细菌鉴定手册,科学技术出版社,北京,1984.
    
    
    [86] Smith, F. L, Suidan M.T., Sorial, G. A., et al: The effect of nutrient supplementation on the biofiltration removal of butanol in contaminated air. Applied Microbiology and Biotechnology, Vol39, No4, 395~399 1993.
    [87] 刘雨、赵庆良、郑兴灿:生物膜法污水处理技术,中国建筑工业出版社,北京,2000.
    [88] 朱炳辰:化学反应工程(第三版),化学工业出版社,北京,2001.
    [89] Y.C伍,EdD.史密斯编,龙腾锐、郝以琼、潘伯年编译:城市与工业废水处理固定膜法的理论与实例,中国建筑工业出版社,北京,1989.
    [90] 汪大翚、雷乐成:水处理新技术及工程设计,化学工业出版社环境科学与工程出版中心,北京,2001.
    [91] 许保玖:当代给水与废水处理原理,高等教育出版社,北京,1990.
    [92] 王建龙:生物固定化技术与水污染控制,科学出版社,北京,2001.
    [93] 岳晓寒、蔡宝立等:固定化细菌去除苯甲酸类化合物的研究,离子交换与吸附,Vol15,Nol,54~58,1998.
    [94] 邵立明、何品晶等:固定化微生物处理含H_2S气体的实验研究,环境科学Vol20,Nol,19~22,1999.
    [95] Ying-Chien Chung, Chihpin Huang: Biotreatment of ammonia in air by an immobilized Nitrosomonas Wuropaea biofilter, Environmental Progress, Vol17, No2, 70~75, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700