用户名: 密码: 验证码:
木质生物质粉碎及规模化制粉机械设计及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规模化粉碎处理是木质生物质能源开发利用及产业化的重要环节。但迄今为止,市场上还难以采购到适用于木质生物质大规模粉碎生产的粉碎机械,针对木质生物质原料的粉碎理论和规模化制粉机械设计的专门研究尚不多见,结果造成木质生物质能源规模化利用及产业化面临实际困难。因此针对木质生物质的特性进行粉碎理论与粉碎生产流程研究,尽快研制出高效、低能耗的规模化制粉机械与装备势在必行。
     本文较全面、系统地综述了粉碎技术及生物质粉碎设备的国内外研究现状及存在的问题,分析确定了常见木质生物质利用方式的适用粉碎粒度。在对木质生物质的基本物性进行分析的基础上,提出了木质生物质的粉碎模型是体积粉碎模型和表面粉碎模型的叠加;研究、建立了木质生物质粉碎过程的矩阵模型及粉碎动力学模型。进行了木质生物质含水率及密度的测定实验以及木质生物质粉碎试验,得出了原料密度、预处理方式对木质生物质粉碎特性的影响及规律,为木质生物质粉碎生产流程的确定以及粉碎机械的设计提供了理论依据。
     根据木质生物质的基本物性以及木质生物质粉碎原理,分析、确定出毫米级目标粒径的木质生物质粉碎方法;在分析原料收集方式、干燥方法以及粉碎级数等因素对木质生物质粉碎生产过程影响的前提下,提出了8种可行的粉碎生产流程;进而应用权衡分析工具Pugh矩阵法进行评价、确定了理想的粉碎生产流程;并据此结果,为年产3000吨生物燃油生产线制定出了合理的规模化制粉工艺流程。
     鉴于TRIZ理论具有能够帮助设计人员在概念设计阶段迅速发现主要问题并提供解决问题的相应原理,有效减少传统试错法所耗费的时间和精力,提高设计效率和设计质量的优点,本文应用TRIZ理论,以安全、高效、细粉碎及低功耗为目标,进行了制粉机创新概念设计研究,得出了12个概念方案,并对其进行了系统综合和评价,确定出轴向振筛式结构为制粉机概念设计的最终方案,双层筛式结构和双转子结构为两个备选方案。
     对规模化制粉机械的粉碎机理进行了研究,提出了木质生物质粉碎过程中物料断裂的基本形式,建立了裂纹自动扩展的判据;研究分析了粉碎过程中物料有效碰撞方式及物料碰撞时的有效受力,建立了物料颗粒间有效碰撞的运动模型,为规模化制粉机械的设计提供了理论依据。
     根据理论分析和试验结果,创新性地提出了沿转子轴向振动的振筛式木质生物质制粉机整机设计方案。该设计方案具有筛分效率高、筛网寿命长、无需严控振幅、操作调整方便、整机安全性好的优点。
     对制粉机的关键部件进行了虚拟样机仿真研究。通过几何仿真确定出了转子部件的合理结构;运用有限元分析软件ANSYS对锤片进行了不同载荷下的受力分析,对主轴进行了静力学分析和模态分析;对制粉机的转子系统进行了动态特性分析,计算出转子系统的临界转速状态;运用动力学仿真软件ADAMS对转子进行了动平衡分析;结果表明,该制粉机关键部件的设计及安全可靠性符合要求。
     本文的研究方法和研究结果可为木质生物质粉碎机械的设计及其理论研究提供借鉴,为高效、低能耗木质生物质粉碎技术与装备的研发提供技术支持或参考,对推动木质生物质粉碎技术的进步具有一定的参考价值。
Scale comminution is a necessary link for the utilization and industrialization of woody-biomass energy. However so far, there are not pulverizers which are suitable for large-scale production of crushing woody-biomass on the market, and the study on theory of pulverized woody-biomass and large-scale milling equipment is few, which lead to the large-scale and industrial use of woody-biomass energy face practical difficulties. Therefore, it is imperative to take in the study of comminution theory and process on the characteristics of woody-biomass, in order to gain the manufacturing large-scale milling equipments which have higher efficiency and lower power consuming as soon as possible.
     In this paper, research status on comminution technology and equipment in domestic and abroad was summarized, appropriate particle size for usual utilization of woody-biomass was made sure. Based on the analysis to the basic physical properties, which comminution model of woody-biomass is the superposition of the volume comminution model and the surface comminution has been brought forward. Matrix model of pulverized process and dynamic model of comminution have been established. Experiment for measure moisture content and density of woody biomass and test for pulverized performance of woody biomass were carried on, the influence of the density and pretreatment of raw materials to comminution characteristics of woody biomass has been derived, which provided the reference for decision-making production process of woody-biomass, and the design of comminution machinery.
     The comminution method for powder size of millimeter is determined according to the basic physical properties as well as comminution model of woody-biomass. Based on the analysis of raw material gathering, drying methods and the series of comminution, eight kinds of comminution process were put forward, the optional comminution process was decision-making out by Pugh matrix evaluation, and then a reasonable scale milling process for the bio-oil production line with the annual throughput of 3,000 tons was established.
     In the light of TRIZ (Theory of Inventive Problem Solving) in the conceptual design of the equipments can help the designer to discover the main problem quickly and provide principles for solving the problem improving the efficiency and the level of the design consumedly, the innovative conceptual design for woody biomass mill with safety, small powder size,higher efficiency and lower power consuming was directed by the methodology of TRIZ, and twelve conceptual projects were acquired. After the evaluation and synthesis to conceptual schemes, the final project(axial vibration sieve-type) and two storage projects(double-screener and dual-rotor structure) were determined.
     Study on comminution mechanism of the scale milling machine was made, the basic fracture forms of woody-biomass were put forward and the qualification of the crack automatic extension was established. Research and analysis of the material effective impact way and effective stress were made, movement model of effective impact between powders was established, which provided the reference for the design of scale comminution machinery.
     According to the theoretical study and experimental results, the structural design of axial vibration sieve-type milling machine was conducted. Innovative design of vibrating screen, which vibrating along the rotor axial can not only improve the screening efficiency, but avoid the hammer-break screen and extend the screen life as well as. Without controling amplitude strictly, makes the operation easy to adjust, reduce costs and increase of security.
     Virtual prototype simulation research on key components of milling machine was conducted. The structure of the rotor components was determined according to geometric simulation. Hammer static analysis, spindle static analysis and vibration mode analysis were directed based on ANSYS, research on dynamic characteristics of rotor and critical speed was made sure, rotor dynamic balance analysis was conducted based on ADAMS, which verify the safety and reliability of the design of the milling machine.
     The research methods and results could provide reference for the design and theoretical study on woody-biomass comminution machinery, and provide technical support or reference for the research on comminution technology and equipment of woody-biomass with higher efficiency and lower power consuming, as well as has certain reference value to promote the progress of woody-biomass comminution technology.
引文
[1]马龙隆.中国生物质发电发展未来展望[C].2005内蒙古生物质能源会议
    [2]陈勇.中国能源与可持续发展(中国可持续发展总纲第3卷)[M].北京:科学出版社,2007:178-270
    [3]徐学勤,齐涛.林木生物质能源开发和利用[J].四川林业科技,2007(2):106-108
    [4]赵敏,卢亚平,潘英民.粉碎理论与粉碎设备发展评述[J].矿冶,2001,6:36-41
    [5]姜洋等.生物质颗粒燃料成型条件的研究[J].可再生能源,2006,5:16-18
    [6]刘荣厚等.生物质快速热裂解主要参数对产物产率及其分布的影响[J].农业工程学报,2003(9):18-22
    [7]樊峰鸣.我国农村秸秆成型燃料规模化技术研究[D].河南农业大学,2005
    [8]谢洪勇,刘志军编著.粉体力学与工程[M].北京:化学工业出版社,2007,8
    [9]郑伟亮,盖国胜.不同粉碎方式对物料粉碎的研究[J].中国非金属矿工业导刊2003年增刊(总第35期):62-64
    [10]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社,1998
    [11]母福生.破碎理论的研究现状及发展要求[J].硫磷设计与粉体工程,2006(4):20-23
    [12]陆厚根.粉碎理论的进展[J].山西硅酸盐,1994(1):16-27
    [13]吴建明.中国粉碎工程技术进展[J].中国粉体工业,2007,5:5-21
    [14]吉颖风.新型锤片式粉碎机筛分效率的研究[D].中国农业大学,2001.3
    [15]Rypma JA. What the European feed manufacturer requires in particle reduction equipment and systems. In Proceedings First International Symposium on Particle Size Reduction in the Feed Industry, Vol. B-11. Manhattan, KS, USA:Kansas State University; 1983.
    [16]Hill B, Pulkinen DA. A study of the factors affecting pellet durability and pelleting effciency in the production of dehydrated alfalfa pellets. A special report. Tisdale, SK,Canada:Saskatchewan Dehydrators Association; 1988.
    [17]Grover PD, Mishra SK. Biomass briquetting:technology and practices. Regional wood energy development program in Asia, field document No.46. Bangkok, Thailand:Food and Agriculture Organization of the United Nations; 1996.
    [18]Vigneault C, Rothwell TM, Bourgeois G Hammer mill grinding rate and energy requirement for thin and conventional hammers. Canadian Agricultural Engineering 1992;34(2):203-6.
    [19]Schell DJ, Harwood C. Milling of lignocellulosic biomass:results of pilot-scale testing. Applied Biochemistry and Biotechnology 1994;45/46:159-68.
    [20]Arthur JF, Kepner RA, Dobie JB, Miller GE, Parsons PS. Tub grinder performance with crop and forest residues.Transactions of ASAE 1982;25(6):1488-94.
    [21]Balk WA. Energy requirements for dehydrating and pelleting coastal Bermuda grass. Transactions of the ASAE 1964;4:349-51,355.
    [22]Von Bargen K, Lamb M, Neels DE. Energy requirements for particle size reduction of crop residue. Paper no.81-4062. St. Joseph, MI:American Society of Agricultural Engineers; 1981.
    [23]Martin S. Behnke K. Grinding efficiency and particle size effects on feed manufacturing operations. ASAE paper no.84-3524. St. Joseph, MI:American Society of Agricultural Engineers; 1984.
    [24]Datta R. Energy requirement for lignocellulose pretreatment processes. Process Biochemistry 1981;16:16-19,42.
    [25]Samson P, Duxbury P, Drisdelle M, Lapointe C. Assessment of pelletized biofuels. http://reap.ca/reports/pelletaug2000.html; 2000 accessed on June 20,2001.
    [26]Jannasch R, Quan Y, Samson R. A process and energy analysis of pelletizing switchgrass. Final report. http://www.reap-canada.com/reports/pelletSG.htm;2001,accessed on August 2002.
    [27]Ebling JM, Jenkins BM. Physical and chemical properties of biomass fuels. Transactions of the ASAE 1985;28(3):898-902.
    [28]袁湘月.典型生物质材料削片合格率灰色模型与切削力研究[D].北京林业大学.2007.6
    [29]钱春华.桑枝削片粉碎机三维设计与结构分析的研究[D].南京林业大学.2006.6
    [30]钱湘群.秸秆切碎机及压缩成型特性与设备研究[D].浙江大学.2003.1
    [31]赵浩,张玲玲,张裕中.农产品高速切割粉碎机理及设备结构参数分析[J].贵州农业科学,2008,36(4):181-183
    [32]赵浩.高速切割粉碎技术及其应用的研究[D].江南大学.2006.8
    [33]刘根凡等.根茎类中药粉碎理论有效功耗的研究[J].华中科技大学学报(自然科学版),2006,7:21-23
    [34]张红霞,刘师多等.玉米秸秆粉碎刀具和刀速对粉碎功耗和质量的影响[J].河南科技大学学报(自然科学版),2003,6:1-4
    [35]姚燕,师清翔等.小麦秸秆粉碎装置的粉碎性能试验分析[J].河南科技大学学报(自然科学版),2005,8:74-76
    [36].耿令新,师清翔等.玉米秸秆粉碎装置结构运动参数对粉碎性能的影响[J].农业装备技术,2005,10:17-21
    [37]赵国兴等.锤片式粉碎机参数确定及对性能的影响[J].农业机械化与电气化,2007 (3):26-27
    [38]刘文广.锤片式粉碎机异型粉碎室的理论分析及试验研究[D].内蒙古农业大学,2006,5
    [39]杨昌高.提高锤片式微粉碎机产量的几点探讨[J].饲料工业,2000(2):10-11
    [40]朱建东.锤片和筛板的不同参数对粉碎机性能的影响[J].饲料工业,1998(12):9-12
    [41]李同祥.粉碎机吸风系统的使用调节和安装改进[J].饲料工业,2007(1):7-8
    [42]王飞等.新型秸秆撕裂粉碎机的设计[J].机械工程师,2007(4):70-71
    [43]王敏.自吸式谷壳粉碎机的结构设计粮食工程[J].2007,1:14-16
    [44]王东等.粉碎机性能的影响因素[J].粮食与饲料工业,2000(11):20-21
    [45]邓洁红等.锤式粉碎机的优化设计[J].粮油食品科技,2005(3):14-15
    [46]黄亦其.锤片式粉碎机性能试验研究[J].中国农机化,2004(1):50-51
    [47]刘梅英等.基于Pro/E的锤片式粉碎机转子的三维建模[J].农机化研究,2007(6):179-181
    [48]张长森.粉体技术及设备[M].上海:华东理工大学出版社,2007.1
    [49]朱德文等.我国生物质粉碎加工技术的研究进展[J].现代农业设备,2007(7):47-51
    [50]刘文广.梯形筛片对锤片式粉碎机性能影响的试验研究[J].农机化研究,2006(11):168-170
    [51]朱思洪等.树枝粉碎机的研制[J].南京农业大学学报,2004,27(3):111-113
    [52]朱思洪等.树枝切削性能试验研究[J].中国制造业信息化,2006,7:75-77
    [53]张汉月等.园林树枝切碎机的设计[J].广东农机,2002,3:8-9
    [54]王友林.树枝粉碎机的设计要点及分析[J].林业建设,2008,2:31-33
    [55]赵仁杰,喻云水.木质材料学[M].北京:中国林业出版社,2003,12
    [56]刘一星赵广杰.木质资源材料学M].北京:中国林业出版社,2004,8
    [57]尚得库等.木片工程与物理M].哈尔滨:东北林业大学出版社,1991,7
    [58]陆厚根.粉体技术导论M].上海:同济大学出版社,1997,3
    [59]李天舒,刘荣厚.生物质快速热裂解主要参数对生物油产率的影响[J].环境污染治理技术与设备.2006(11):18-22
    [60]徐保江.生物质热解液化生物质油的试验研究[J].农业工程学报.1999,15(3):177-181
    [61]王树荣.生物质闪速热裂解制取生物油的试验研究[J].太阳能学报.2002,23(1):4-10
    [62]王述洋.生物质热解动力学建模及锥式闪速热解装置设计理论研究[D].东北林业大学.2002
    [63]姚向丽.生物质粉体燃料破碎系统的中试研究[D].华中科技大学.2006,11
    [64]盛奎川等.切碎棉秆高密度压缩成型的试验研究[J].浙江大学学报(农业与生命科学版),2003,29(2):139-142
    [65]回彩娟,俞国胜.影响生物质块状燃料常温高压致密成型因素的研究[J].林业机械与木下设备,2005(11):10-14
    [66]高友生等.纤维物料的粉碎机理及相关参数的分析[J].包装与食品机械,2002(5):4-8
    [67]陈绍龙.复合粉碎机理在细碎机结构优化中的应用[J].水泥技术,1997(6):42-46
    [68]李海军等.玉米秸秆粉碎特性试验研究[J].节能,2007(4):34-36.
    [69]伊晓路等.生物质秸秆预处理技术[J].可再生能源,2005,2:31-3
    [70]雷廷宙.秸秆干燥过程的实验研究与理论分析[D].大连理工大学.2006,4
    [71]芮延年.现代设计方法及其应用M].苏州:苏州大学出版社,2005,3
    [72]廖林清等.机械设计方法学M].重庆:重庆大学出版社,2008,2
    [73]乔迎贤.PUGH矩阵及其在方案优选中的应用[J].质量与可靠性,2005(2):55-57
    [74]李滨.转锥式生物质闪速热解装置设计理论及仿真研究[D].东北林业大学.2008
    [75]檀润华.创新设计—TRIZ:发明问题解决理论M].北京:机械工业出版社2006,6
    [76]关立文等.机械产品概念设计:综述与展望[J].机械设计,2001,8:5-10.
    [77]黑龙江省科学技术厅.TRIZ理论入门导读[M].哈尔滨:黑龙江科学技术出版社,2007,10
    [78]施荣明,赵敏,孙聪.知识工程与创新[M].北京:航空工业出版社,2009
    [79]赵敏,胡珏.创新的方法[M].北京:当代中国出版社,2008,1
    [80]赵敏,史晓凌,段海波.TRIZ入门及实践[M].北京:科学出版社,2009
    [81]刘尚明等.TRIZ理论及其在机械产品创新设计中的应用[J].现代制造技术与装备,2007,3:43-44
    [82]赵新军.技术创新理论(TRIZ)及应用[M].北京:化学工业出版社,2004.2
    [83][俄]尤里.萨拉马托夫.怎样成为发明家—50小时学创造[M].北京:北京理工大学出版社,2006,11
    [84]付敏,王述洋.林木生物质高效精细粉碎研究现状及展望[J].林业机械与木工设备,2008,5:8-10
    [85]付敏,王述洋. 基于TRIZ(发明问题解决理论)的林木生物质粉碎机安全设计[J].中国安全科学学报,2008,11:97-102
    [86]付敏,王述洋.TRIZ在林木生物质粉碎机创新设计中的应用[J].机械设计,2009,10:61-63
    [87]韦子辉,阎会强,檀润华.TRIZ理论中ARIZ算法研究与应用[J].机械设计,2008,4:57-61
    [88]王昌,魏闯.ARIZ算法在注塑模具设计冲突问题中的应用研究[J].机械设计与制 造,2009,9:230-232
    [89]亿维讯创新科技专栏.TRIZ理论中的发明问题解决算法ARIZ[J].CAD/CAM与制造业信息化,2004,10:89-89
    [90]Darrell Mann.The Problem With ARIZ And Other Innovation Processes[J/OL]. TRIZ Journal,2007.12.http://www.triz-journal.com
    [91]陈广胜.发明问题解决理论(TRIZ)基础教程[M].哈尔滨:黑龙江科学技术出版社,2008,9
    [92]宋宪锋等.反击环锤式粉粹机粉碎细度的控制[J].莱钢科技,2006,12:27-28
    [93]鲁晓初等.新系列锤片式饲料粉碎机几个技术参数的选择[J].饲料工业,1994,12:19-21
    [94]王永志等.造粒用秸秆粉碎机的研究与开发[J].农机化研究,2009,1:157-159
    [95]马清艳.锤片式粉碎机设计参数对水草粗灰份去除率影响的试验研究[D].内蒙古农业大学.2005,5
    [96]王敏.自吸式谷壳粉碎机的结构设计[J].粮油食品科技,2007年,1:14-16
    [97]俞信国,乐其呈.横宽形振动筛锤片粉碎机的研究[J].饲料工业,1998,10:8-10
    [98]俞佳芝.4Q-1.5型秸秆粉碎机主要工作部件参数确定与校核[J].农机化研究,2006,9:74-79
    [99]俞信国.锤片式粉碎机[P].中国.ZL96116579.0.1997.7.2
    [100]郝波,贺志昌.一种振动式锤片粉碎机[P].中国.ZL200610088123.0.2007.1.17
    [101]高峰,王灵珠.在线清筛机构在粉碎机中的运用[J].饲料工业,2007,9(28):4-5
    [102]许恒勤.物料机械化运输[M].哈尔滨:东北林业大学出版社,2001,1
    [103]王耀斌,简晓春.物料装卸机械[M].北京:人民交通出版社,2003,10
    [104]李同祥.粉碎机吸风系统的使用调节和安装改进[J].饲料工业,2007,1:7-8
    [105]Choi S.H; Chan A.M.M.A virtual prototyping system for rapid product development. CAD Computer Aided Design.2004,36(5):401-412
    [106]IEEE-SA Standards Board. IEEE Std 1516-2000. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Object Model Template (OMT) Specification. New York:The IEEE Inc.,2000
    [107]Qing Shen, Grafe, M. Interdisciplinary knowledge sharing in solution elements based virtual prototyping of mechatronic systems.Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design (IEEE Cat. No. OSEX1061).2005:1171-1176
    [108]Luo, Y-B., Chen, D.-F.; Xiao, T.-YA distributed image-based virtual prototyping system with novel rendering tacticsInternational Journal of Advanced Manufacturing Technology. 2005,26(3):236-242
    [109]Shen, Qing,Gausemeier, Jurgen; Bauch, Jochen.A cooperative virtual prototyping system for mechatronic solution elements based assembly Advanced Engineering Informatics. 2005,19(2):169-177
    [110]Choi, S.H.,Cheung, H.H.A mufti-material virtual prototyping system.CAD ComputerAided Design.2005,37(1):123-136
    [111]包文育.东北垄作免耕播种机关键部件研究与整机设计[D].沈阳农业大学.2009,6
    [112]赖一楠.xx卫星热控百叶窗系统设计及虚拟样机协同仿真[D].哈尔滨理工大学.2006,12
    [113]刘剑雄.基于虚拟制造技术的报废汽车回收金属破碎过程研究[D].昆明理工大学.2006,7
    [114]李革.高速水稻插秋机关键技术研究[D].浙江大学.2006,6
    [115]胡迎春.甘蔗收获机械的多学科优化理论及关键技术的研究[D].广西大学.2006,6
    [116]邢天伟.基于田口方法的整车平顺性仿真及优化[D].吉林大学.2008,4
    [117]许述财.基于虚拟技术的联合整地机动力特性研究[D].吉林大学.2007,6
    [118]潘海兵.多功能联合采伐机平顺性研究及动力学仿真[D].东北林业大学.2009,6
    [119]郑建荣.ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社.2005
    [120]杜小强.基于虚拟样机技术的锤片式粉碎机转子动力学特性研究[D].华中农业大学.2004,5
    [121]王庆五等.ANSYS10.0机械设计高级应用实例[M].北京:机械工业出版社.2006
    [122]杜平安等.有限元法——原理、建模及应用[M].北京:国防工业出版社.2004
    [123]刘国庆,杨庆东.ANSYS工程应用教程(机械篇)[M].北京:中国铁道出版社.2003
    [124]赵毅彬,张文波等.基于ANSYS的揉切机刀片有限元分析[J].饲料工业,2005,26(23):7-10
    [125]机械设计手册编委会.机械设计手册(新版)[M].北京:机械工业出版社.2004
    [126]周荣亮,梁尚明,莫春华.基于ANSYS的滚柱活齿减速器轴系的模态分析[J].计算机应用技术.2009,36(9):43-45
    [127]尚晓江,邱峰等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社.2005
    [128]陈立平,张云清等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005
    [129]石博强等.ADAMS基础与工程范例教程[M].北京:中国铁道出版社.2007
    [130]李坚.木材科学[M].北京:高等教育出版社.2002
    [131]阮锡根,余观夏.木材物理学[M].北京:中国林业出版社.2005
    [132]林建忠等.超常颗粒多相流体动力学[M].北京:科学出版社.2008
    [133]Frenkel D, Msguire J F. Molecular dynamics study of dynamical properties of an assembly of infinitely thin hard rods. Molecular Physics,1983,49 (3):503-541
    [134]吴兆辉,郑绍鸿,林元淙.菌草粉碎机粉碎室的形状与结构[J].福建农业大学学报(自然科学版),1994,23(4):480-483
    [135]姚维祯.畜牧机械[M].北京:中国农业出版社.2005
    [136]许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700