用户名: 密码: 验证码:
生物质热解气化气相产物释放特性和焦结构演化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益紧缺和环境污染的日趋严重,生物质能的资源化利用引起了全世界的广泛关注。农业废弃物作为我国主要的生物质能资源,其洁净高效转化技术的研究和开发对于建立可持续发展的能源系统,促进社会经济的发展和生态环境的改善具有重大意义。基于国内外在生物质热解和气化方面的研究进展及不足,本文以中国4种典型农业废弃物玉米秆、稻草、棉秆和谷壳为研究对象,深入研究热解和气化过程中气体产物的释放规律、形成机理及焦颗粒结构的演变行为,对于深刻揭示生物质热解和气化机理具有重要的意义。
     首先采用TG/DTG技术研究农业生物质的热解特性,获得生物质在挥发分析出阶段的特征参数,定量描述了升温速率对生物质热解特性的影响,建立了生物质热解的反应动力学模型。结果表明,农业生物质的热解表现出相似的规律,热分解主要集中200-500℃。随着升温速率的增大,挥发分析出阶段的起始和终止温度、峰值温度均向高温侧轻微移动,并且主热解反应温度区间也在增大。最大热解速率随着升温速率的增大呈线性增大趋势。三组分模型可以很好地模拟木质纤维类生物质在不同升温速率下的热解行为。半纤维素、纤维素和木质素的热解活化能分别在98-114kJ/mol、132-186kJ/mol和21-26kJ/mol内变化。
     采用热解反应器与Gasboard-3100气体分析仪/Gasmet Dx-4000红外气体分析仪联用技术开展了生物质固定床热解的实验研究,探讨了主要气相组分的释放特性和形成机理以及热解产物分布的影响因素。结果表明农业生物质热解的主要气体产物有CO2、CO、CH4、C2H6、C2H4和一些有机物(如甲醇、甲醛、甲酸、丙酮和酚类化合物等)。CO2和CO的释放主要是羰基、羧基和醚基等断裂和重整所致。CH4主要通过甲氧基、亚甲基和芳香环等断裂而产生。甲醇的形成主要源自于芳香甲氧基和烷基侧链γ位上的脂肪-CH2OH等基团的断裂和重整。甲醛的形成与含有-CH2OH或羧酸基的烷基侧链上C-C键的断裂有关。热解温度和升温速率对热解产物分布及气体释放特性有明显影响。随着温度的升高,热解气中CO2含量显著减小,CO含量明显增大,CH4与CO含量的变化趋势比较相似,C2H6的含量一直在减小,而C2H4含量的变化不太明显。低升温速率有利于CH4和CO2的形成,而高升温速率有利于CO和C2H4的形成。
     利用元素分析、FTIR、In-situ DRIFTS、ESEM、真密度法、氮气等温吸附/脱附法等方法研究了热解过程中农业生物质焦物理化学结构的演化规律,并采用分形维数定量描述了焦颗粒内部孔隙表面形态的复杂程度。结果表明,热解温度对生物质焦的化学组成及结构特性有明显影响。高温下生物质焦中热不稳定的羟基、脂肪C-H键、烯属C=C键和羰基等基团已基本消失,而醚结构的含量也很少,生物质焦变得更具芳香性和碳质化。高温下生物质焦颗粒发生软化变形、熔融和碳结构有序化等现象,碳结构有序化进而导致了热退火和热失活现象的发生。此外热解过程中生物质焦颗粒还发生了结构收缩和孔窄化现象。热解过程中农业生物质的比表面积变化规律基本相近,在慢速热解条件下,比表面积都经历一个先增大后减小的过程,而在快速热解条件下,比表面积都经历一个先缓慢增大后急剧增大的过程。生物质/焦颗粒的孔隙表面具有分形特性,其分形特征与热解温度密切相关,慢速热解过程中分形维数与比表面积的变化趋势比较相似,而快速热解过程中分形维数与比表面积的变化趋势呈现出较大差异。
     最后在固定床反应器上开展了生物质焦与水蒸气气化的实验研究,实时在线分析了主要气体产物的释放特性,基于吉布斯自由能最小化原理开展了生物质焦水蒸气气化的热力学模拟研究,详细探讨了气化温度、压力、水蒸气加入量和CaO/C摩尔比对气化效果的影响,并通过元素分析、FESEM、氮气等温吸附/脱附法、XRD等方法研究了气化过程中生物质焦结构的演化规律。研究表明,生物质焦水蒸气气化的主要气体产物有H2、CO、CO2和CH4,其中H2的含量最多,达到50%以上,而CH4的含量很少。热力学模拟结果表明气化反应器的最佳运行工况为温度850℃左右,H2O/C摩尔比1.5左右,CaO/C摩尔比应在2.0以上。生物质气化焦颗粒的孔隙表面具有分形特性,气化过程中分形维数与比表面积的变化趋势比较相似,均呈现出先增大后减小的变化规律。随着气化反应的进行,焦中无定形碳和脂肪侧链的含量在减小,其结构变得更加有序化,且颗粒内部晶粒直径也变得更大。
With the excessive use of fossil fuels and the concerns over environmental protection, the resource utilization of biomass energy has attracted increasing worldwide interest. Agricultural residues are the main biomass resources available in China. However, at present most of agricultural residues are disposed in open fields, causing environment and public health problems. The research and development of pyrolysis and gasification technologies which can convert agricultural residues to high-quality energy contribute to establish sustainable energy system, promote the development of social economy and improve ecological environment. Based on the research progress and deficiency in biomass pyrolysis and gasification fields, maize stalk, rice straw, cotton straw and rice husk were used in this study as the representatives of Chinese typical agricultural biomass residues and the gas evolution patterns and formation mechanisms and char structural evolution during pyrolysis and gasification were studied in detail, which were essential to understand the fundamentals and mechanisms involved in biomass pyrolysis and gasification.
     Firstly, the pyrolysis characteristics of typical Chinese agricultural biomass were studied using thermogravimetric and derivative thermogravimetric (TG/DTG) analysis. The effect of heating rate was evaluated in the range of 5-50℃/min providing significant parameters for the fingerprinting of the fuels. Thus, the three-pseudocomponent model was used to simulate the pyrolysis behaviors of the materials studied. Model parameters of pyrolysis were given. The results showed that the thermal decomposition of agricultural biomass mainly occurred between 200 and 500℃. Higher heating rate increased the onset temperature and offset temperature of devolatilization and peak temperature for biomass pyrolysis. The maximum pyrolysis rate increased almost linearly with increasing heating rate. The three-pseudocomponent model with first-order kinetics had capability of predicting the pyrolysis behaviors of lignocellulosic biomass at different heating rates. Activation energy values varied between 98 and 114 kJ/mol for hemicellulose,132-186 kJ/mol for cellulose and 21-26 kJ/mol for lignin.
     The pyrolysis of agricultural biomasses was studied using a bench scale fixed bed reactor coupled with a Gasboard-3100 gas analyzer and a Gasmet Dx-4000 FTIR multicomponent gas analyzer. The release properties and formation mechnisms of gases produced during biomass pyrolysis were investigated. The influences of pyrolysis temperature, heating rate and residence time on the product yields and gas composition were analyzed in detail. The results showed that the major pyrolysis gases for agricultural residues were similar, including CO2, CO, methane, ethane, ethylene and some organics such as methanol, formaldehyde, formic acid, acetone, etc. The release of CO2 and CO was mainly caused by the cracking and reforming of carbonyl, carboxyl and ether groups. The formation of methane was mainly attributed to the rupture of methoxyl, methylene and aromatic rings. The aliphatic-CH2OH groups in-γposition of the alkyl side chains and aromatic methoxyl groups are the main source of methanol. Moreover, the reforming of free hydroxyl groups and C-0 bonds could also generate methanol. The formation of formaldehyde was probably caused by the Cβ-Cγcleavage in alkyl side chains that have-CH2OH groups or carboxylic acid groups in the-γposition. The products yields and gas composition showed a clear dependence on pyrolysis temperature and heating rate. The results showed that higher temperature led to the increase in gas yield and the decrease in char and liquid yields. As the pyrolysis temperature increased from 600 to 900℃, the CO and CH4 contents in the product gases increased obviously, while the CO2 content exhibited the opposite trend. Lower heating rate favoured the formation of CH4 and CO2, while higher heating rate favoured the formation of CO and C2H4.
     The structural evolution of biomass chars during pyrolysis was studied. The original samples and chars were characterized by ultimate analysis, FTIR, In-situ DRIFTS, ESEM, helium density measurement and N2 isothermal adsorption/desorption method. The results showed that the chemical composition and physicochemical structure of biomass chars were greatly affected by pyrolysis temperature. At high temperatures, the hydroxyl, aliphatic C-H, olefinic C=C and carbonyl groups in biomass chars were almost lost and the content of ether structure was very low, suggesting that the chars became progressively more aromatic and carbonaceous with increasing temperature. High temperature led to the occurrence of softening, melting and carbon structural ordering. Char structure ordering was responsible for thermal annealing and thus for thermal deactivation. Moreover, the structural shrinkage and pore narrowing occurred during biomass pyrolysis. The change of BET specific surface area during pyrolysis was similar for different agricultural biomass residues. The fractal dimension calculated by fractal Frenkl-Halsey-Hill (FHH) equation could represent pore structure satisfactorily. The fraction dimension was closely related to pyrolysis temperature. The change trends of the fractal dimension and BET specific surface area were similar during slow pyrolysis. However, the change trends of the two showed relatively large difference during fast pyrolysis.
     Finally, the steam gasification of biomass chars was studied in a bench scale fixed bed reactor. The release properties of gas products were analyzed on-line. Based on chemical equilibrium calculation, the influences of temperature, pressure, H2O/C molar ratio and CaO/C molar ratio on gasification process were studied. Then the structural evolution of biomass chars during gasfication was also investigated by applying ultimate analysis, FESEM, N2 isothermal adsorption/desorption method and XRD. The results showed that the major gases produced during biomass steam gasification were H2, CO, CO2 and CH4. H2 content in the product gases is the highest and it reached more than 50%, while CH4 content is the lowest. Gasification temperature had a notable impact on the release patterns and distribution of gas products. As the gasification temperature rised from 800 to 1000℃, the CO concentration in the produced gases significantly increased, the CO2 concentration decreased, and the CH4 concentration had little change. The change of H2 concentration mainly depended on the gasification reactions between biomass char and steam. The proper temperature, pressure, H2O/C molar ratio and CaO/C molar ratio of gasifier were 850℃, 0.1 MPa,1.5 and 2.0 seperately. The change trends of the fractal dimension and BET specific surface area were similar duing gasification. With the development of gasification, the content of amorphous structure and aliphatic side chains in biomass chars decreased and the crystallite diameter in these solids became bigger, indicating that biomass chars became more ordered with increasing carbon conversion.
引文
[1]谢克昌,李忠.煤基燃料的制备与应用.化工学报,2004,55(9):1393-1399.
    [2]周中仁,吴文良.生物质能研究现状及展望.农业工程学报,2005,21(12):12-15.
    [3]高翔,李海英,武志飞.生物质气化工艺及装置研究进展.应用能源技术,2009,11:7-10.
    [4]叶迎.中国生物质能源产业发展研究.安徽农业科学,2009,37(23):11221-11223.
    [5]王久臣,戴林,田宜水,秦世平.中国生物质能产业发展现状及趋势分析.农业工程学报,2007,23(9):276-282.
    [6]应浩,蒋剑春.生物质气化技术及开发应用研究进展.林产化学与工业,2005,25:151-155(增刊).
    [7]刘康,贾青竹,王昶.生物质热解技术研究进展.化学工业与工程,2008,25(5):459-464.
    [8]曹有为,王述洋.国内生物质热解技术的研究进展研究.林业劳动安全,2005,18(2):24-26.
    [9]曹稳根,段红.我国生物质能资源及其利用技术现状.安徽农业科学,2008,36(14):6001-6003.
    [10]李金花.生物质直接脱氧液化产物生物石油的分析与精制:[博士学位论文].北京:中国科学院理化技术研究所,2008.
    [11]N. Mosier, C. Wyman, B. Dale, R. Elander, Y.Y. Lee, M. Holtzapple, M. Ladisch. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology,2005,96(6):673-686.
    [12]刘荣厚,牛卫生,张大雷.生物质热化学转换技术.北京:化学工业出版社,2005.
    [13]杨海平.油棕废弃物热解的实验及机理研究:[博士学位论文].武汉:华中科技大学,2005.
    [14]吕鹏梅,常杰,熊祖鸿,吴创之,陈勇.生物质废弃物催化气化制取富氢燃料气.
    煤炭转化,2002,25(3):32-36.
    [15]谢军,吴创之,陈平,阴秀丽,赵增立,王磊.中型流化床中的生物质气化实验研究.太阳能学报,2007,28(1):86-90.
    [16]A.V. Bridgwater. The technical and economic feasibility of biomass gasification for power generation. Fuel,1995,74(5):631-653.
    [17]王章霞,陈明强,王君,陈明功,闽凡飞.稻壳热解特性及其动力学研究.安徽理工大学学报(自然科学版),2009,29(1):43-46.
    [18]T. Fisher, M. Hajaligol, B. Waymack, D. Kellogg. Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis,2002,62(2): 331-349.
    [19]彭云云,武书彬.蔗渣半纤维素的热裂解特性及动力学研究.造纸科学与技术,2009,28(3):14-18.
    [20]杨素文,丘克强.益阳地区7种生物质热解动力学特性研究.林产化学与工业.2009,29(2):39-43.
    [21]浮爱青,伦建,杨洁,朱振忠.小麦与玉米秸秆的热解过程及其动力学分析.化学工业与工程,2009,26(4):350-353.
    [22]米铁,陈汉平,杨国来,王贤华,邵敬爱,刘德昌.农林生物质废弃物的热重实验研究.太阳能学报,2008,29(1):109-113.
    [23]王昶,徐敬,贾青竹.植物类生物质热解特性及动力学研究.天津科技大学学报,2007,22(1):8-12.
    [24]许博,王昶,郝庆兰,贾青竹,李桂菊,王瑶.棉花秸秆催化热解特性及动力学的研究.生物加工过程,2009,7(3):21-26.
    [25]胡松,A. Jess,向军,孙路石,邱建荣,徐明厚.基于不同三组分模型解析生物质热解过程.化工学报,2007,58(10):2580-2586.
    [26]王新运,陈明强,王君,万新军.生物质热解动力学模型的研究.化学与生物工程,2009,26(7):61-63.
    [27]文丽华,王树荣,骆仲泱,王琦,施海云,方梦祥,岑可法.生物质的多组分热裂解动力学模型.浙江大学学报(工学版),2005,39(2):247-252.
    [28]温俊明,池涌,罗春鹏,倪明江,岑可法.城市生活垃圾典型有机组分混合热解特性的研究.燃料化学学报,2004,32(5):563-568.
    [29]R. Radmanesh, Y. Courbariaux, J. Chaouki, C. Guy. A unified lumped approach in kinetic modeling of biomass pyrolysis. Fuel,2006,85(9):1211-1220.
    [30]M. Lapuerta, J.J. Hernandez, J. Rodriguez. Comparison between the kinetics of devolatilisation of forestry and agricultural wastes from the middle-south regions of Spain. Biomass and Bioenergy,2007,31(1):13-19.
    [31]M.G. Gronli, G. Varhegyi, C.D. Blasi. Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 2002,41(17):4201-4208.
    [32]陈海翔,刘乃安,范维澄.基于差示扫描量热技术的生物质热解两步连续反应模型研究.物理化学学报,2006,22(7):786-790.
    [33]P. Luangkiattikhun, C. Tangsathitkulchai, M. Tangsathitkulchai. Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresource Technology,2008, 99(5):986-997.
    [34]J.A. Conesa, J.A. Caballero, A.M. R. Font. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochimica Acta,1995,254:175-192.
    [35]G. Chen, M. Fang, J. Andries, Z. Luo, H. Spliethoff, K. Cen. Kinetic study on biomass pyrolysis for fuel gas production. Journal of Zhejiang University Science, 2003,4(4):441-447.
    [36]W.F. Fassinou, L.V. de Steene, S. Toure, G. Volle, P. Girard. Pyrolysis of Pinus pinaster in a two-stage gasifier:Influence of processing parameters and thermal cracking of tar. Fuel Processing Technology,2009,90(1):75-90.
    [37]M. Becidan, O. Skreiberg. J.E. Hustad. Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. Journal of Analytical and Applied Pyrolysis,2007,78(1):207-213.
    [38]R. Yan, H. Yang, T. Chin, D.T. Liang, H. Chen, C. Zheng. Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes. Combustion and Flame,2005,142(1-2):24-32.
    [39]R.J.M. Westerhof, D.W.F. Brilman, W.P.M. van Swaaij, S.R.A. Kersten. Effect of
    temperature in fluidized bed fast pyrolysis of biomass:oil quality assessment in test units. Industrial & Engineering Chemistry Research,2010,49(3):1160-1168.
    [40]0. Onay. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Processing Technology,2007,88(5):523-531.
    [41]A. Demirbas. Effect of temperature on pyrolysis products from four nut shells. Journal of Analytical and Applied Pyrolysis,2006,76(1-2):285-289.
    [42]A.N. Phan, C. Ryu, V.N. Sharifi, J. Swithenbank. Characterization of slow pyrolysis products from segregated wastes for energy production. Journal of Analytical and Applied Pyrolysis,2008,81(1):65-71.
    [43]C.D. Blasi, G Signorelli, C.D. Russo, G Rea. Product distribution from pyrolysis of wood and agricultural residues. Industrial & Engineering Chemistry Research,1999,38(6):2216-2224.
    [44]肖军,沈来宏,郑敏,王泽明,仲晓黎.基于TG-FTIR的生物质加压热解试验研究.太阳能学报,2007,28(9):972-978.
    [45]崔亚兵,陈晓平,顾利峰.常压及加压条件下生物质热解特性的热重研究.锅炉技术,2004,35(4):12-15.
    [46]H. Luik, L. Luik, L. Tiikma, N. Vink. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. Journal of Analytical and Applied Pyrolysis, 2007,79(1-2):205-209.
    [47]R. Zanzi, K. Sjostrom, E. Bjornbom. Rapid pyrolysis of agriculture residues at high temperature. Biomass Bioenergy,2002,23(5):357-366.
    [48]陈鸿伟,王晋权,庞永梅,危日光.玉米秸秆催化热解试验研究.可再生能源,2007,25(5):19-22.
    [49]闵凡飞,张明旭,陈清如,陈明强.新鲜生物质催化热解气化制取富氢燃料气的试验研究.煤炭学报,2006,31(5):649-653.
    [50]陈冠益,李强,H. Spliethoff,王福全.生物质热解气化制取氢气.太阳能学报,2004,25(6):776-781.
    [51]杜丽娟,李建芬,肖波,易仁金,许小荣.生物质催化裂解制合成气的研究.化
    学工程师,2008,153(6):3-4.
    [52]A. Demirbas. Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energy Conversion and Management,2002,43(14):1801-1809.
    [53]B. Acharya, A. Dutta, P. Basu. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO. International Journal of Hydrogen Energy,2010,35(4):1582-1589.
    [54]S. Luo, B. Xiao, Z. Hu, S. Liu, X. Guo, M. He. Hydrogen-rich gas from catalytic steam gasificaton of biomass in a fixed bed reactor:Influence of temperature and steam on gasification performance. International Journal of Hydrogen Energy,2009, 34(5):2191-2194.
    [55]J. Zhou, Q. Chen, H. Zhao, X. Cao, Q. Mei, Z. Luo, K. Cen. Biomass-oxygen gasification in a high-temperature entrained-flow gasifier. Biotechnology Advances, 2009,27(5):606-611.
    [56]N. Gao, A. Li, C. Quan. A novel reforming method for hydrogen production from biomass steam gasification. Bioresource Technology,2009,100(18):4271-4277.
    [57]L. Shen, Y. Gao, J. Xiao. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass and Bioenergy,2008,32(2): 120-127.
    [58]孙洋,杨天华,刘耀鑫,李延吉,李润东.生物质颗粒燃料的多孔床料流态化气化试验研究.热力发电,2009,38(3):26-29.
    [59]陈亮,苏毅,陈祎,罗永浩,陆方,吴文广.两段式秸秆气化炉中当量比对气化特性的影响.中国电机工程学报,2009,29(29):102-107.
    [60]黄海峰,秦育红,吴志斌,冯杰.加压流化床中影响生物质气化气组成因素的研究.太原理工大学学报,2007,38(2):125-129.
    [61]M. Lapuerta, J.J. Hernandez, A. Pazo, J. Lopez. Gasification and co-gasification of biomass wastes:Effect of the biomass origin and the gasifier operating conditions. Fuel Processing Technology,2008,89(9):828-837.
    [62]X.J. Guo, B. Xiao, X.L. Zhang, S.Y. Luo, M.Y. He. Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier. Bioresource
    Technology,2009,100(2):1003-1006.
    [63]M.B. Nikoo, N. Mahinpey. Simulation of biomass gasification in fluidized bed reactor using Aspen Plus. Biomass and Bioenergy,2008,32(12):1245-1254.
    [64]罗思义,肖波,胡智泉,刘石明.粒径对生物质催化气化特性的影响.华中科技大学学报(自然科学版),2009,37(9):122-125.
    [65]L. Wei, S. Xu, L. Zhang, C. Liu, H. Zhu, S. Liu. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. International Journal of Hydrogen Energy, 2007,32(1):24-31.
    [66]J. Delgado, M.P. Aznar, J. Corella. Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Industrial & Engineering Chemistry Research,1997,36(5):1535-1543.
    [67]J.M. Encinar, F.J. Beltran, A. Ramiro, J.F. Gonzalez. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Processing Technology,1998,55(3):219-233.
    [68]蒋剑春,金淳.木质原料催化气化的研究.林产化工通讯,1996,1:7-15.
    [69]J. Arauzo, D. Radlein, J. Piskorz, D.S. Scott. Catalytic pyrogasification of biomass. Evaluation of modified nickel catalysts. Industrial & Engineering Chemistry Research,1997,36(1):67-75.
    [70]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究.燃料化学学报,2001,29(4):319-322.
    [71]王荣静,李爱民,高宁博,全翠.松木屑水蒸气催化气化制氢及其大物料量气化动力学研究.太阳能学报,2009,30(9):1240-1245.
    [72]王伟,蓝煜听,李明.TG-FTIR联用下生物质废弃物的热解特性研究.农业环境科学学报,2008,27(1):380-384.
    [73]杨海平,陈汉平,晏蓉,张世红,郑楚光.油棕废弃物热解的TG-FTIR分析.燃料化学学报,2006,34(3):309-314.
    [74]傅旭峰,仲兆平,肖刚,李睿.几种生物质热解特性及动力学的对比.农业工程学报,2009,25(1):199-202.
    [75]Z. Li, W. Zhao, B. Meng, C. Liu, Q. Zhu, G. Zhao. Kinetic study of corn straw pyrolysis:Comparison of two different three-pseudocomponent models. Bioresource Technology,2008,99(16):7616-7622.
    [76]S. Hu, A. Jess, M. Xu. Kinetic study of Chinese biomass slow pyrolysis:Comparison of different kinetic models. Fuel,2007,86(17-18):2778-2788.
    [77]D. Vamvuka, E. Kakaras, E. Kastanaki, P. Grammelis. Pyrolysis characteristics and kinetics of biomass residual mixtures with lignite. Fuel,2003,82(15-17):1949-1960.
    [78]J.J. Manya, E. Velo, L. Puigjaner. Kinetics of biomass pyrolysis:a reformulated three-parallel-reactions model. Industrial & Engineering Chemistry Research,2003, 42(3):434-441.
    [79]E. Kastanaki, D. Vamvuka, P. Grammelis, E. Kakaras. Thermogravimetric studies of behavior of lignite-biomass blends during devolatilization. Fuel Processing Technology,2002,77-78:159-166.
    [80]D. Vamvuka, S. Troulinos, E. Kastanaki. The effect of mineral matter on the physical and chemical activiation of low rank coal and biomass materials. Fuel,2006, 85(12-13):1763-1771.
    [81]T. Sonobe and N. Worasuwannarak. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel,2008,87(3):414-421.
    [82]A.J. Tsamba, W. Yang, W. Blasiak. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel Processing Technology,2006,87(6):523-530.
    [83]A. Aboulkas, K. El harfi, A. El bouadili, M. Nadifiyine, M. Benchanaa, A. Mokhlisse. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Processing Technology,2009,90(5):722-728.
    [84]M. Muller-Hagedorn, H. Bockhorn. Pyrolytic behavior of different biomasses (angiosperms) (maize plants, straws, and wood) in low temperature pyrolysis. Journal of Analytical and Applied Pyrolysis,2007,79(1-2):136-146.
    [85]A. Aboulkas, K. El harfi, A. El bouadili. Non-isothermal kinetic studies on co-processing of olive residue and polypropylene. Energy Conversion and Management 2008,49(12):3666-3671.
    [86]E. Meszaros, G. Varhegyi, E. Jakab. Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels,2004,18(2):497-507.
    [87]J.G. Reynolds and A.K. Burnham. Pyrolysis decomposition kinetics of
    cellulose-based materials by constant heating rate micropyolysis. Energy Fuels,1997, 11(1):88-97.
    [88]周岭,周福君,蒋恩臣,王明峰.棉秆不同组分热解特性及动力学.农业工程学报,2009,25(8):220-225.
    [89]E. Biagini, A. Fantei, L. Tognotti. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta,2008,472(1-2):55-63.
    [90]V. Mangut, E. Sabio, J. Ganan, J.F. Gonzalez, A. Ramiro, C.M. Gonzalez, S. Roman, A. Al-Kassir. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Processing Technology,2006,87(2):109-115.
    [91]R. Font, J.A. Conesa, J. Molto, M. Munoz. Kinetics of pyrolysis and combustion of pine needles and cones. Journal of Analytical and Applied Pyrolysis,2009,85(1-2): 276-286.
    [92]J.J.M. Orfao, F.J.A. Antunes, J.L. Figueiredo. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel,1999,78(3):349-358.
    [93]S.B. Lee, O. Fasina. TG-FTIR analysis of switchgrass pyrolysis. Journal of Analytical and Applied Pyrolysis,2009,86(1):39-43.
    [94]H. Yang, R. Yan, T. Chin, D.T. Liang, H. Chen, C. Zheng. Thermogravimetric analysis-Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels,2004,18(6):1814-1821.
    [95]S. Wang, X.M. Jiang, N. Wang, L.J. Yu, Z. Li, P.M. He. Research on pyrolysis characteristics of seaweed. Energy Fuels,2007,21(6):3723-3729.
    [96]H. Sutcu. Pyrolysis of phragmites australis and characterization of liquid and solid products. Journal of Industrial and Engineering Chemistry,2008,14(5):573-577.
    [97]S. Sensoz, D. Angin. Pyrolysis of safflower seed press cake:Part 1. The effects of pyrolysis parameters on the product yields. Bioresource Technology,2008,99(13): 5492-5497.
    [98]S. Sensoz, D. Angin. Pyrolysis of safflower seed press cake in a fixed-bed reactor: Part 2. Structural characterization of pyrolysis bio-oils. Bioresource Technology, 2008,99(13):5498-5504.
    [99]Z. Wang, J. Cao, J. Wang. Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. Journal of Analytical and Applied Pyrolysis, 2009,84(2):179-184.
    [100]R. Bassilakis, R.M. Carangelo, M.A. Wojtowicz. TG-FTIR analysis of biomass pyrolysis. Fuel,2001,80(12):1765-1786.
    [101]M.A. Wojtowicz, R. Bassilakis, W.W. Smith, Y. Chen, R.M. Carangelo. Modeling the evolution of volatile species during tobacco pyrolysis. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):235-261.
    [102]O. Liu, S. Wang, Y. Zheng, Z. Luo, K. Cen. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 2008,82(1):170-177.
    [103]H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel,2007,86(12-13):1781-1788.
    [104]N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. Journal of Analytical and Applied Pyrolysis,2007,78(2):265-271.
    [105]W. de Jong, A. Pirone, M.A. Wojtowicz. Pyrolysis of Miscanthus Giganteus and wood pellets:TG-FTIR analysis and reaction kinetics. Fuel,2003,82(9):1139-1147.
    [106]S. Li, J. Lyons-Hart, J. Banyasz, K. Shafer. Real-time evolved gas analysis by FTIR method:an experimental study of cellulose pyrolysis. Fuel,2001,80(12):1809-1817.
    [107]H. Luik, I. Johannes, V. Palu, L. Luik, K. Kruusement. Transformations of biomass internal oxygen at varied pyrolysis conditions. Journal of Analytical and Applied Pyrolysis,2007,79(1-2):121-127.
    [108]P. Fu, S. Hu, J. Xiang, L. Sun, T. Yang, A. Zhang, J. Zhang. Mechanism study of rice straw pyrolysis by Fourier transform infrared technique. Chinese Journal of Chemical Engineering,2009,17(3):522-529.
    [109]P.C. Painter, M. Sobkowiak, J. Youtcheff. FT-IR study of hydrogen bonding in coal. Fuel,1987,66(7):973-978.
    [110]V. Gomez-Serrano, F. Piriz-Almeida, C.J. Duran-Valle, J. Pastor-Villegas. Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon,1999,37(10):1517-1528.
    [111]J.C.D. Brand and G Eglington. Applications of spectroscopy to organic chemistry. London:Oldbourne Press,1965.
    [112]Peng Fu, Song Hu, Lushi Sun, Jun Xiang, Tao Yang, Anchao Zhang, Junying Zhang. Structural evolution of maize stalk/char particles during pyrolysis. Bioresource Technology,2009,100(20):4877-4883.
    [113]V. Gomez-Serrano, J. Pastor-Villegas, A. Perez-Florindo, C. Duran-Valle, C. Valenzuela-Calahorro. FT-IR study of rockrose and of char and activated carbon. Journal of Analytical and Applied Pyrolysis,1996,36(1):71-80.
    [114]J. Pastor-Villegas, J.M.M. Rodriguez, J.F. Pastor-Valle, M.G. Garcia. Changes in commercial wood charcoals by thermal treatments. Journal of Analytical and Applied Pyrolysis,2007,80(2):507-514.
    [115]付鹏,胡松,孙路石,向军,陈巧巧,杨涛,张军营.稻草和玉米秆热解气体产物的释放特性及形成机理.中国电机工程学报,2009,29(2):113-118.
    [116]A. Marcilla, A. Gomez, S. Menargues. TG/FTIR study of the thermal pyrolysis of EVA copolymers. Journal of Analytical and Applied Pyrolysis,2005,74(1-2): 224-230.
    [117]G Maschio, C. Koufopanos, A. Lucchesi. Pyrolysis, a promising route for biomass utilization. Bioresource Technology,1992,42(3):219-231.
    [118]C.A. Koufopanos, G Maschio, A. Lucchesi. Kinetic modeling of the pyrolysis of bomass and biomass components. The Canadian Journal of Chemical Engineering, 1989,67(1):75-84.
    [119]J. Giuntoli, W. de Jong, S. Arvelakis, H. Spliethoff, A.H.M. Verkooijen. Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis:Dry distiller's grains with solubles (DDGS) and chicken manure. Journal of Analytical and Applied Pyrolysis, 2009,85(1-2):301-312.
    [120]S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen, T. Fransson. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnology Advances, 2009,27(5):562-567.
    [121]L. Wei, S. Xu, L. Zhang, H. Zhang, C. Liu, H. Zhu, S. Liu. Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Processing Technology,2006,87(10): 863-871.
    [122]O. Onay. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor. Fuel,2007,86(10-11):1452-1460.
    [123]O. Onay, O.M. Kockar. Fixed-bed pyrolysis of rape seed (Brassica napus L.). Biomass and Bioenergy,2004,26(3):289-299.
    [124]C. Acikgoz, O. Onay, O.M. Kockar. Fast pyrolysis of linseed:product yields and compositions. Journal of Analytical and Applied Pyrolysis,2004,71(2):417-429.
    [125]O. Onay, S.H. Beis, O.M. Kockar. Fast pyrolysis of rape seed in a well-swept fixed-bed reactor. Journal of Analytical and Applied Pyrolysis,2001,58-59: 995-1007.
    [126]X. Wang, H. Chen, K. Luo, J. Shao, H. Yang. The influence of microwave drying on biomass pyrolysis. Energy Fuels,2008,22(1):67-74.
    [127]W.P. Pan, G N. Richards. Influence of metal ions on volatile products of pyrolysis of wood. Journal of Analytical and Applied Pyrolysis,1989,16(2):117-126.
    [128]谭洪,王树荣,骆仲泱,岑可法.生物质整合式流化床热解制油系统试验研究.农业机械学报,2005,36(4):30-33,38.
    [129]王琦,王树荣,王乐,谭洪,骆仲泱,岑可法.生物质快速热裂解制取生物油试验研究.工程热物理学报,2007,28(1):173-176.
    [130]J. Yu, J. Lucas, T. Wall, G. Liu, C. Sheng. Modeling the development of char structure during rapid heating of pulverized coal. Combustion and Flame,2004, 136(4):519-532.
    [131]D.M. Keown, X. Li, J. Hayashi, C.Z. Li. Evolution of biomass char structure duing oxidation in O2 as revealed with FT-Raman spectroscopy. Fuel Processing Technology,2008,89(12):1429-1435.
    [132]R.V. Pindoria, A. Megaritis, R.C. Messenbock, D.R. Dugwell, R. Kandiyoti. Comparison of the pyrolysis and gasification of biomass:effect of reacting gas atmosphere and pressure on eucalyptus wood. Fuel,1998,77(11):1247-1251.
    [133]E. Biagini, M. Cioni, L. Tognotti. Development and characterization of a lab-scale entrained flow reactor for testing biomass fuels. Fuel,2005,84(12-13):1524-1534.
    [134]E. Bianini, S. Pintus, L. Tognotti. Characterization of high heating-rate chars from
    alternative fuels using an electrodynamic balance. Proceedings of the Combustion Institute,2005,30(2):2205-2212.
    [135]E. Cetin, B. Moghtaderi, R. Gupta, T.F. Wall. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel,2004,83(16): 2139-2150.
    [136]E. Cetin, R. Gupta, B. Moghtaderi. Effect of pyrolysis pressure and heating rate on radiate pine char structure and apparent gasification reactivity. Fuel,2005,84(10): 1328-1334.
    [137]S. Hu, J. Xiang, L. Sun, M. Xu, J. Qiu, P. Fu. Characterization of char from rapid pyrolysis of rice husk. Fuel Processing Technology,2008,89(11):1096-1105.
    [138]R.K. Sharma, J.B. Wooten, V.L. Baliga, X. Lin, W.G. Chan, M.R. Hajaligol. Characterization of chars from pyrolysis of lignin. Fuel,2004,83(11-12):1469-1482.
    [139]R.K. Sharma, M.R. Hajaligol. Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):123-144.
    [140]R.K. Sharma, J.B. Wooten, V.L. Baliga, P.A. Martoglio-Smith, M.R. Hajaligol. Characterization of char from the pyrolysis of tobacco. Journal of Agricultural and Food Chemistry,2002,50(4):771-783.
    [141]R.K. Sharma, J.B. Wooten, V.L. Baliga, M.R. Hajaligol. Characterization of chars from biomass-derived materials:pectin chars. Fuel,2001,80(12):1825-1836.
    [142]D.M. Keown, J. Hayashi, C.Z. Li. Effects of volatile-char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass. Fuel,2008,87(7):1187-1194.
    [143]K. Umamaheswaran, V.S. Batra. Physico-chemical characterization of Indian biomasses ashes. Fuel,2008,87(6):628-638.
    [144]X. Wang, R. He, Y. Chen. Evolution of porous fractal properties during coal devolatilization. Fuel,2008,87(6):878-884.
    [145]M.M. Mahamud. Textural changes during CO2 activation of chars:A fractal approach. Applied Surface Science,2007,253(14):6019-6031.
    [146]M.M. Mahamud. Textural characterization of active carbons using fractal analysis. Fuel Processing Technology,2006,87(10):907-917.
    [147]M. Mahamud.O. Lopez, J.J. Pis, J.A. Pajares. Textural characterization of chars using fractal analysis. Fuel Processing Technology,2004,86(2):135-149.
    [148]S. Hu, M. Li, J. Xiang, L. Sun, P. Li, S. Su, X. Sun. Fractal characteristics of three Chinese coals. Fuel,2004,83(10):1307-1313.
    [149]S. Hu, X. Sun, J. Xiang, M. Li, P. Li, L. Zhang. Correlation characteristics and simulations of the fractal structure of coal char. Communications in Nonlinear Science and Numerical Simulation,2004,9(3):291-303.
    [150]S. Guo, J. Peng, W. Li, K. Yang, L. Zhang, S. Zhang, H. Xia. Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Applied Surface Science,2009,255(20):8443-8449.
    [151]N. Passe-Coutrin, V. Jeanne-Rose, A. Ouensanga. Textural analysis for better correlation of the char yield of pyrolysed lignocellulosic materials. Fuel,2005, 84(16):2131-2134.
    [152]J. Hayashi, T. Horikawa, K. Muroyama, V.G. Gomes. Activated carbon from chickpea husk by chemical activation with K2CO3:preparation and characterization. Microporous and Mesoporous Materials,2002,55(1):63-68.
    [153]S. Brunauer, P.H. Emmett, E. Teller. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society,1938,60(2):309-319.
    [154]E.P. Barrett, L.G. Joyner. P.P. Halenda. The determination of pore volume and area distributions in porous substances.1. Computations from nitrogen isotherms. Journal of the American Chemical Society,1951,73(1):373-380.
    [155]杨海平,陈汉平,晏蓉,王贤华,张世红,郑楚光.温度对生物质固定床热解影响的研究.太阳能学报,2007,28(10):1152-1157.
    [156]A.F. Martins, A.L. Cardoso, J.A. Stahl, J. Diniz. Low temperature conversion of rice husks, eucalyptus sawdust and peach stones for the production of carbon-like adsorbent. Bioresource Technology,2007,98(5):1095-1100.
    [157]J. Pastor-Villegas, C.J. Duran-Valle, C. Valenzuela-Calahorro, V. Gomez-Serrano. Organic chemical structure and structural shrinkage of chars prepared from rockrose. Carbon,1998,36(9):1251-1256.
    [158]M.M. Tang, R. Bacon. Carbonization of cellulose fibers-1. Low temperature
    pyrolysis. Carbon,1964,2(3):211-214.
    [159]F. Shafizadeh, Y. Sekiguchi. Development of aromaticity in cellulosic chars. Carbon, 1983,21(5):511-516.
    [160]M.J. Prauchner, V.M.D. Pasa, N.D.S. Molhallem, C. Otani, S. Otani, L.C. Pardini. Structural evolution of Eucalyptus tar pitch-based carbons during carbonization. Biomass and Bioenergy,2005,28(1):53-61.
    [161]S. Brunauer, L.S. Deming, W.E. Deming, E. Teller. On a theory of the van der Walls adsorption of gases. Journal of American Chemistry Society,1940,62(7): 1723-1732.
    [162]J.H. de Boer. The structure and properties of porous materials. London:Butterworths, 1958.
    [163]胡松,孙路石,向军,邱建荣,徐明厚.高速热解条件下谷壳颗粒物理结构的演化.化工学报,2007,58(11):2889-2894.
    [164]刘辉,吴少华,姜秀民,王国忠,曹庆喜,邱朋华,秦裕琨.快速热解褐煤焦的低温氮吸附等温线形态分析.煤炭学报,2005,30(4):507-510.
    [165]R.K. Sharma, M.R. Hajaligol, P.A.M. Smith, J.B. Wooten, V. Baliga. Characterization of char from pyrolysis of chlorogenic acid. Energy Fuels,2000, 14(5):1083-1093.
    [166]丘纪华.煤粉在热分解过程中比表面积和孔隙结构的变化.燃料化学学报,1994,22(3):316-320.
    [167]平传娟,周俊虎,程军,杨卫娟,岑可法.混煤热解过程中的表面形态.化工学报,2007,58(7):1798-1804.
    [168]G. Dobrescu, D. Berger, F. Papa, N.I. Ionescu. Fractal dimensions of lanthanum ferrite samples by adsorption isotherm methods. Applied Surface Science,2003, 220(1-4):154-158.
    [169]刘显东,陆现彩.侯庆锋,崔举庆,陆志均,孙岩,徐士进.基于吸附等温线的表面分形研究及其地球科学应用.地球科学进展,2005,20(2):201-206.
    [170]J.J. Fripiat, L. Gatineau, H.V. Damme. Multilayer physical adsorption on fractal surfaces. Langmuir,1986,2(5):562-567.
    [171]P. Levitz, H.V. Damme, J.J. Fripiat. Growth of adsorbed multilayers on fractal surfaces. Langmuir,1988,4(3):781-782.
    [172]胡松,孙学信,向军,李陪生,金峰,李敏,马新灵.淮南煤焦颗粒内部孔隙结构在燃烧过程中的变化.化工学报,2003,54(1):107-111.
    [173]马正飞,金叶玲,刘艳梅,姚虎卿.分形BET吸附模型.高校化学工程学报,1994,8(3):288-291.
    [174]徐龙君,顾乐观,鲜学福.分形吸附模型.煤炭转化,2000,23(1):91-93.
    [175]D. Avnir, M. Jaroniec. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir,1989,5(6):1431-1433.
    [176]M. Jaroniec. Evaluation of the fractal dimension from a single adsorption isotherm. Langmuir,1995,11(6):2316-2317.
    [177]Z. Sokolowska, M. Borowko, J. Reszko-Zygmunt, S. Sokolowski. Adsorption of nitrogen and water vapor by alluvial soils. Geodema,2002,107(1-2):33-54.
    [178]A.V. Neimark. Calculating surface fractal dimensions of adsorbents. Adsorption Science & Technology,1990,7(4):210-219.
    [179]A.V. Neimark, K.K. Unger. Method of discrimination of surface fractality. Journal of Colloid and Interface Science,1993,158(2):412-419.
    [180]B. Sahouli, S. Blacher, F. Brouers. Fractal surface analysis by using nitrogen adsorption data:the case of the capillary condensation regime. Langmuir,1996, 12(11):2872-2874.
    [181]胡松,向军,孙路石,付鹏,杨涛,苏胜,陈巧巧.谷壳热解过程中颗粒孔隙结构分形特性.化工学报,2008,59(9):2322-2327.
    [182]王中贤,张红,陈兴元,庄骏.热管式生物质气化炉的模拟.化工学报,2008,59(2):316-321.
    [183]马承荣,肖波,陈英明,江建方,邹先枚.生物质气化制取富氢燃气的实验研究.燃烧科学与技术,2007,13(5):461-467.
    [184]J. Gil, J. Corella, M.P. Aznar, M.A. Caballero. Biomass gasification in atmospheric and bubbling fluidized bed:Effect of the type of gasifying agent on the production. Biomass and Bioenergy,1999,17(5):389-403.
    [185]S. Rapagna, H. Provendier, C. Petit, A. Kiennemann, P.U. Foscolo. Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification. Biomass and Bioenergy,2002,22(5):377-388.
    [186]N. Gao, A. Li, C. Quan, F. Gao. Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. Inernational Journal of Hydrogen Energy,2008,33(20):5430-5438.
    [187]P. Lv, Z. Yuan, L. Ma, C. Wu, Y. Chen, J. Zhu. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy,2007,32(13):2173-2185.
    [188]T. Hanaoka, T. Yoshida, S. Fujimoto, K. Kamei, M. Harada, Y. Suzuki, H. Hatano, S. Yokoyama, T. Minowa. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent. Biomass and Bioenergy,2005,28(1):63-68.
    [189]P.M. Lv, Z.H. Xiong, J. Chang, C.Z. Wu, Y. Chen, J.X. Zhu. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technology,2004, 95(1):95-101.
    [190]G Schuster, G Loffler, K. Weigl, H. Hofbauer. Biomass steam gasification-an extensive parametric modeling study. Bioresource Technology,2001,77(1):71-79.
    [191]S. Rapagna, N. Jand, A. Kiennemann, P.U. Foscolo. Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass and Bioenergy,2000,19(3):187-197.
    [192]武琛,赵丽凤,田文栋,肖云汉.木屑/CaO与水蒸汽连续气化制氢的实验研究.太阳能学报,2008,29(9):1139-1143.
    [193]沈来宏,肖军,高杨.串行流化床生物质催化制氢模拟研究.中国电机工程学报,2006,26(11):7-11.
    [194]胡松,付鹏,向军,孙路石,张军营,程晓青,徐明厚.谷壳气化过程中颗粒物理化学结构的演化.化工学报,2008,59(3):701-707.
    [195]D.M. Keown, J.I. Hayashi, C.Z. Li. Drastic changes in biomass char structure and reactivity upon contact steam. Fuel,2008,87(7):1127-1132.
    [196]F.Y. Wang, S.K. Bhatia. A generalized dynamic model for char particle gasification with structure evolution and peripheral fragmentation. Chemical Engineering Science, 2001,56(12):3683-3697.
    [197]Q. Chen, R. He, X. Xu, Z. Liang, C. Chen. Experimental study on pore structure and apparent kinetic parameters of char combustion in kinetics-controlled regime. Energy Fuels,2004,18(5):1562-1568.
    [198]乔春珍,肖云汉,赵丽凤,徐祥.生物质一步制氢的热力学分析及实验研究.太阳能学报,2007,28(1):91-96.
    [199]吴家桦,沈来宏,肖军,郝建刚.串行流化床生物质气化制取合成气试验研究.中国电机工程学报,2009,29(11):111-118.
    [200]孙洋,杨天华,刘耀鑫,李延吉,李润东.气化介质对生物质多孔床料流化床气化产气特性的影响.燃料化学学报,2009,37(1):119-123.
    [201]张亚男,肖军,沈来宏.串行流化床稻秸气化合成甲醇的模拟.中国电机工程学报,2009,29(32):103-111.
    [202]高杨,肖军,沈来宏.串行流化床生物质气化制取富氢气体模拟研究.太阳能学报,2008,29(7):894-899.
    [203]闫秋会,郭烈锦,张西民,吕友军,梁兴.超临界水中葡萄糖气化制氢的热力学分析.化工学报,2004,55(11):1916-1920.
    [204]刘小伟.燃煤特性和燃烧工况对可吸入颗粒物形成的影响研究:[博士学位论文].武汉:华中科技大学,2008.
    [205]王智化,王勤辉,骆仲泱,周俊虎,樊建人,岑可法.新型煤气化系统燃烧集成制氢系统的热力学研究.中国电机工程学报,2005,25(12):91-97.
    [206]M. Guerrero, M.P. Ruiz, A. Millera, M.U. Alzueta, R. Bilbao. Characterization of biomass chars formed under different devolatilization conditions:differences between rice husk and eucalyptus. Energy Fuels,2008,22(2):1275-1284.
    [207]L. Lu, C. Kong, V. Sahajwalla, D. Harris. Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel,2002,81(9):1215-1225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700