用户名: 密码: 验证码:
滇池水体及表层沉积物—水界面各形态磷分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇池是我国著名的高原湖泊,具有城市供水、水产养殖、水上航运、旅游观光、调节气候、防洪调蓄等多种功能。滇池对于昆明市乃至云南省经济和社会发展具有极其重要的地位。随着滇池流域社会和经济的发展,入湖污染负荷逐步增加,滇池水体污染日益严重,富营养化程度不断升级,水生生态系统遭到破坏,治理滇池污染已成为摆在昆明市人民和政府面前的一项紧迫任务。
     本论文于2010年春季(枯水期)调查研究了滇池全湖表层水、中层水、上覆水、表层沉积物间隙水的总磷(TP)、可溶性总磷(TDP)、正磷酸盐(SRP)的浓度及分布特征;以及相对应采样点表层沉积物总磷(TP)和各级形态磷包括:水溶性磷(Exch-P)、铝结合磷(A1-P)、铁结合磷(Fe-P)、钙结合磷(Ca-P)、闭蓄态铝结合磷(Oc Al-P)、闭蓄态铁结合磷(Oc Fe-P)的含量及其分布特征;总结了磷在滇池水体中的纵向分布特征及横向区域性分布特征;分析了滇池沉积物-水界面磷的浓度分布梯度,探讨了滇池当前磷污染的主导污染源;探讨了磷元素在滇池沉积物中的赋存形态和分布规律。得出如下结论:
     1)总磷、可溶性总磷、正磷酸盐浓度在滇池草海的浓度水平均高于外海,且在草海北部高于南部。外海中总磷浓度以北部湖区最高,呈现出从湖区北部到南部逐渐降低的规律。可溶性总磷和正磷酸盐均呈现从外海北部向中部逐渐降低然后在靠近南部晋宁及东部呈贡附近湖区增高的趋势。2)总磷在外海表层和中层水中含量分别占上覆水含量72.7%、77.1%,表层水总磷浓度略低于中层水,上覆水最高;可溶性总磷在中层水和表层水平均含量稍低于上覆水,均是上覆水可溶性总磷含量的94.3%;正磷酸盐在中层水浓度略高于表层水,上覆水最高:变化趋势比总磷缓和,比可溶性总磷显著。在草海,总磷在表层和中层水中的平均浓度分别是上覆水的72.7%、76.1%,与外海的规律一致;可溶性总磷和正磷酸盐在表层水和中层水中的浓度基本相同。
     3)草海间隙水中总磷、可溶性总磷、正磷酸盐的平均浓度分别是上覆水的3.45、5.61、4.97倍。可溶性总磷和正磷酸盐占总磷的百分比分别为84.9%、64.3%,远高于上覆水的51.8%、44.7%。内源磷当前有可能已成为草海水体中磷污染的主导源;外海间隙水中总磷的平均浓度是上覆水的1.46倍,可溶性总磷和正磷酸盐占总磷的平均百分比分别为10.6%、3.5%,远低于上覆水中百分比分别为25.8%、11.3%。结果与草海相反。
     4)滇池外海表层沉积物总磷含量范围为1465.27-3650.12 mg-kg-1,平均浓度为1901.92 mg·kg-1,草海总磷平均浓度已达到3349.29 mg-kg-1。滇池草海、外海两个湖区富营养化情况均非常严重,草海最为显著,具有较高的内源磷负荷。
     5)外海各级形态磷含量的次序为Fe-P>Oc Fe-P>Ca-P>Exch-P>Al-P>Oc Al-P,铁结合磷(Fe-P)、钙结合磷(Ca-P)、闭蓄态铁结合磷(Oc Fe-P)的含量在同一水平上水溶性磷(Exch-P)、铝结合磷(A1-P)、闭蓄态铝结合磷(Oc Al-P)与前三者含量水平相差两个数量级。草海各级形态磷含量的次序为Oc Fe-P>Fe-P>Ca-P>Al-P> Exch-P>Oc Al-P,与总磷相同,草海各级形态磷都比外海高。
Dianchi Lake is one of the most famous highland shallow lakes, which has urban water supply, aquaculture, aquatic shipping, sightseeing, adjusting the climate, flood control storage functions. It has a very important position in economic and social development for Kunming and Yunnan Province. As the social and economic development in Dianchi Lake watershed, pollution load into the lake gradually increased, water eutrophication level escalated, aquatic ecosystems being destroyed, management of Dianchi Lake pollution has become the most urgent task for all republic people and the government.
     This study investigated the concentrations of total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP) in three layers of different depths in water body, the interstitial water of surface sediments and the total phosphorus and six phosphorus fractions, eg, exchangeable P (Exch-P), aluminum bound P (Al-P), iron bound P (Fe-P), calcium bound P (Ca-P), Occluded Al-P (Oc Al-P) and occluded Fe-P (Oc Fe-P) in surface sediment through analysis of samples collected from 37 sites around Dianchi Lake in spring when it was under low flow monsoon period to obtain a better understanding of the lake feature, to identify the major factors influencing the phosphorus cycle in aquatic environment, to estimate the dominant potential phosphorus sources. The results indicated as follows:
     1) The contents of TP, TDP, and SRP in Caohai were higher than Waihai, the highest in northern Caohai. The horizontal distributions of TP in three layers were reduced from northeast to southwest and the regularities of TDP and SRP were decreased firstly from north to middle then increased from middle to south, the distribution pattern in interstitial water was more complex.
     2) In Waihai section, the average contents of TP in surface water and middle water were 72.7%,77.1% of that in overlying water, respectively. The average contents of TDP in surface water and middle water were both 94.3%. In Caohai section, the average contents of TP in surface water and middle water were 72.7%, 76.1% of that in overlying water, respectively, almost the same in Waihai. The contents of TDP and SRP in two upper layers basically at the same level. Vertical analysis suggested that the contents of phosphorus pools in water body were increased with depth.
     3) In Caohai section, the average contents of TP, TDP, SRP in interstitial water 3.45,5.61,4.97 times higher than that in overlying water, the mean relative contribution of TDP to TP, SRP to TP in interstitial water were 84.9%,64.3%, both higher than that in overlying water of 51.8%,44.7% which revealed a strong evidence of potential releasing trend from the interstitial water to the water body in hyper-eutropacation Caohai section. In Waihai section, the average TP content in the interstitial water was 1.46 times higher than that in overlying water, the mean relative contribution of TDP to TP, SRP to TP in interstitial water was 10.6%,3.5% also lower than 25.8%,11.3% in overlying water which was opposing to that in Caohai which revealed less potential releasing process generally.
     4) The contents of TP in Waihai were ranged from 1465.27-3650.12 mg·kg-1 with an average content of 1901.92 mg·kg-1, and the average content in Caohai was 3349.29 mg·kg-1. Two sections in Dianchi Lake were both in severely eutrophication status.
     5) In Waihai section, the rank order of phosphorus fractions was Fe-P>Oc Fe-P>Ca-P>Exch-P>Al-P>Oc Al-P, the contents of Fe-P, Ca-P, Oc Fe-P were at the same magnitudes, the contents of Exch-P, Al-P, Oc Al-P were two magnitudes lower than the former three. In Caohai section, the rank order of phosphorus fractions was Oc Fe-P> Fe-P>Ca-P>Al-P>Exch-P>Oc Al-P, and the contents of each phosphorus fractions was lower than that in the Caohai as the content of TP.
引文
[1]和丽萍,赵祥华.“九五”期间滇池流域水污染综合治理工程措施及其效益分析[J].云南环境科学,2003,3(5):40-42.
    [2]吴丰昌.沉积物-水界面的生物地球化学作用[J].地球科学展,1996,11(2):191-196.
    [3]杨龙元,蔡启铭.太湖梅梁湾沉积物-水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41-44.
    [4]朱广伟,高光,秦伯强.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展,2003,14(6):14-19.
    [5]Emil R. Potentially mobile phosphorus in Lake Erken sediment. Water Research, 2000,34(7):2037-2042.
    [6]Gomez E, Durillon C, Rofes G, et al. Phosphate adsorption and release from sediments of brackish lagoons:pH, O2 and loading influence. Water Research, 1999,33 (10):2437-2447.
    [7]Jin X C, Jiang X, Yao Y, et al. Effects of light and oxygen on the uptake and distribution of phosphorus at the sediment-water interface. Science Total Environmemt,2006,357(1-3):231-236.
    [8]Jiang X, Jin X C, Yao Y, et al. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research,2008,42(8-9):2251-2259.
    [9]杨洪,易朝路,谢平,等.武汉东湖沉积物碳氮磷垂向分布研究[J].地球化学,2004,33(5):507-514.
    [10]藏小平,邱波,曾金凤.长江三峡水体中氮、磷的分布特点及赋存形态研究[J].中国环境水力学,2002:317-321.
    [11]潘成荣,李凌,叶琳琳,等.瓦埠湖沉积物中氮与磷赋存形态分析[J].水资源保护,2007,23(4):10-14.
    [12]李军,刘丛强,王仕禄,等.太湖五里湖表层沉积物中不同形态磷的分布特征[J].矿物学报,2004,24(4):405-410.
    [13]高丽,杨浩,周健民,等.滇池沉积物磷的释放以及不同形态磷的贡献[J]. 农业环境科学学报,2004,23(4):731-734.
    [14]高丽,杨浩,周健民,等.滇池沉积物磷内负荷及其对水体贡献的研究[J].环境科学学报,2004,24(5):776-781.
    [15]高丽,杨浩,周健民,等.滇池水体和沉积物中营养盐的分布特征[J].环境科学研究,2004,17(4):1-4.
    [16]田升平,东野肪兴,周建民,等.滇池湖泊磷负荷及其对水环境的影响[J].化工矿产地质,2002,24(1):11-16.
    [17]胡俊,吴永红,刘永定,等.滇池典型区域磷与铁的形态分布规律[J].环境化学,2005,24(4):450-453.
    [18]胡俊,刘永定,刘剑彤.滇池沉积物间隙水中氮磷形态及相关性的研究[J].环境科学学报,2005,25(10):1391-1396.
    [19]胡俊,刘剑彤,刘永定.沉积物与悬浮物中磷分级分离形态差异的初步研究[J].环境科学学报,2005,25(11):517-522.
    [20]金相灿.湖泊富营养化研究中的主要科学问题-一代“湖泊富营养化研究”专栏序言[J].环境科学学报,2008,28(1):21-23.
    [21]国家环境保护局科技标准司.湖泊污染控制技术指南[M].北京:中国环境科学出版社,1997.1-2.
    [22]彭近新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社,1988.57-62.
    [23]隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(1):102-105.
    [24]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002,14(4):301-309.
    [25]王文强,温琰茂,柴士伟.养殖水体沉积物中氮的形态、分布及环境效应[J].水产科学,2004,23(1):29-33.
    [26]金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990.219-238.
    [27]吕晓霞.黄海沉积物中氮的粒度结构及在生物地球化学循环中的作用[D]:[博士学位论文].青岛:中国科学院海洋研究所,2005.
    [28]王圣瑞,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征[J].环境科学学报,2008,28(1):37-43.
    [29]Delange G J. Distribution of Exchangeable, Fixed, Organic and Total Nitrogen in Interbedded Turbiditic Pelagic Sediments of the Madeira Abyssal-Plain, Eastern North-Atlantic. Marine Geology,1992,109(1-2):95-114.
    [30]吴丰昌.湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应[J].矿物学报,1996,16(4):403-409.
    [31]马红波,宋金明,吕晓霞,等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学,2003,32(1):48-54.
    [32]吕晓霞,宋金明,李学刚,等.北黄海沉积物中氮的地球化学特征及其早期成岩作用[J].地质学报,2005,79(1):114-123.
    [33]戴纪翠,宋金明,郑国侠,等.胶州湾沉积物氮的环境生物地球化学意义[J].环境科学,2007,28(9):1924-1928.
    [34]王圣瑞,金相灿,焦立新.不同污染程度湖泊沉积物中不同粒级可转化态氮分布[J].环境科学研究,2007,20(3):52-57.
    [35]何桐,谢健,余汉生,等.大亚湾表层沉积物中氮的形态分布特征[J].热带海洋学报,2009,28(2):86-91.
    [36]郑国侠,宋金明,孙云明,等.南海深海盆表层沉积物氮的地球化学特征与生态学功能[J].海洋学报,2006,28(6):44-52.
    [37]钟立香,王书航,姜霞,等.连续分级提取法研究春季巢湖沉积物中不同结合态氮的赋存特征[J].农业环境科学学报,2009,28(10):2132-2137.
    [38]Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine-Sediments. Limnology and Oceanography,1992, 37(7):1460-1482.
    [39]Chang S X, Preston C M. Incorporation and extractability of residual 15N in a coniferous forest soil. Soil Biology and Biochemistry,1998,30(8-9): 1023-1031.
    [40]Kemp A, Mudrochova A. Distribution and forms of nitrogen in a Lake Ontario sediment core. Limnology and Oceanography,1972,17(6):855-867.
    [41]吕晓霞,宋金明,袁华茂,等.南黄海表层不同粒级沉积物中氮的地球化学特征[J].海洋学报,2005,27(1):64-69.
    [42]Chang S C, Jackson M L. Fraction of soil phosphorus. Soil Science,1957,84: 133-144.
    [43]Williams J, Jaquet J, Thomas R. Forms of phosphorus in surficial sediments of Lake Erie. Journal of the Fisheries Research Board of Canada,1976,33(3): 413-429.
    [44]Hieltjes A H M, Lijklema L. Fractionation of iInorganic phosphates in Calcareous sediments. Journal of Environmental Quality,1980,9:105-407.
    [45]Psenner R. Fraktionierung organoishcher and anorganischer phosphorverbindungen von sedimenten. versuch einer dedinition okologschwichwichtiger fractionen. Arch Hydrobioogial Supply,1985,70: 111-115.
    [46]Golterman H L. Sediments as a source of phosphorus for algal growth. Hague: Dr W Junk,1977:286-293.
    [47]Pardo P, Rauret G, Lopez-Sanchez J F. Shortened screening method for phosphorus fractionation in sediments:a complementaryapproach to the standards, measurements and testing harmonised protocol. Analytica Chimica Acta,2004,508(2):201-206.
    [48]Golterman H L. Fractionation of sediment phosphate with chelating compounds: a simplification, and comparison with other methods. Hydrobiologia,1996, 335(1):87-95.
    [49]王庭健,苏睿,金相灿,等.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响[J].环境科学研究,1994,7(4):12-19.
    [50]夏学惠,东野脉兴,周建民,等.滇池现代沉积物中磷的地球化学及其对环境影响[J].沉积学报,2002,20(3):416-420.
    [51]张路,范成新,池俏俏,等.太湖及其主要入湖河流沉积磷形态分布研究[J].地球化学,2004,33(4):423-432.
    [52]刘浏,刘晓端,徐清,等.密云水库沉积物中磷的形态和分布特征[J].岩矿测试,2003,22(2):81-85.
    [53]Ruban V, Brigault S, Demare D, et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Journal of Environmental Monitoring,1999,1(4):403-407.
    [54]Ruban V, Lopez-Sanchez J F, Pardo P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-a synthesis of recent works. Fresenius Journal of Analytical Chemistry,2001,370(2-3):224-228.
    [55]付永清,周易勇.沉积物磷形态的分级分离及其生态学意义[J].湖泊科学,1999,11(4):376-381.
    [56]金相灿,孟凡德,姜霞,等.太湖东北部沉积物理化特征及磷赋存形态研究[J].长江流域资源与环境,2006,15(3):388-394.
    [57]金相灿,庞燕,王圣瑞,等.长江中下游浅水湖沉积物磷形态及其分布特征研究[J].农业环境科学学报,2008,27(1):279-285.
    [58]Moturi M C Z, Rawat M, Subramanian V. Distribution and partitioning of phosphorus in solid waste and sediments from Drainage Canals in the Industrial Belt of Delhi, India. Chemosphere,2005,60(2):237-244.
    [59]章婷曦,王晓蓉,金相灿.太湖不同营养水平湖区沉积物中磷形态的分布特征[J].农业环境科学学报,2007,26(4):1207-1213.
    [60]Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments -Lakes Volvi and Koronia, N. Greece. Chemosphere,2002,46(8):1147-1155.
    [61]Choi H J, Choi C H, Lee S M. Analyses of phosphorus in sewage byfraction method. Journal of Hazardous Materials,2009,167(1-3):345-350.
    [62]梁海清,王圣瑞,金相灿,等.不同污染程度沉积物不同粒级有机磷形态及其分布[J].中国农学通报,2007,23(3):380-385.
    [63]宋金明,李鹏程.南沙群岛海域沉积物-海水界面间营养物质的扩散通量[J].海洋科学,1996,(5):43-50.
    [64]范成新,秦伯强,胡维平,等.太湖沉积物-水界面生源要素迁移机制及定量化-铵态氮释放速率的空间差异及源-汇通量[J].湖泊科学,2004,16(1):10-20.
    [65]刘巧梅.长江口潮滩沉积物-水界面营养元素氮磷的累积、迁移过程[D]:[硕士学位论文].上海:华东师范大学,2004.
    [66]Blackburn T H. Release of nitrogen compounds following resuspension of sediment:model predictions. Journal of Marine Systems,1997,11(3-4): 343-352.
    [67]杨龙元,蔡启铭,秦伯强,等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41-47.
    [68]杨龙元,WayneS G.休伦湖saginaw湾沉积物反硝化率的测定及其时空特征[J].湖泊科学,1998,10(3):32-38.
    [69]Conley D J, Stockenberg A, Carman R, et al. Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science,1997, 45(5):591-598.
    [70]Bolalek J, Graca B. Ammonia nitrogen at the water-sediment interface in Puck Bay (Baltic Sea). Estuarine, Coastal and Shelf Science,1996,43(6):767-779.
    [71]刘素美,张经,于志刚,等.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量[J].环境科学,1999,3(2):12-16.
    [72]Nedwell D B, Trimmer M. Nitrogen fluxes through the upper estuary of the Great Ouse, England:The Role of the Bottom Sediments. Marine Ecology-Progress Series,1996,142(1-3):273-286.
    [73]Trimmer M, Nedwell D B, Sivyer D B, et al. Nitrogen fluxes through the lower estuary of the River Great Ouse, England:The Role of the Bottom Sediments. Marine Ecology-Progress Series,1998,163:109-124.
    [74]刘敏,侯立军.河口滨岸潮滩沉积物-水界面N、P的扩散通量[J].海洋环境利学,2001,20(3):19-23.
    [75]Risgaard-Petersen N, Ottosen L D M. Nitrogen cycling in two temperate zostera marina beds:seasonal variation. Marine Ecology Progress Series,2000,198: 93-107.
    [76]张兴正,陈振楼,邓焕广,等.长江口北支潮滩沉积物-水界面无机氮的交换通量及季节变化[J].重庆环境科学,2003,25(9):31-34.
    [77]Riber H H. Phosphorus uptake from water by the macrophyte-eiphyte complex in a Danish Lake:Relationship to Plankton. Verh. Internat. Verein. Limnol,1984, 22:790-794.
    [78]Jiang X, Jin X, Yao Y, et al. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition. Environmental Pollution, 2006,141(3):482-487.
    [79]尹大强,覃秋荣,阎航.环境因子对五里湖沉积物磷释放的影响[J].湖泊科学,1994,6(3):240-244.
    [80]徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展[J].重庆环境科 学,2003,25(11):147-149.
    [81]Wang S, Jin X, Zhao H, et al. Effects of organic matter on phosphorus release kinetics in different trophic lake sediments and application of transition state theory. Journal of Environmental Management,2008,88(4):845-852.
    [82]Jin X, Wang S, Pang Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pollution,2006,139(2):288-295.
    [83]姚扬,金相灿,姜霞,等.光照对湖泊沉积物磷释放及磷形态变化的影响研究[J].环境科学研究,2004,17:30-33.
    [84]Robarts R D, Waiser M J, Hadas O, et al. Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan. Limnology and Oceanography,1998,43(6):1023-1036.
    [85]张路,范成新,朱广伟,等.长江中下游湖泊沉积物生物可利用磷分布特征[J].湖泊科学,2006,18(1):36-42.
    [86]Gerdes P, Kunst S. Bioavailability of phosphorus as a tool for efficient P reduction schemes. Water Science and Technology,1998,37(3):241-247.
    [87]朱广伟,秦伯强,张路.长江中下游湖泊沉积物中磷的形态及藻类可利用量[J].中国科学,2005,35:24-32.
    [88]Grobler D C, Davies E. The availability of sediment phosphate to algae. Water SA,1979,5:114-122.
    [89]黄清辉.浅水湖泊内源磷释放及其生物有效性[D]:[博士学位论文].北京:中国科学院生态环境研究中心,2005.
    [90]Uusitalo R, Yli-Halla M. Estimating errors associated with extracting phosphorus using iron oxide and resin methods. Journal of Environmental Quality,1999,28(6):1891-1897.
    [91]Ekholm P, Jouttijarvi T, Priha M, et al. Determining algal-available phosphorus in pulp and paper mill effluents:algal assays vs routine phosphorus analyses. Environmental Pollution,2007,145(3):715-722.
    [92]杨逸萍,宋瑞星,胡明辉.河口悬浮物与海洋近岸表层沉积物中磷的海洋浮游藻类生物测定[J].厦门大学学报,1996,35(4):574-580.
    [93]Zhou Q, Gibson C E, Zhu Y. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere,2001, 42(2):221-225.
    [94]金相灿,卢少勇,王开明,等.巢湖城区洗耳池沉积物磷及其生物有效磷的分布研究[J].农业环境科学学报,2007,26(3):847-851.
    [95]袁旭音,李兵,许薇薇,等.太湖入湖河道沉积物中生物利用磷和营养水平分析[J].地学前沿,2008,15(5):212-218.
    [96]黄清辉,王子健,王东红,等.夏季梅梁湾水体中生物有效磷的分布及来源.中国科学,2005,35:131-137.
    [97]Li D P, Huang Y. Sedimentary phosphorus fractions and bioavailability as influenced by repeated sediment resuspension. Ecological Engineering,2010, 36(7):958-962.
    [98]沈海维.大亚湾表层沉积物中氮和磷的生物可利用性研究[D]:[硕士学位论文].厦门:厦门大学,2002.
    [99]陈吉宁.流域面源污染控制技术-以滇池流域为例[M].北京:中国环境科学出版社,2009.78-86.
    [100]Yang Q F. Investigation of organic carbon, nitrogen, phosphorus, and the total number of bacteria in Dianchi Lake. Yunnan Eviromental Science,2003,22: 101-103.
    [101]Tian S P, Dongy M X, Zhou J M. Phosphorus burden on water body of Dianchi Lake and its impact on water environment. Geology of Chemical Minerals. 2002,24(1):11-16.
    [102]Yu G Y, Zhang X H, Liang X M. Biogeochemical characteristics of metal elements in water-plant system of lake Dianchi. Acta Hydrobiologica Sinica, 2000,24(2):172-177.
    [103]郝晓蕾,杨常亮,魏勤.滇池污染现状的综合评价及分析[J].云南大学学报,1998,20:589-592.
    [104]合田健.水环境指标[M].北京:中国环境科学出版社,1982.269-277.
    [105]刘丽萍.滇池富营养化发展趋势分析及其控制对策[J].云南环境科学,2001,20,25-27.
    [106]郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展,2002,21(5),500-506.
    [107]郭慧光,马丕京.滇池环境综合治理框架及其投资估算[J].云南环境科学,2000,19:38-43.
    [108]李文朝.浅水湖泊生态系统的多稳态理论及其应用[J].湖泊科学,1997,9(2):97-103.
    [109]袁旭音,徐乃政,陶于祥,等.太湖底泥的空间分布和富营化特征[J].资源调查与环境,2003,24(1):20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700