用户名: 密码: 验证码:
植物促生菌与CO_2联合作用对商陆和籽粒苋富集铯的影响及其相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着核工业的发展和核技术的广泛应用,核爆试验或核泄漏事故等,使放射性核素不可避免的进入环境,这些放射性核素进入环境(大气、水体和土壤)后,对生态环境和人类健康造成潜在的危害,其中半衰期长、生成率高的~(137)Cs,被认为生物学上最危险的放射性核素之一。治理核素污染的常规的物理、化学和工程等方法由于成本高,易造成二次污染,且难以用于治理环境中大面积污染。植物修复具有较好的应用前景,但它存在修复效率低、周期长等局限性。如何增加单位面积上植物生物量、对放射性核素的吸收量以提高植物修复的相对效率成为人们关注的焦点。接种微生物是重要的辅组手段,另一方面,大气CO_2浓度升高增加植物对矿质养分的吸收,促进植物生长。因此,研究大气CO_2浓度升高与微生物联合作用对植物吸收重金属或放射性核素污染物的影响成为一个新的研究热点。
     本文选择一株具有多种重金属(铅、镉、铜、锌)抗性且能产生植物生长激素、固氮、溶解难溶性无机磷等性质的植物促生菌Burkholderia sp.D54,进行解钾、耐铯、富集铯能力研究,并在此基础上通过水培和土培盆栽试验研究接种Burkholderia sp.D54和CO_2浓度升高植物对Cs吸收的影响,并从植物根系形态、钾的吸收、植物光合速率、叶绿素含量、抗氧化酶活性等探讨其可能性机制。选题具有重要的理论意义与实用价值。得出以下主要结论:
     (1)耐重金属的Burkholderia sp.D54对Cs表现出较强的耐性,在培养基铯含量达到50mM时能生长;100 mL养液中,接种1 mL母液(1.8×10~7cfu·mL~(~(-1)))培养3天后可获得0.1737g菌体干物重。伯克氏菌细胞可以富集大量的铯,细胞对铯富集量达到45±3.85 mg·g~(-1)(干重菌体),培养液中的铯去除率达到58.77%。
     (2)伯克氏菌Burkholderia sp.D54能分泌大量有机酸,培养4天后培养液pH值从6.5降致2.5,在含云母的培养液中接种Burkholderia sp.D54能有效溶解云母中的钾,相比不接种试验,培养液中钾含量显著增加。
     (3)水培籽粒苋接种Burkholderia sp.D54增加籽粒苋的生物量和铯的吸收量,大多未达到显著水平,但提高籽粒苋对铯的耐性指数和富集系数,一定程度上提高了籽粒苋对铯的修复效率。抗生素氨苄青霉素影响籽粒苋生长,植物与微生物联合试验中,添加氨苄青霉素作为微生物对照处理对不同植物影响不一样,应该先进行植物影响试验。
     (4)正常CO_2浓度土培试验中,接种Burkholderia sp.D54美洲商陆和籽粒苋总生物量(干物重)分别比增加19.8%~33.4%和22.9%~76.6%;大气CO_2浓度升高土培试验中,接种Burkholderia sp.D54美洲商陆和籽粒苋总生物量分别增加22%~139%和14%~254%。
     (5)正常CO_2浓度土培试验中,接种Burkholderia sp.D54美洲商陆和籽粒苋地上部铯含量分别增加4.9%~22.4%和8.1%~19.4%,根中铯含量分别增加6.8%~15.7%和1.1%~10.8%;大气CO_2浓度升高土培试验中,接种Burkholderia sp.D54美洲商陆和籽粒苋地上部铯含量分别增加10%~47%和32%~46%,根中铯含量分别增加27%~56%和35%~38%。
     (6)土壤中的铯抑制植物对钾的吸收,钾参与植物叶绿素的合成,从而影响植物叶绿素含量和光合反应速率,正常大气CO_2浓度和CO_2浓度升高条件下,接种Burkholderia sp.D54增加了植物对钾的吸收,从而提高植物叶绿素含量,提高植物净光合速率Pn、气孔导度Gs、胞间CO_2浓度Ci、蒸腾速率E和水分利用率WUE,植物生物量增加可能与这些作用有关。
     (7)铯胁迫条件下,美洲商陆和籽粒苋叶片中的MDA含量显著升高;正常大气CO_2浓度和CO_2浓度升高条件下,接种Burkholderia sp.D54增加美洲商陆和籽粒苋抗氧化胁迫SOD、CAT、POD酶的活性,降低植物叶片中MDA含量,降低了美洲商陆和籽粒苋铯的氧化胁迫。
Rapid development of nuclear industry and nuclear technologies in past few decades, nuclear explosion experiments or nuclear leakage accident, radionuclides have made the environment inevitably, posing potential harm to the ecological environment and human health. Due to long half-time and high uptake rate ~(137)Cs was considered to be one of the most dangerous radionuclides. As for treatment of radionuclides pollution, the conventional physical and chemical and engineering methods cost high, secondary pollution, and diffical in treating large scale. With the development of modern bio-technology, the bio-remediation of the radionuclide is receiving more attention. The bio-remediation includes microorganism remediation and phytoremediation. There are many anti-radionuclide microorganisms in the nature, and some of them could accumulate and precipitate the radionuclide. Microorganism remediation is used in treatment of the wastewater nuclear power station, whereas, phytoremediation is widely used in the soil contamination with good performance. However, phytoremediation has some disadvantages, such as low efficientyand long period. Therefore how to increase the plant biomass in the per-unit area and the uptake of the radionuclides in order to improve the remediation efficiency is receiving attention. On the other hand, we are facing atmospheric CO_2 rise which is considered to be one of the major environmental problems. It is universally acknowledged that, elevated atmospheric CO_2 effect of enhance the mineral nutrient uotake by plants, and improve growth. So, the study of the increasing CO_2 concentration on plant uptake of heavy metal or radionuclides, increasing remediation efficiency has becomes a new hot research topic.
     With the inspiration of elevated CO_2 as an asisitend remediation agent, the present paper use one growth-promoting bacteria Burkholderia sp.D54, this micro-organism is heavy metal (Pb, Cd, Cu and Zn) resistence and plant growth hormone production, nitrogen fixation, dissolving of inorganic phosphate. We investigated is Cs resistance and accumulation ability, we also investigated the Cs uptake effect of elevated CO_2-plant-microorganism combination, and the possible mechanism through plant root morphology, the uptake potassium, photosynthetic rate, The content of chlorophyll, activities of antioxidase and so on. The main conclusions are as follows:
     (1)The heavy metal resistance bacteria Burkholderia sp.D54 showed the tolerence to Cs, and could growh in the culture medium with the content of Cs 50mM; in the 100 mL culture medium, inoculated in 1 mL mother liquor(1.8×10~7cfu·mL~(~(-1))), after 3 days produced the 0.1737g bacteria dry weight. The cell of Burkholderia sp.D54 was able to accumulate large quantities of Cs, being up to 45±3.85 mg·g~(-1)(dry weight), and the removing rate of Cs was 58.77% after 3 days.
     (2)after the 4 days inoculation Burkholderia sp.D54 could secrete large quantities organic acid with pH being down from 6.5 to 2.5; inoculation in the mica culture medium, show that the microgrgainsm could dissolve the potassium efficiently, leading to increasing potassium concentration efficiently.
     (3)Inoculation of the bacteria to the hydroponic A. crenentus, could increase the A. crenentus biomass and the absorption of Cs, but most of them are not significantly. The resistance index and enrichment coefficient were improved, and the remediation efficiency to some extent. The antibiotic ampicillin affected the growth of A. crenentus, in the plant and bacteria combined experiment, added ampicillin as the CK treatment, different effect on the different plant, should do the plant effect experiment first.
     (4)In the soil pot experiment in the ambient CO_2, inoculation of Burkholderia sp.D54, increased the total biomass of P. americana and A. crenentus (dry weight) by 19.8%~33.4% and 22.9%~76.6%, respectively. Elevated CO_2, increased the total biomass of P. americana and A. crenentus by 22%~139% and 14%~254%, respectively.
     (5)In the pot experiment under the ambient CO_2, inoculation of Burkholderia sp.D54, increased the Cs concentration in shoot of P. americana and A. crenentus by 4.9%~22.4% and 8.1%~19.4%, The Cs concentration in root was increased by 6.8%~15.7% and 1.1%~10.8%, respectively. Under the elevated CO_2, Cs concentration in shoot of P. americana and A. crenentus increased by 10%~47% and 32%~46%, whereas in root of P. americana and A. crenentus by 27%~56% and 35%~38%, respectively.
     (6)Cs in the soil inhibited plant of uptake potassium, that has function of participation of in plant chlorophyll synthesis, and therefore affect the content of chlorophyll and photosynthetic rate. Under ambient CO_2 and elevated CO_2, inoculation of Burkholderia sp.D54 improved the plant uptake potassium, and increased the content of chlorophyll, enhanced the plant net photosynthetic rate Pn, stomatal conductance (Gs), intercellular CO_2 concentration (Ci) transpiration rate (E) and water use efficiency (WUE), the increased of the biomass might contribute to these effection.
     (7)Under the stress of Cs, MDA concentration in leaves of P. americana and A. crenentus was significantly increased; Under ambient CO_2 and elevated CO_2, inoculation of Burkholderia sp.D54 inceresed Antioxidant SOD、CAT、POD enzyme activities of P. americana and A. crenentus, but decreased MDA contents in leaves of P. americana and A. crenentus .
引文
1.何琳燕盛下放陆光祥等.不同土壤中硅酸盐细菌生理生化特征及其解钾活性的研究[J].土壤, 2004,36(4):434-437
    2.内山正史.苏联切尔诺贝利核事故与日本人体内~(l37)Cs的负荷量[J] .国外医学·放射医学与核医学手册. 1989, 13(6):253-254
    3.周绪斌,邢瑞云,吕星.耐辐射奇球菌在放射性环境中的生物修复作用[J].微生物学通报, 2004, 31(1) :118– 122
    4.唐世荣,商照荣,宋正国等.放射性核素污染土壤修复标准的若干问题.农业环境科学学报, 2007, 26 (2): 407-412
    5.唐世荣,郑洁敏,陈子元等.六种水培的苋科植物对134Cs的吸收和积累.核农学报, 2004, 18 (6): 474-479
    6.唐世荣,郑洁敏,陈子元,等. 2004.六种水培的苋科植物对134Cs的吸收和积累[J].核农学报. 18(6):474- 479
    7.唐世荣.土—水介质中低放核素污染物的生物修复.应用生态学报, 2002, 13 (2): 243-246.
    8.唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社, 2006, 127-128
    9.尹显和,任剑锋,华建平.放射性核素铯-137在土壤里不同质地中的分布规律[J].南华大学学报(理工版), 2001, l5(3):49-51
    10.张习美,2010.二氧化碳浓度升高对美洲商陆和籽粒苋蓄积铯及根际微生物的影响.硕士学位论文.中国农业科学院研究生院
    11.张习美,唐世荣,宋正国,等. CO_2浓度升高对美洲商陆富积铯及其根际微生物特征的影响[J].核农学报, 2010, 24(6):1255-1261
    12.徐寅良,陈传群,陈斌等.水稻对134Cs的吸收和134Cs在水稻-土壤中的分配[J].核农学报, 1991, 5(01):19-24
    13.徐寅良,陈传群.铯-134在幼龄茶树叶中的分布特点[J].浙江农业大学学报,1994,20(1):38-42
    14.徐寅良,陈凯旋,陈传群. 134Cs在茶树上的行为[J].核农学报,1996,10(2):99-10
    15.曾而康.离子吸附型稀土矿山粉尘放射性研究[J].中华放射医学与防护杂志,,1994,1:52-53
    16.朱聪,郭江峰. .抗辐射球菌对结球甘蓝吸收134Cs的影响[J].核农学报, 2008, 22 (3):379-382
    17.杨俊诚,余柳青. 137Cs不同污染水平在大亚湾,秦山,北京土壤—植物系统的转移[J].核农学报, 2002, 16 (2): 93-97
    18.杨俊诚,朱永懿,陈景坚等.137Cs在土壤中的污染行为与钾盐的防治效果[J].核农学报,2002,16(6):376-381
    19.柳萍,王建龙..天然沸石在水污染控制中的应用[J].离子交换与吸附, 1996, 12(4):378-382
    20.武慧斌,2009.二氧化碳浓度升高对诱导高丹草和红三叶蓄积铯的影响.硕士学位论文.华中农业大学
    21.江春玉,盛下放,何琳燕,等..一株铅镉抗性菌株WS34的生物学特性及其对植物修复铅镉污染土壤的强化作用[J].环境科学学报, 2008, 28(10):1961-1968
    22.王伟,李佳,刘金淑等.硅酸盐细菌菌株的分离及其解钾解硅活性初探[J].安徽农业科学,2009,37(17):7889-7891
    23.王建龙.微生物与铯的相互作用及其在放射性核素污染环境修复中的应用潜力[J].核技术, 2003, 26(l2):: 949-955
    24.王沙陵,姜让荣,王蕾.人工核素137Cs对我国陆地γ辐射剂量率的贡献[J].核技术, 2001, 24(2):144-148
    25.王海雷,郑绵平,黄晓星..菌株Thermus sp. TibetanG7对铯的吸附:热泉铯硅华形成过程中生物成矿作用的征兆[J].科学通报,2007,52(17):2043-2048
    26.石晓亮,钱公望.放射性污染的危害及防护措施[J].工业安全与环保, 2004, 30 (1): 6-9.
    27.祝汉民.环境放射性研究现状[J].环境科学进展, 1994, 6:32-38
    28.罗上庚.放射性废物流动处理装置[J].国外核新闻, 1983,12-30
    29.胡容平,邓香洁,龚国淑等.成都市郊区土壤芽孢杆菌的解磷、解钾潜力[J].四川农业大学学报,2008,26(2):167-169
    30.谯华,周从直,敖漉,等.核污染的危害及其去除方法[J].后勤工程学院学报, 2007, 23(1): 66-69
    31.郑传进,涂国全.硅酸盐细菌解钾能力研究[J].韶关学院学报(自然科学版),2005,26(6):90-92
    32.郑洁敏,李红艳,牛天新等.盆栽条件下三种植物对污染土壤中放射性铯的吸收试验[J].核农学报,2009, 23 (1) :123-127
    33.郭军康,唐世荣,宋正国,等.一种抗重金属植物促生菌制剂及其施用方法.中国,C12N1/20(2006.01)I,200910070348.7,CN101671636,2010-03-17
    34.陆景陵. 2003.植物营养学(上册)[M].北京:中国农业大学出版社, 50-58
    35.陈传群,徐寅良,孙志明.小麦对134Cs吸收的研究[J].环境科学,1990,11(6):10-13
    36.韦继管,彭莉,朱向阳等.哈密地区环境沉降物90Sr、137Cs水平及其致居民剂量评价[J].现代预防医学, 1995, 22(2):100-102
    37.马红亮,朱建国,谢祖彬,等.开放式空气CO_2浓度升高对水稻土壤可溶性C、N、和P的影响[J].土壤,2004,36(4):392–372
    38.马红亮,朱建国,谢祖彬.植物地上部分对大气CO_2浓度升高的响应[J].生态环境,2004,13(3):390–39
    39.黄建晔,杨洪建,董桂春等.开放式空气CO_2浓度增高对水稻产量形成的影响[J].应用生态学报, 2002, 13(10):1210-1214
    40. Aarkrog A., Dahlgaard H., Frissel M. et al.. Sources of anthropogenic radionuclides in the southern Urals [J]. Journal of Environmental Radioactivity, 1992, 15(1):69-80
    41. Abou-Shanab R.A.I, Angle J.S, Chaney R.L.. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils [J]. Soil Biology and Biochemistry, 2006, 38(9):2882-2889
    42. Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO_2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant productionto rising CO_2 [J]. New Phytologist, 2005, 165(2): 351–372
    43. Amthor J S. Effects of atmospheric CO_2 concentration on wheat yield: review of results from experiments using various approaches to control CO_2 concentration [J]. Field Crops Research, 2001, 73(1): 1-34
    44. Aranjuelo I, Irigoyen J J, Pérez P, et al. Response of nodulated alfalfa to water supply, temperature and elevated CO_2: productivity and water relations [J]. Environmental and Experimental Botany, 2006, 55(1-2):130–141
    45. Avery S V, Codd G A, Gadd G M.. Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803 [J]. Journal of general microbiology, 1991, 137(2): 405-413
    46. Avery S.V, Codd G A, Gadd G.M. Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalga Chlorella salina [J]. Journal of General Microbiology, 1993, 139(4):827-834
    47. Baccouch S, Chaoui A, Ferjani E El.. Nickel toxicity induced oxidative damage in Zea mays roots [J]. Journal of plant nutrition, 2001, 24(7):1085-1097
    48. Baccouch S, Chaoui A, Ferjani E El.. Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots [J]. Plant Physiology and Biochemistry, 1998, 36(9):689-694
    49. Bachjiehko H R.生物圈中的137Cs [J].国外医学放射医学核医学分册,1989,13(6):251-252.
    50. Baker J T, Allen L H, Boote K J, et al. Rice photosynthesis and evapo transpiration in subambient.ambient an d superamhient carbon dioxide concentrations [J]. Agronomy journal, 1990, 82(4): 834-840
    51. Bakken L R, Olsen R A. Accumulation of radiocaesium in fungi [J]. Canadian journal of microbiology, 1990, 36(10):704-710
    52. Bashan Y., Holguin G. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB [J]. Soil Biology and Biochemistry, 1998, 30(8-9):1225-1228
    53. Belli M, SansoneR. Ardiani U., Feoli E., et al., The effect of fertilizer applications on 137Cs uptake by different plant species and vegetation types [J]. Journal of Environmental Radioactivity Volume 1995,27(1) :75-89
    54. Bernacchi C J, Morgan P B, Ort D R, et al. The growth of soybean under free air [CO_2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity [J]. Planta, 2005, 220(3): 434–446
    55. Blumenthal C, Rawson H M, Mc Kenzie E, et al. Changes in wheat grain quality due to doubling the level of atmospheric CO_2 [J]. Cereal chemistry, 1996, 73(6): 762–766
    56. Brennan T, Frenkel C.. Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear [J]. Plant physiology, 1977, 59(3):411–416
    57. Burd G I., Dixon D G, Glick B R., Plant growth-promoting bacteria that decrease heavy metal toxicity in plants [J], Canadian Journal of Microbiology, 2000, 46 (10):237-245
    58. Campbell B D, Smith D M S. A synthesis of recent global change research on pasture and rangeland production: reduced uncertainties and their management implications [J]. Agriculture, Ecosystems & Environment, 2000, 82(1-3): 39-55
    59. Chen Y X, Wang Y P, Lin O.. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzla splendens [J]. Environment International, 2005, 31(6):861-866
    60. Cline J F., Hungate F P.. Accumulation of Potassium, Cesium, and Rubidium in Bean Plants Grown in Nutrient Solutions [J]. Plant Physiologist, 1960, 35 (6):826-829
    61. Compant S., Duffy B., Nowak J., et al.. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects [J]. Applied and Environmental Microbiology, 2005, 71(9):4951-4959
    62. Cook L L., Inouye R S., McGonigle T P.. Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil [J]. Plant and Soil, 2009, 324(1-2):169-184
    63. Copplestone D., Johnsona M S., Jones S. R.. Behaviour and transport of radionuclides in soil and vegetation of a sand dune ecosystem [J]. Journal of Environmental Radioactivity, 2001, 55(1):93-108
    64. Cure J D, Acock B. Crop responses to carbon dioxide doubling:A literature survey [J]. Agricultural and Forest Meteorology, 1986, 38(1-3): 127-145
    65. Curtis P S, Wang X. A meta-analysis of elevated CO_2 effects on woody plant mass, form, and physiology [J]. Oecologia, 1998, 113(3): 299–313
    66. De Costa W A J M, Weerakoon W M W, Herath H M L K. et al.. Physiology of yield determination of rice under elevated carbon dioxide at high temperatures in a subhumid tropical climate [J]. Field Crop Research, 2006, 96 (2-3):336-347.
    67. De Rome L, Gadd G M. Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery [J]. Journal of Industrial Microbiology, 1991, 7(2): 97-104
    68. De souza M P, Chu D, Zhao M, et al. Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard [J]. Plant Physiology, 1999, 119(2):565–573
    69. Díaz J, Bernal A, Pomar F, et al.. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification [J]. Plant Science, 2001, 161(1):179-188
    70. Dijkstra P, Schapendonk A D H M C, Groenwald K, et al. Seasonal changes in the response of winter wheat to elevated atmospheric CO_2 concentration grown in open-top chambers and field tracking chambers [J]. Global Change Biology, 1999, 5(5): 563–576
    71. Donnelly A, Craigon J, Black C R, et al. Does elevated CO_2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)? [J]. Physiologia Plantarum, 2001, 111(4): 501–511
    72. Dugas W A, Heuer M L, Hunsaker D J, et al. Sap flow measurements of transpiration in open-field-grown cotton under ambient and enriched CO_2 concentrations [J]. Agricultural andForest Meteorology,1994, 70(1-4): 23l-245
    73. Dushenkov S, Mikheev A, Prokhnevsky A, et al. Phytoremediation of Radiocesium-Contaminated Soil in the Vicinity of Chernobyl Ukraine [J]. Environmental Science and Technology, 1999, 33(3):469-475
    74. Ekmek?i Y, Tanyola? D, Ayhan B.. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars [J]. Journal of plant physiology, 2008, 165(6):600-611
    75. Entry J A, Rygiewicz P T, Emmingham W H.. 90Sr uptake by Pinus ponderosa and Pinus radiata seedlings inoculated with ectomycorrhizal fungi [J]. Environmental Pollution, 1994, 86(2):201-206
    76. Entry J A, Watrud L S, Reeves M.. Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi [J]. Environmental Pollution, 1999, 104(3):449-457
    77. Erice G, Irigoyen J J, Pérez P, et al. Effect of elevated CO_2, temperature and drought on dry matter partitioning and photosynthesis before and after cutting of nodulated alfalfa [J]. Plant Science, 2006, 170(6): 1059–1067
    78. Erice G, JoséIrigoyena J, Sánchez-Díaza M, et al. Effect of drought, elevated CO_2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting [J]. Plant Science, 2007, 172(5): 903-912
    79. Fallik E, Sarig S, Okon Y.. Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y, ed. Azospirillum/plant associations. London: CRC Press, 1994, 77–86.
    80. Fatima R A, Ahmad M.. Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater [J]. Science of The Total Environment, 2005, 346(1-3):256-273
    81. Feng Z Z., Guo A H., Feng Z.W. Amelioration of chilling stress by triadimefon in cucumber seedlings [J]. Plant Growth Regulation, 2003, 39 (3):277-283
    82. Flexas J, Medrano H.. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stamotal limitations revisited [J]. Annals of Botany, 2002, 89(2):183-189
    83. Francis A T, Huang J W. Proceedings of International Conference of Soil Remediation[M].Zhejiang:Zhejiang Publisher, 2000, 150-157
    84. Fuhrmann M, Lasat M M, Ebbs S D, et al . Uptake of Cesium-137 and Strontium-90 from Contaminated Soil by Three Plant Species: Application to Phytoremediation [J]. Journal of Environmental Quality, 2002, 31(3):904-909
    85. Fuhrmann M, Lasat M M, Ebbs S D. et al. Uptake and Release of Cesium-137 by Five Plant Species as Influenced by Soil Amendments in Field Experiments [J]. Journal of Environmental Quality, 2003, 32(6):2272–2279
    86. Geissler N, Hussin S, Koyro H W.. Elevated atmospheric CO_2 concentration ameliorates effects of NaCl salinity on phytosynthesis and leaf structure of Aster tripolium L. [J]. Journal of Experimental Botany, 2009, 60(1): 137-151
    87. Giannopolitis C N, Ries S K. Superoxide Dismutases: I. Occurrence in Higher Plants [J]. Plantphysiology, 1977, 59(2):309-314
    88. Gonoalves J F, Becker A G, Cargnelutti D, et al.. Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings [J]. Brazilian Journal of Plant Physiology, 2007, 19(3):223-232
    89. Gonzalez C M, Casanovas S S , Pignata M L .. Biomonitoring of air pollutants from traffic and industries employing Ramalina ecklonii (Spreng.) Mey. and Flot. in Cordoba Argentina [J] . Environmental Pollution, 1996, 91(3):269–277
    90. Guo J K., Tang S R, Ju X H et al. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World Journal of Microbiology and Biotechnology, 2011, DOI 10.1007/s11274-011-0762-y
    91. Hampton C R, Bowen H C, Broadley M R, et al. Cesium Toxicity in Arabidopsis [J]. Plant Physiology, 2004, 136(3):3824–3837
    92. Hogy P, Fangmeier A. Effects of elevated atmospheric CO_2 on grain quality of wheat[J]. Journal of Cereal Science, 2008, 48(3): 580–591
    93. Hogy P, Fangmeier A.. Atmospheric CO_2 enrichment affects potatoes: 1. aboveground biomass production and tuber yield [J]. European Journal of Agronomy, 2009, 30 (2):78-84
    94. Hou Y D., Guo Z F., Yi Y. et al. Effects of cold acclimation and exogenous pytohormone abscisic acid treatment on physiological indicators of winterness wheat [J]. Journal of Plant Sciences, 2009, 5 :125-136
    95. Hughes M.N, Poole R K. Metal speciation and microbial growth-the hard (and soft) facts [J]. Journal of General Microbiology, 1991, 137(4):725-734
    96. IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. 2007
    97. IPCC. Summary for policymakers. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. IPCC WGI third report 2001
    98. Jia Y., Tang S R., Wang R G., et al.. Effects of elevated CO_2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiforum and Lolium perenne under Cd stress [J]. Journal of Hazardous Materials, 2010, 180(1-3):384-394
    99. Jiang C Y, Sheng X.F, Qian M, et al.. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil [J]. Chemosphere, 2008, 72(2):157-164
    100. Jin C W, Du S T, Chen W W, et al. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato[J]. Plant Physiology, 2009, 150(1):272–280
    101. Kapulnik Y. Plant growth promotion by rhizosphere bacteria. In: Waisel Y, Eshel A, Kafkazi U,eds. Plant roots: the hidden half. New York: Marcel Dekker, 1996, 769–781
    102. Kato F, Kuwahara C, Oosone A, et al. Accumulation and Subcellular Localization of Cesium in Mycelia of Streptomyces lividans and a Cs Tolerant Strain, Streptomyces sp. TOHO-2 [J]. Journal of Health Science, 2000, 46(4): 259–262
    103. Kim H Y, Lieffering M, Kobayashi k, et al. Seasonal changes in the effects of elevated CO_2 on rice at three levels of nitrogen supply: a free-air CO_2 enrichment (FACE) experiment [J]. Glob Change Biology, 2003, 9(6): 826-837
    104. Kimball B A, Kobayashi K, Bindi M. Response of agricultural crops to free-air CO_2 enrichment [J]. Advances in Agronomy, 2002, 77: 293-368
    105. Kimball B A, Mauney J R, Nakayama F S, et al. Effects of increasing atmospheric CO_2 on vegetation [J]. Vegetation, 1993, 104/105: 65-75
    106. Kobayashi K. The experimental study of FACE [J]. Japanese Journal of Crop Science, 2001, 70(1): 1–l6
    107. Kordan H A., Reversal of caesium inhibition of growth by potassium in hypocotyls of tomato seedlings (Lycopersicon esculentum L.) [J]. New Phytologist, 1987,107 (2):395-401
    108. Kretzschmar F S, Aidar M P M, Salgado I, et al. Elevated CO_2 atmosphere enhances production of defense-related flavonoids in soybean elicited by NO and a fungal elicitor[J]. Environmental Experimental Botany, 2009, 65(2-3): 319-329
    109. Krumova E Z, Pashova S B, Dolashka-Angelova P A, et al.. Biomarkers of oxidative stress in the fungal strain Humicola lutea under copper exposure [J]. Process Biochemistry, 20094, 4(3): 288-295
    110. Lagrimini L M.. Wound-Induced Deposition of Polyphenols in Transgenic Plants Overexpressing Peroxidase [J]. Plant physiology, 1991, 96(2):577–583
    111. Lange C C, Wackett L P, Minton K W. et al. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments [J]. Nature Biotechnology, 1998, 16 (10): 929- 933
    112. Lasat M M, Norvell W A, Kochian L V. Potential for phytoextraction of 137Cs from a contaminated soil [J]. Plant and Soil, 1997, 195(1): 99-106
    113. Laspina N V, Groppa M D, Tomaro M L, et al .. Nitric oxide protects sun flower leaves against Cd-induced oxidative stress [J]. Plant Science, 2005, 169(2):323–330
    114. Li W C, Ye Z H, Wong M H.. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant. Sedum alfredii [J]. Journal of experimental botany, 2007, 58(15-16):4173-4182
    115. Li X, Xie P X, Sheng X M, et al.. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus [J]. Ecotoxicology and Environmental Safety, 2005, 60(2):188-192
    116. Li Z Y., Tang S R., Deng X F., et al.. Contrasting effects of elevated CO_2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: Implication forphytoextraction and food safety [J]. Journal of Hazardous Materials, 2010, 177(1-3):352-361
    117. Lichtenthaler H K, Wellburn A R.. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents [J]. Biochemical Society Transactions, 1983, 603:591-592
    118. Lin W, Okon Y, Hardy R W F.. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense [J]. Applied Environmental Microbiology, 1983, 45(6):1775–1779
    119. Lobell D B, Burke M B., Tebaldi C.. Prioritizing Climate Change Adaptation Needs for Food Security in 2030 [J]. Science, 2008, 319 (5863): 607-610
    120. Lobell D B., Field C B.. Estimation of the carbon dioxide (CO_2) fertilization effect using growth rate anomalies of CO_2 and crop yields since 1961 [J]. Global Change Biology, 2008, 14 (1):39-45
    121. Long S P, Ainsworth E A, Leakey A D B, et al. Food for thought: lower-than-expected crop yield stimulation with rising CO_2 concentration [J]. Science, 2006, 312(5782): 1918–1921
    122. Mahara Y. Storage and migration of fallout strontium-90 and cesium-137 for over 40 years in the surface soil of Nagasaki [J]. Journal of Environmental Quality, 1993, 22(4): 722-730
    123. Manderscheid R, Bender J, J?ger H J, et al. Effects of season long CO_2 enrichment on cereals. II: Nutrient concentrations and grain quality [J]. Agriculture, Ecosystems & Environment, 1995, 54(3): 175–185
    124. Mirza M S., Ahmad W., Latif F., et al.. Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro [J]. Plant and Soil, 2001, 237(1):47-54
    125. Moore B D, Cheng S H, Sims D, et al. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO_2 [J]. Plant Cell and Environment, 1999, 22(6): 567–582
    126. Nakagawa H, Horie T. Rice responses to elevated CO_2 and temperature [J]. Global Environmental Research, 2000, 3(2): 101-113
    127. Norvell W A. & Kochian L V.. Potential for phytoextraction of 137Cs from a contaminated soil [J]. Plant and Soil, 1997, 195(1):99–106
    128. Payne K A., Bowen H C., Hammond J P., et al.. Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana [J]. New Phytologist, 2004, 162 (2):535-548
    129. Pérez–López U, Robredo A, Lacuesta M, et al.. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO_2 [J]. Physiologia Plantarum, 2009, 135(1): 29–42
    130. Poorter H. Interspecific variation in the growth response of plants to an elevated ambient CO_2 concentration[J]. Plant Ecology, 2003, 104-105(1): 77–97
    131. Pr?hl G, Müller H. Radiation exposure from radionuclides in ground water: an uncertainty analysis for selected exposure scenarios [J]. Radiation and Encironmental Biophysics, 1996, 35(3):205-218
    132. Qi Z, Hampton C R., Shin R. et al., Schachtman The high affinity K+ transporter AtHAK5 plays a physiological role in planta at very low K+ concentrations and provides a caesium uptake pathway in Arabidopsis [J]. Journal of Experimental Botany, 2008,59( 3):595–607
    133. Rajkumar M, Freitas H.. Effects of inoculation of plant-growth promoting bacteria on Ni uptake byIndian mustard [J]. Bioresouse Technology, 2008, 99(9):349l-3498
    134. Rama Devi S, Prasad M N V.. Copper toxicity in Ceratophyllum demersum L. (Coontail) a free floating macrophyte: response of antioxidant enzymes and antioxidants [J]. Plant Science, 1998, 138(2):157-165
    135. Rogers G S, Gras P W, Batey I L, et al. The influence of atmospheric CO_2 concentration on the protein, starch and mixing properties of wheat flour[J]. Australian Journal of Plant Physiology, 1998, 25(3): 387–393
    136. Rogers R D , Williams S E.. Vesicular-arbuscular mycorrhiza: Influence on plant uptake of cesium and cobalt [J]. Soil Biology and Biochemistry, 1986, 18(4):371-376
    137. Romney E M, Neel J W, Nishita H. er al.. Plant uptake of 90Sr, 91Y, l06Ru, 137Cs, and 144Ce from soils [J]. Soil Science, 1987, 83:369-371
    138. Rossini Oliva S, Mingorance M D, Valdés B, et al.. Uptake, localisation and physiological changes in response to copper excess in Erica andevalensis [J]. Plant and Soil, 2010, 328(1-2):411-420
    139. Sgherri C.L.M, Quartacci M.F, Menconi M, et al. Interactions between drought and elevated CO_2 on alfalfa plants [J]. Journal of Plant Physiology, 1998, 152(1): 118–124
    140. Tamura T , Jacobs D G.. Structural implications in cesium sorption [J]. Health Physics, 1960, 2(4):391-398
    141. Tang S R, Chen Z Y, Li H Y. et al. Uptake of 134Cs in the shoots of Amaranthus tricolor and Amaranthus cruentus [J]. Environmental Pollution, 2003, 125(3):305-312
    142. Tang S R, Xi L, Zheng J M, et al. Responses to elevated CO_2 of Indian mustard and sunflower growing on copper contaminated soil [J]. Bulletin of Environmental Contamination and Toxicology, 2003, 71(5): 988–997
    143. Tang S R,.Willey N J.. Uptake of 134Cs by four species from the Asteraceae and two varieties from the Chenopodiaceae grown in two types of Chinese soil [J]. Plant and soil. 2003, 250(1):75-81
    144. Teertstra D K, Cerny P, Chapman R. Compositional heterogeneity of pollucite from High Grade Dyke, Maskwa Lake, southeastern Manitoba [J]. Canada Mineral, 1992, 30(3):687-697
    145. Teisseire H, Guy V.. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) [J]. Plant Science, 2000, 153(1):65-72
    146. Tomioka N, Uchiyama H, Yagi O. Cesium Accumulation and Growth Characteristics of Rhodococcus erythropolis CS98 and Rhodococcus sp. Strain CS402 [J]. Applied and Environmental Microbiology, 1994, 60(7):2227-2231
    147. Tomioka N, Uchiyama H, Yagi O. Isolation and characterization of cesium-accumulating bacteria [J]. Applied and Environmental Microbiology, 1992, 58(3):1019-1023
    148. Tykva R. Sources of environmental radionuclides and recent results in analyses of bioaccumulation, A review, 2004, Nukleonika 49 (Supplement 1) S3?S7
    149. Wall G W, Adam N R , Brooks T J, et al. Acclimation response of spring wheat in a free-air CO_2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves [J]. Photosynthesis Research, 2000, 66(1-2): 79-95
    150. Wang H L, Kong F J, Zhang M P. The effects of K+ growth conditions on the accumulation of cesium by the bacterium Thermus sp.TibetanG6 [J]. Science in China: Series C Life Sciences, 2006, 49 (2):123-129
    151. White P J, Broadley M R.. Mechanisms of caesium uptake by plants [J]. New Phytologist, 2000, 147 (2):241-256
    152. Whiting S N, de Souza M P, Terry N.. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens [J]. Environmental Science and Technology, 2001, 35(15):3144-3150
    153. Wilkins D A. The measurement of tolerance to edaphic factors by means of root growth [J]. New Phytologist,1978,80(3):623–633
    154. Willey N J, Tang S.R. Some effects of nitrogen nutrition on caesium uptake and translocation by species in the Poaceae, Asteraceae and Caryophyllidae [J]. Environmental and Experimental Botany, 2006, 58(1-3):114-122
    155. Wu D X, Wang G X, Bai Y F, et al. Effects of elevated CO_2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels [J]. Agriculture, Ecosystems & Environment, 2004, 104(3): 493–507
    156. Wu H, Tang S, Zhang X, Guo J, Song Z, Tian S, et al. Using elevated CO_2 to increase the biomass of a Sorghum vulgare×Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. Journal of Hazardous Materials, 2009, 170 (2-3): 861-870.
    157. Xiong J B, He Z L, Liu D, et al. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium [J]. Chemosphere, 2008, 70(3):489-494
    158. Xiong Z Q , Stringer J L. Cesium induces spontaneous epileptiform activity without changing extracellular potassium regulation in rat hippocampus [J]. Journal of neurophysiology, 1999, 82(6): 33-39
    159. Yang J, Kloepper J.W, Ryu C.M 2009.Rhizosphere bacteria help plants tolerate abiotic stress [J]. Trends in Plant Science , 2009,14(1):1-4
    160. Zhang F, Dasht i N, Hynes R K, et al.. Plant Growth-promoting Rhizobacteria and Soybean [Glycine max (L.) Merr.] Growth and Physiology at Suboptimal Root Zone Temperatures [J]. Annals of Botany, 1997, 79(3):243-249
    161. Zheng J M, Wang H Y, Li Z Q, et al. Using elevated carbon dioxide to enhance copper accumulation in Pteridium Revolutum, a copper–tolerant plant, under experimental conditions[J]. International Journal of Phytoremediation, 2008, 10(2): 161–172
    162. Zhu Y G., Shaw G, Nisbet A.F. et al.. Effect of potassium starvation on the uptake of radiocaesium by spring wheat (Triticum aestivum cv. Tonic) [J]. Plant and Soil, 2000, 220(1-2):27-34
    163. Zhu Y G., Shaw G, Nisbet A.F. et al.. Effects of External Potassium Supply on Compartmentation and Flux Characteristics of Radiocaesium in Intact Spring Wheat Roots [J]. Annals of Botany, 1999, 84(5): 639-644

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700