用户名: 密码: 验证码:
NaCS-PDMDAAC微胶囊固定化红曲霉菌培养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先采用平板初筛—摇瓶复筛的筛选策略,从原始菌株筛选得到一株液态发酵下高产红曲色素的红曲霉菌菌株Monascus purpureus,摇瓶发酵时该菌株红曲色素产量为1.59(OD_(500))。然后针对Monascus sp.液态发酵的外部条件如供氧量和温度进行优化,确定最佳游离发酵条件,最后对发酵培养基的初始pH值、碳源和氮源进行进一步优化获得最佳的液体培养基组成,摇瓶发酵的红曲色素产量从优化前的1.59(OD_(500))提高到1.93(OD_(500))。
     采用纤维素硫酸钠(NaCS)—聚二甲基二烯丙基氯化铵(PDMDAAC)微胶囊对红曲霉菌进行了固定化培养试验。由于培养环境的变化,考察了红曲霉菌微囊化对摇瓶培养条件的影响,然后在该优化条件下连续进行6批培养。结果表明,红曲霉菌可以很好地在NaCS-PDMDAAC微胶囊中生长和产红曲色素。在与游离培养细胞的比较表明,微囊化培养的糖耗时间会远远少于游离培养,红曲色素的浓度在前3批略低于游离培养,但一旦达到稳定后,就会高于游离培养,最高红曲色素产量为2.49(OD_(500))。同时发现,微囊化培养时红曲霉菌的菌体浓度远大于游离培养,达到13.4g·L~(-1)。
     设计了一个高25cm,低面半径为3.5cm的鼓泡塔反应器,在与传统发酵罐和摇瓶的对比中,鼓泡塔反应器减少剪切应力对胶囊的破坏,同时增加了氧的供应能力,适合微囊化红曲霉菌的培养。
     对微囊化红曲霉菌的鼓泡塔反应器培养条件进行优化,选择最佳的初始糖浓、胶囊装载量和通气速率。在连续十五批的分批培养中,第一批发酵时,囊内的菌体不断生长,并没有受到微胶囊的限制,因此相比前面游离培养和微囊化摇瓶培养,葡萄糖消耗最快,红曲色素产量也为最高。随着一批又一批发酵的进行,除了囊内菌浓继续增加外,发酵周期也不断缩短,稳定后的红曲色素产量已经达到游离培养时的2倍,而生物量达到游离培养的3倍。这说明鼓泡塔反应器能够满足足够多生物量的红曲霉菌对氧的需求,最后红曲色素的平均产率为0.158(OD_(500)·h~(-1)),为游离培养时产率的10倍左右。
Cultivation of Monascus purpurpeus for production of natural pigments was investigated. A strain of Monascus with high-throughput of pigments in submerged culture named Monascus sp. was obtained through two-step screening strategy, plate selecting and shaking culture determining. The yield of red pigment by Monascus sp. obtained in liquid culture was 1.59 (OD500)
    The fermentation conditions were optimized to gain the maximum yield of pigments in submerged culture of Monascus sp.. In the first optimization step, the influence of external factors, such as dissolved oxygen and temperature, on pigment production was evaluated and the optimal external conditions were determined. In the second step, the concentrations of initial pH and initial concentrations of glucose, NaNO3 and yeast extract were further optimized to determine the ingredients of the medium. The optimized conditions allowed the pigment production to be increased from 1.59 to 1.93 (OD500) A bubble column, with the diameter and height of 3.5 cm and 25 cm respectively, was made from glass. In comparison with flasks and conventional bioreactor, the bubble column was applied to culture encapsulated Monascus sp. due to its better oxygen transfer property and less stress on microcapsules.
    Production of pigment in submerged culture was much less than that in solid-state fermentation, since the solid-state culture provided a support for the mycelium. The fermentation of Monascus sp. immobilized in polyelectrolyte complex (PEC) microcapsules, which were prepared by sodium cellulose sulphate and poly-dimethyldiallylammonium chloride, was a good substitute for submerged culture because it mimicked the solid-state environment. The repeated-batch process with encapsulated cells was studied in flasks and a bubble column. It was found that the bubble column was more suitable for encapsulation culture than conventional bioreactor and flasks because of its excellent mass transfer properties and minor breaking stress on microcapsules. Owing to the protection of the microcapsules, the biomass in microcapsules increased to approximately 3 times that in free culture with negligible cell leakage to the medium. And the pigment yield in the bubble column finally reached 3.82 (OD500) which was 2-fold augment, while the period of each batch was shortened to 15% of that in free culture. In the repeated-batch process, the mean productivity of pigment by encapsulated Monascus sp. was 0.158(OD500 h-1), which was nearly 10 times that by free cells. In the kinetic analysis of metabolite production, some changes in pigment production were observed in the repeated-batch process.
引文
[1]. 俞俊棠,唐孝宣主编,生物工艺学,上海:华东化工学院出版社,1991
    [2]. Klerin, J., Wagner, F., Methods for the immobilization of microbial cells, Applied Biochemistry and Bioengineering, Vol. 4, New York: Academic Press, 1983
    [3]. 梅乐和,姚善泾,生物微胶囊固定化技术的研究进展,现代化工,1998,1:19-21
    [4]. Bailey, J. E., Ollis, D. F., Biochemical Engineering Fundamentals, New York: McGraw Hill, 1997
    [5]. Westrin, A., Axelson, A., Diffusion in gels containing immobilized cells-A critical review, Biotechnology Bioengineering, 1991,38:439-443
    [6]. Cosnier, S., Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films: A review, Biosensors and Bioelectronics, 1999,14:443-456
    [7]. 居乃琥,固定化细胞技术研究和应用的现状与展望(一),工业微生物,1989,19(1):25-32
    [8]. 居乃琥,固定化细胞技术研究和应用的现状与展望(二),工业微生物,1989,19(2):25-33
    [9]. 梁治中,微胶囊技术及其应用,北京:中国轻工业出版社,1999
    [10]. Chang, T. M. S., Semipermeable microcapsules, Science, 1964, 146:524-525
    [11]. Chang, T. M. S., Semipermeable microcapsules containing catalase for enzyme replacement in acatalasemic mice, Nature, 1968, 218:243-244
    [12]. Park, J. K., Chang, H. N., Microencapsulation of microbial cells, Biotechnology Advance, 2000, 18:303-319
    [13]. Jensen, V. J., Rugh, S., Industrial-scale production and application of immobilized glucose isomerase, Method in Enzymology, 1987, 136:356-359
    [14]. 绀户朝治著,阎世翔译,微胶囊化工工艺学,轻工业出版社,1989
    [15]. 宁国伯,郭明珠,微胶囊形成的理化条件和影响因素,生物工程学报,1988,4(3):226-229
    [16]. 虞星炬,解玉冰,马小军,袁权,第七届全国生物化工学术会议论文集,北京:化学工业出版社,1996:11-15
    [17]. Prakash, S., Chang T. M. S., Preparation and in vitro analysis of microencapsulated genetically engineered E. coli DH5 cells for urea and ammonia removal, Biotechnology & Bioengineering, 1995, 46:621-626
    [18]. Lim, F., Sun, A. M., Microencapsulated islets as bioartificial endocrine pancrease, Science, 1980, 210:908-910
    [19]. Douglas, B. S., Janice, A. P., Porous alginate-poly(ethylene glycol) entrapment system for the cuttiration of mammalian cells, Biotechnology Progress, 1997,
    
    13:569-576
    [20]. King, G. A., Daugulis A. J., Alginate-polylysine microcapsules of controlled membrane molecular weight cutoff for mammalian cell culture engineering, Biotechnology Progress, 1987, 3:231-240
    [21]. Wang, F. F., Wu C. R., Wang, Y. J., Preparation and application of poly(binylamine)/alginate microcapsules to culturing of a mouse erythroleukemia cell line, Biotechnology & Bioengineering 1992, 40:1115-1118
    [22]. Yoshioka, T., Hirano, R., Shioya, T., Encapsulation of mammalian cell with chitosan-CMC capsule, Biotechnology & Bioengineering, 1990, 35:66-72
    [23]. Jin, Y. B., Park J. K., Recovery of lead using encapsulated Saccharomyces cerevisiae, JKIChE, 1998, 36:229-234
    [24]. Oh, C. Y., Park, J. K., The characteristics of encapsulated whole cell β-galactosidase, Bioprocess Engineering, 1998, 19:419-425
    [25]. Cheong S. H., Lee, T. J., Park, J. K., Chang, H. N., Citric acid production using encapsulated Aspergillus niger, Korean Journal of Biotechnology & Bioengineering, 1995, 10:78-88
    [26]. Yoo, I. K., Seong, G. H., Chang, H. N., Park, J. K., Encapsulation of Lactobacillus casei cells in liquid-core alginate capsules for lactic acid production, Enzyme and Microbial Technology, 1996, 19:428-433
    [27]. Groboillot, A. F., Champagne, C. P., Darling, G. D., Membrane formation by interfacial cross-linking of chitosan for encapsulation of Lactobacillus casei, Biotechnology & Bioengineering, 1993, 35:99-102
    [28]. Green, K. D., Gill, I. S., Kahn, J. A., Vulfson, E. N., Microencapsulation of yeast cells and their use as a biocatalyst in organic solvents, Biotechnology & Bioengineering, 1996, 49:535-543
    [29]. Hyndman, C. L., Groboillot A.F., Poncelet, D., Microencapsulation of Lactobacillus casei within cross-linked gelatin membranes, Journal of Chemical Technology & Biotechnology, 1993, 56:259-263
    [30]. Yao, S. J., An improved process for the preparation of sodium cellulose sulphate, Chemical Engineering Joumal, 2000, 78:199-204
    [31]. Groot-Wassink, T., Dauzenberg, H., et al, Microencapsulation of hybridomas by cellulose sulfate-poly (dimethyl-diallyl-ammonium-chloride) procedure, Acta Biotechnology, 1992,12(3): 169-78
    [32]. Foerster, M., Mansfeld, J., Schellenberger, A., Dautzenberg, H., Immobilization of citrate-producing Yarrowia lipolytica cells in polyelectrolyte comples capsules, Enzyme & Microbial Technology, 1994, 16:777-784
    [33]. Mansfeld, J., Foerster, M., Schellenberger, A., Dautzenberg, H., Coimmobilization of Yarrowia lipolytica cells and invertase in polyelectrolyte complex microcapsules, Enzyme & Microbial Technology, 1991, 13:240-244
    [34]. Stange, J., Brugmann, E., Falkenhagen, D., Dautzenberg, H., Dummler, W., Ernst,
    
    B., Drug Targeting Delivery,1992, 1 (microencapsulation of drugs):257-62
    [35]. Sittinger, M., Lukanoff, B., Burmester, G.R., Dautzenber, H., Encapsulation of artificial tissues in polyelectrolyte complexes: preliminary studies, Biomaterials, 1996,17(10):1049-1051
    [36]. 叶子坚,姚善泾,乳杆菌微胶囊化培养的研究,微生物学报,2000,40(5):507-512
    [37]. Fabre, C. E., Santerre, A. L., Lore, M. O., Production and food application of the red pigments of Monascus, Journal of Food Science, 1993, 58:1099-1102
    [38]. Wong, H. C., Koehler, P. E., Production of red water soluble Monascus pigments, Journal of Food Science, 1983, 48:1200-1203
    [39]. Tobert, J. A., Efficacy and long-term adverse effect pattern of lovastatin, American Journal of Cardiology, 1988, 62:28-34
    [40]. 董明盛,红曲霉抑菌作用的探讨,中国调味品,1991(1):11-12
    [41]. 刘永华,徐文生,国内外红曲研究现状与进展,食品与发酵工业,1997(5):69-72
    [42]. Blanc, R J., Loret, M. O., Santerre, A. L., Pareilleus, A., Prome D., Prome, J. C., Laussac, J. P., Goma, G., Pigment of Monascus, Journal of Food Science 1994, 59:862-865
    [43]. 傅金泉主编,中国红曲及其应用技术(第一版),北京:中国轻工业出版社,1997
    [44]. 林赞峰,红曲霉菌的特殊生理和培养方法,2000年东方红曲国际学术研讨会论之集,杭州:浙江大学出版社,2000
    [45]. Yoshimura, M. and Yamanaka, S., Mitsugi, K., Hirose, Y., Production of Monascus pigment in a submerged culture, 1975, 39(9): 1789-1975
    [46]. 刘永华,徐文生,红曲研究的现状与进展,食品与发酵工业,1997,23:69-72
    [47]. 童群义,红曲色素的研究进展,食品研究与开发,2003,24:38-39
    [48]. Pastrana, L., Blanc P. J., Santerre A. L., Loret M. O., and Goma, G., Production of red pigments by Monascus ruber in synthetic media with a strictly controlled nitrogen source, Process Biochemistry, 1994, 30:333-340
    [49]. Hamdi, M., Blanc, P. J., Goma, G., Effect of aeration conditions on the production of red pigments by Monascus purpureus growth on prickly pear juice, Process Biochemistry, 1996, 31(6):543-547
    [50]. Hajjaj, H., Blanc, P., Groussac, E., Urivelarrea, J. L., Goma, G. and Loubiere, P., Kinetic analysis of red pigment and citrinin production by Monascus rubber as a function of organic acid accumulation, Enzyme and Microbial Technology, 2000, 27:619-625
    [51]. Chiu, S. W. and Poon, Y. K., Submerged production of Monascus pigments, Mycologia 1993, 85:214-218
    [52]. Lin, C. F., Isolation and cultural conditions of Monascus sp. for the production of
    
    pigment in a submerged culture, Journal of Fermentation Technology, 1973, 51:407-414
    [53]. Evans, P. J. and Wang H. Y., Pigment Production from Immobilized Monascussp. Utilizing Polymeric Resin Adsorption, Applied & Environmental Microbiology, 1984, 47(6):1323 1326
    [54]. Fenice, M., Federici, F., Selbmann, L., and Petruccioli, M., Repeated-batch production of pigments by immobilized Monascus purpureus, Journal of Biotechnology, 2000, 80:271-276
    [55]. 傅亮,高孔荣,利用固定化细胞技术提高红曲色素发酵色价的研究,食品工业科技,1996,6:13-15
    [56]. 张惟杰主编,糖复合物生化研究技术(第二版),浙江:浙江大学出版社,1999
    [57]. 张永权,红曲色素色价和色调分析方法探讨,食品与发酵工业,1985(6):34-37
    [58]. Tseng, Y. Y., Chen, M. T. and Lin, C. F. Growth, pigment production and protease activity of Monascus purpureus as affected by salt, sodium nitrite, poly phosphate and various sugars, Journal of Applied Microbiology, 2000, 88:31-37
    [59]. Lin, T. F., Demain, A. L., Effect of nutrition of Monascus sp. on formation of red pigments, Applied Microbiology & Biotechnology, 1991, 36:70-75
    [60]. Aidoo, K. E., Hendry, R., Wood. B. J. B., Estimation of fungal growth in a solid state fermentation, European Journal of Applied Microbiology and Biotechnology, 1981, 12:6-9
    [61]. Ride, J. P., Drysdale, R. B., A rapid method for the chemical estimation of filametous fugi in plant tissue, Physiological Plant Pathology, 1972, 2:7-15
    [62]. Kennedy, M. J., Thakur, M. S., Wang, D. I. C., Techniques for the estimation of cell concentration in the presence of suspended solids, Biotechnology Progress, 1992, 8:375-381
    [63]. Sakurai, Y., Lee, T. H, Shiota. H., On the convenient method for glucosamine estimation in Koji, Agriculture Biology Chemistry, 1977, 41(4):619-624
    [64]. 张惠勇,梅乐和,姚善泾,微胶囊固定化酵母培养的研究,生物工程学报,1999,15(3):165~170
    [65]. 梅乐和,姚劲挺,姚善泾,一株产溶栓酯枯草杆菌的微胶囊固定化培养,化工学报,2000,51(6):814-817
    [66]. Mei, L. H.; Yao, S. J., Cultivation and modelling of encapsulated Saccharomyces cerevisiae in NaCS-PDMDAAC polyelectrolyte complexes, Journal of Microencapsulation, 2002, 19 (4):397-406
    [67]. Shuler, M. L., Kargi, E, Bioprocess Engineering: Basic concepts, New Jersey: Prentice-Hall, 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700