用户名: 密码: 验证码:
植物甜味蛋白在哺乳动物乳腺中的分泌表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜味是人类生来就喜欢的味道,蔗糖是目前应用最为广泛的甜味剂,是生活中必不可少的食物添加剂,可以补充能量,延迟疲劳。然而,摄入糖过量会引发许多疾病,如龋齿、心血管疾病、糖尿病等。因此寻找经济健康的甜味替代剂,满足人类对甜味的需求,一直是人们关注的焦点。甜味蛋白是一类高甜度、低热量的天然甜味添加剂,目前发现的甜味蛋白有以下几种:Brazzein, Curculin,Mabinlin, Miraculin, Monellin,Pentadin和Thaumatin,其中,Brazzein是从非洲植物Pentadi plandra brazzeana Baillion的果实中分离到的一种甜味蛋白。Brazzein由54个氨基酸残基组成,其分子量是所有甜味蛋白中最小的,其甜度是蔗糖的2000倍(按重量计)并具有很好的热稳定性,即使在80℃下加热4小时也不会丧失甜味。但是由于受到产地种植的限制,植物成分分离提取复杂,化学合成成本又比较昂贵,难以实现Brazzein的大量生产。近几年采用生物工程方法获得甜味蛋白成为研究的热点。乳腺生物反应器不仅可以生产出生物活性高,无污染的蛋白,且具有蛋白质翻译后修饰的功能确保了蛋白天然活性。因此,本课题中,我们将对利用动物乳腺生物反应器进行植物甜味蛋白生产的可行性进行探索。
     已有研究报道利用转基因技术在转基因猪中成功表达了菠菜的不饱和酶脂肪酸Δ12,这说明植物蛋白可以在哺乳动物细胞中表达[1]]。为了探索植物甜味蛋白能否在动物细胞中和动物乳腺中表达。首先,我们根据密码子的偏好性对植物甜味蛋白brazzein和thaumatin基因进行了优化,并在基因前端加入信号肽使其可分泌到乳汁中,以优化修饰后的基因,构建全细胞表达载体pCAG-Brazzein-neo、pCAG-Thaumatin和乳腺特异表达载体pBC1-Brazzein和pBC1-thaumatin。并将pCAG-brazzein-neo和pCAG-thaumatin-neo转染HEK293细胞中,在细胞内和细胞培养基上清中都能够检测到Brazzein和thaumatin蛋白的表达。为了进一步验证其在动物活体内的表达活性,我们将DNA注射到兔子乳腺导管内,通过SDS-PAGE检测到蛋白可以在兔子乳汁中表达。确定了植物甜味蛋白在动物体内具有表达活性后,利用嵌合体技术生产了含Brazzein基因的转基因小鼠。通过转染和筛选获得了稳定表达Brazzein的干细胞细胞株,从中选取3株进行嵌合体小鼠制作,经传代建系后获得了3种稳定表达Brazzein的转基因小鼠品系。这3种Brazzein转基因小鼠品系都能够检测到Brazzein的在小鼠乳汁中稳定表达其中2种表现出甜味活性。
     植物甜味蛋白在小鼠乳汁中的成功表达,第一次证实了植物基因可以在动物乳腺中表达,并生产出具有生物活性的蛋白。能够生产具有甜味活性的甜味蛋白Brazzein转基因小鼠成功地制备,为进一步利用大动物如牛、羊等大规模生产高效活性的甜味蛋白以及利用动物乳腺生物反应器表达其他植物蛋白奠定了基础。
Sweetness is the innate favorite taste of human beings. Sugar, the most popularsweetener, is essential in daily food. However, excessive sugar intake has beenassociated with several lifestyle-related diseases including caries (dental cavities),obesity, diabetes mellitus, and many more undesirable effects. Finding healthier andmore economical alternatives to sugars has received increasing attention to fulfill thegrowing demand. Sweet Protein is a kind of protein with high sweetness, low caloriesand high thermostability. So far, many sweet proteins including Brazzein, Curculin,Mabinlin, Miraculin, Monellin, Pentadin and Thaumatin have been identified. Amongthem, Brazzein, which comes from the pulp of the edible fruit of the African plantPentadiplandra brazzeana Baill, is a protein that is2,000times sweeter than sucroseby weight and has an in-diminishable sweetness profile after incubation at80℃forup to4hrs. Howerver, Brazzein can be grown only in tropical area, and the process ofpurifying Brazzein is very complicated thus limiting the production scale. Recently,the main efforts have be turned to seek producing sweet protein by geneengineering. Mammary gland bioreactor is a good factory to produce proteins with thehigh bioactivities and no toxicity. Hence, in this report, we attempt to explore thefeasibility by using mammary gland bioreactor to produce plant sweet protein.
     Previously, the functional expression of Δ12fatty acid desaturase (FAD2) fromspinach plants has been achieved in transgenic pigs, indicating that a large quantity ofplant protein being expressed in mammalian animal cells.To test whether the plantgene can be expressed in mammalian cells, we designed the construction with thefollowing strategy. In order to express brazzein and thaumatin well in animalmammary glands, the gene sequence was optimized by codon usage. To allowsecretion of brazzein into the milk, we used the goat secretion signal β-casein.
     We constructed the brazzein and thaumatin expressing vectors,pCAG-Brazzein-neo and pCAG-Thaumatin with CAG promoter for universal expression in all the tissues. Two vectors (pBC1-Brazzein and pBC1-thaumatin)which can be specifically expressed in mammary glad also were constructed. Theuniversal expression vectors were tansfected into in HEK293cells and and the sweetprotein expression have beed confirmed by both SDS-PAGE and Westernblot. To testif the mammary glad-specific expression vectors can be expressed in vivo, we directlyinjected the DNA into the rabbit mammary gland duct and the expression wasdecerned by SDS-PAGE and WB.To examine the expression of a plant protein inmammals, we generated three chimeric mouse line specifically expressing the plantprotein in the mammary gland. We transfected the vector into mouse embryo stem(mES) cell line and produced germline chimera mice. Expression of brazzein in themilk was confirmed by Western blot and immunohistochemisty. The milk oftransgenic mice is tasted sweet. These results demonstrate that a plant gene for asweet protein is able to be expressed in mammals, opening up the possibility ofproducing plant-protein-sweetened milk from those large animals as cattle and goats.
引文
[1] Saeki K, Matsumoto K, Kinoshita M, Suzuki I, Tasaka Y, Kano K, Taguchi Y,Mikami K, Hirabayashi M, Kashiwazaki N et al: Functional expression of aDelta12fatty acid desaturase gene from spinach in transgenic pigs.Proceedings of the National Academy of Sciences of the United States ofAmerica2004,101(17):6361-6366.
    [2] Karatzas CN, Turner JD: Toward altering milk composition by geneticmanipulation: current status and challenges. J Dairy Sci1997,80(9):2225-2232.
    [3] van der Wel H, Loeve K: Isolation and characterization of thaumatin I andII, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur JBiochem1972,31(2):221-225.
    [4] Morris JA, Cagan RH: Purification of monellin, the sweet principle ofDioscoreophyllum cumminsii. Biochim Biophys Acta1972,261(1):114-122.
    [5] Liu X, Maeda S, Hu Z, Aiuchi T, Nakaya K, Kurihara Y: Purification,complete amino acid sequence and structural characterization of theheat-stable sweet protein, mabinlin II. Eur J Biochem1993,211(1-2):281-287.
    [6] Ming D, Hellekant G: Brazzein, a new high-potency thermostable sweetprotein from Pentadiplandra brazzeana B. FEBS Lett1994,355(1):106-108.
    [7] Masuda T, Ueno Y, Kitabatake N: Sweetness and enzymatic activity oflysozyme. J Agric Food Chem2001,49(10):4937-4941.
    [8] Suzuki M, Kurimoto E, Nirasawa S, Masuda Y, Hori K, Kurihara Y, Shimba N,Kawai M, Suzuki E, Kato K: Recombinant curculin heterodimer exhibitstaste-modifying and sweet-tasting activities. FEBS Lett2004,573(1-3):135-138.
    [9] Shirasuka Y, Nakajima K, Asakura T, Yamashita H, Yamamoto A, Hata S,Nagata S, Abo M, Sorimachi H, Abe K: Neoculin as a new taste-modifyingprotein occurring in the fruit of Curculigo latifolia. Bioscience,biotechnology, and biochemistry2004,68(6):1403-1407.
    [10] Vanderwel H, Larson G, Hladik A, Hladik CM, Hellekant G, Glaser D:Isolation and Characterization of Pentadin, the Sweet Principle ofPentadiplandra-Brazzeana Baillon. Chemical senses1989,14(1):75-79.
    [11] Yamashita H, Theerasilp S, Aiuchi T, Nakaya K, Nakamura Y, Kurihara Y:Purification and complete amino acid sequence of a new type of sweetprotein taste-modifying activity, curculin. J Biol Chem1990,265(26):15770-15775.
    [12] Kurihara K, Beidler LM: Taste-modifying protein from miracle fruit.Science1968,161(3847):1241-1243.
    [13] Edens L, Heslinga L, Klok R, Ledeboer AM, Maat J, Toonen MY, Visser C,Verrips CT: Cloning of cDNA encoding the sweet-tasting plant proteinthaumatin and its expression in Escherichia coli. Gene1982,18(1):1-12.
    [14] Izawa H, Ota M, Kohmura M, Ariyoshi Y: Synthesis and characterization ofthe sweet protein brazzein. Biopolymers1996,39(1):95-101.
    [15] Assadi-Porter FM, Aceti DJ, Markley JL: Sweetness determinant sites ofbrazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys2000,376(2):259-265.
    [16] Hellekant G, Danilova V: Brazzein a small, sweet protein: Discovery andphysiological overview. Chemical senses2005,30:I88-I89.
    [17] Theerasilp S, Hitotsuya H, Nakajo S, Nakaya K, Nakamura Y, Kurihara Y:Complete amino acid sequence and structure characterization of thetaste-modifying protein, miraculin. J Biol Chem1989,264(12):6655-6659.
    [18] Masuda Y, Nirasawa S, Nakaya K, Kurihara Y: Cloning and sequencing of acDNA encoding a taste-modifying protein, miraculin. Gene1995,161(2):175-177.
    [19] Matsuyama T, Satoh M, Nakata R, Aoyama T, Inoue H: Functionalexpression of miraculin, a taste-modifying protein in Escherichia coli. JBiochem2009,145(4):445-450.
    [20] Kato K, Yoshida R, Kikuzaki A, Hirai T, Kuroda H, Hiwasa-Tanase K, TakaneK, Ezura H, Mizoguchi T: Molecular breeding of tomato lines for massproduction of miraculin in a plant factory. J Agric Food Chem2010,58(17):9505-9510.
    [21] Cagan RH: Chemostimulatory protein: a new type of taste stimulus.Science1973,181(4094):32-35.
    [22] Kim SH, Kang CH, Kim R, Cho JM, Lee YB, Lee TK: Redesigning a sweetprotein: increased stability and renaturability. Protein engineering1989,2(8):571-575.
    [23] Harada S, Otani H, Maeda S, Kai Y, Kasai N, Kurihara Y: Crystallization andpreliminary X-ray diffraction studies of curculin. A new type of sweetprotein having taste-modifying action. J Mol Biol1994,238(2):286-287.
    [24] Nirasawa S, Nishino T, Katahira M, Uesugi S, Hu Z, Kurihara Y: Structuresof heat-stable and unstable homologues of the sweet protein mabinlin. Thedifference in the heat stability is due to replacement of a single amino acidresidue. Eur J Biochem1994,223(3):989-995.
    [25] Caldwell JE, Abildgaard F, Dzakula Z, Ming D, Hellekant G, Markley JL:Solution structure of the thermostable sweet-tasting protein brazzein.Nature structural biology1998,5(6):427-431.
    [26] Assadi-Porter FM, Aceti DJ, Cheng H, Markley JL: Efficient production ofrecombinant brazzein, a small, heat-stable, sweet-tasting protein of plantorigin. Arch Biochem Biophys2000,376(2):252-258.
    [27] Assadi-Porter FM, Patry S, Markley JL: Efficient and rapid proteinexpression and purification of small high disulfide containing sweetprotein brazzein in E. coli. Protein Expr Purif2008,58(2):263-268.
    [28] Lamphear BJ, Barker DK, Brooks CA, Delaney DE, Lane JR, Beifuss K, LoveR, Thompson K, Mayor J, Clough R et al: Expression of the sweet proteinbrazzein in maize for production of a new commercial sweetener. PlantBiotechnol J2005,3(1):103-114.
    [29] Yin T, Lu HY, Zhang SL, Liu JM, Chen DM:[Fruit-specific expression ofsweet protein Brazzein in transgenic tomato plants]. Yi Chuan2009,31(6):663-667.
    [30] Koiwa H, Kato H, Nakatsu T, Oda J, Yamada Y, Sato F: Crystal structure oftobacco PR-5d protein at1.8A resolution reveals a conserved acidic cleftstructure in antifungal thaumatin-like proteins. J Mol Biol1999,286(4):1137-1145.
    [31] Witty M: Thaumatin II: a sweet marker gene for use in plants. MethodsEnzymol1992,216:441-447.
    [32] Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS:Mammalian sweet taste receptors. Cell2001,106(3):381-390.
    [33] Temussi PA: Natural sweet macromolecules: how sweet proteins work. CellMol Life Sci2006,63(16):1876-1888.
    [34] Tancredi T, Iijima H, Saviano G, Amodeo P, Temussi PA: StructuralDetermination of the Active-Site of a Sweet Protein-a H-1-NmrInvestigation of Pmnei. FEBS Letters1992,310(1):27-30.
    [35] Assadi-Porter FM, Maillet EL, Radek JT, Quijada J, Markley JL, Max M: Keyamino acid residues involved in multi-point binding interactions betweenbrazzein, a sweet protein, and the T1R2-T1R3human sweet receptor. JMol Biol2010,398(4):584-599.
    [36] Koizumi A, Nakajima K, Asakura T, Morita Y, Ito K, Shmizu-Ibuka A, MisakaT, Abe K: Taste-modifying sweet protein, neoculin, is received at humanT1R3amino terminal domain. Biochem Biophys Res Commun2007,358(2):585-589.
    [37] Jin ZY, Danilova V, Assadi-Porter FM, Aceti DJ, Markley JL, Hellekant G:Critical regions for the sweetness of brazzein. FEBS Letters2003,544(1-3):33-37.
    [38] Van Cott KE, Lubon H, Gwazdauskas FC, Knight J, Drohan WN, VelanderWH: Recombinant human protein C expression in the milk of transgenicpigs and the effect on endogenous milk immunoglobulin and transferrinlevels. Transgenic Res2001,10(1):43-51.
    [39] Salamone D, Baranao L, Santos C, Bussmann L, Artuso J, Werning C, Prync A,Carbonetto C, Dabsys S, Munar C et al: High level expression of bioactiverecombinant human growth hormone in the milk of a cloned transgeniccow. J Biotechnol2006,124(2):469-472.
    [40] Kerr DE, Liang F, Bondioli KR, Zhao H, Kreibich G, Wall RJ, Sun TT: Thebladder as a bioreactor: urothelium production and secretion of growthhormone into urine. Nat Biotechnol1998,16(1):75-79.
    [41] Bleck GT, White BR, Miller DJ, Wheeler MB: Production of bovinealpha-lactalbumin in the milk of transgenic pigs. J Anim Sci1998,76(12):3072-3078.
    [42] Cremer T, Kreth G, Koester H, Fink RH, Heintzmann R, Cremer M, Solovei I,Zink D, Cremer C: Chromosome territories, interchromatin domaincompartment, and nuclear matrix: an integrated view of the functionalnuclear architecture. Critical reviews in eukaryotic gene expression2000,10(2):179-212.
    [43] PhiVan L, Stratling WH: Dissection of the ability of the chicken lysozymegene5' matrix attachment region to stimulate transgene expression and todampen position effects. Biochemistry1996,35(33):10735-10742.
    [44] Goetze S, Baer A, Winkelmann S, Nehlsen K, Seibler J, Maass K, Bode J:Performance of genomic bordering elements at predefined genomic loci.Molecular and Cellular Biology2005,25(6):2260-2272.
    [45] Podkolodnaya OA, Levitsky VG, Podkolodnyi NL: Locus control regions:Description in the LCR-TRRDatabase. Mol Biol+2001,35(6):802-809.
    [46] Raju TS, Briggs JB, Borge SM, Jones AJ: Species-specific variation inglycosylation of IgG: evidence for the species-specific sialylation andbranch-specific galactosylation and importance for engineeringrecombinant glycoprotein therapeutics. Glycobiology2000,10(5):477-486.
    [47] Baranyi M, Hiripi L, Szabo L, Catunda AP, Harsanyi I, Komaromy P, Bosze Z:Isolation and some effects of functional, low-phenylalanine kappa-caseinexpressed in the milk of transgenic rabbits. Journal of Biotechnology2007,128(2):383-392.
    [48] Lo D, Pursel V, Linton PJ, Sandgren E, Behringer R, Rexroad C, Palmiter RD,Brinster RL: Expression of Mouse Iga by Transgenic Mice, Pigs and Sheep.European Journal of Immunology1991,21(4):1001-1006.
    [49] Burdon TG, Wall RJ: Fate of microinjected genes in preimplantation mouseembryos. Molecular reproduction and development1992,33(4):436-442.
    [50] Fan NN, Chen JJ, Shang ZC, Dou HW, Ji GZ, Zou QJ, Wu L, He LXZ, WangF, Liu K et al: Piglets cloned from induced pluripotent stem cells. Cell Res2013,23(1):162-166.
    [51] Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L: Athird-generation lentivirus vector with a conditional packaging system. JVirol1998,72(11):8463-8471.
    [52] Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C:Sperm cells as vectors for introducing foreign DNA into eggs: genetictransformation of mice. Cell1989,57(5):717-723.
    [53] Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A:Sperm-mediated gene transfer. Reproduction, fertility, and development2006,18(1-2):19-23.
    [54] Bosze Z, Hiripi L: Recombinant protein expression in milk of livestockspecies. Methods Mol Biol2012,824:629-641.
    [55] Paleyanda RK, Velander WH, Lee TK, Scandella DH, Gwazdauskas FC,Knight JW, Hoyer LW, Drohan WN, Lubon H: Transgenic pigs producefunctional human factor VIII in milk. Nat Biotechnol1997,15(10):971-975.
    [56] McKee C, Gibson A, Dalrymple M, Emslie L, Garner I, Cottingham I:Production of biologically active salmon calcitonin in the milk oftransgenic rabbits. Nat Biotechnol1998,16(7):647-651.
    [57] Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E,Manavalan P, Ziomek C, Meade H, McPherson JM et al: Transgenicallyproduced human antithrombin: Structural and functional comparison tohuman plasma-derived antithrombin. Blood1998,91(12):4561-4571.
    [58] Stromqvist M, Houdebine M, Andersson JO, Edlund A, Johansson T, VigliettaC, Puissant C, Hansson L: Recombinant human extracellular superoxidedismutase produced in milk of transgenic rabbits. Transgenic Res1997,6(4):271-278.
    [59] Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH,Krimpenfort PJ, Pieper FR, de Boer HA, Strijker R: Expression of humanlactoferrin in milk of transgenic mice. Transgenic Res1994,3(2):99-108.
    [60] Zhang J, Li L, Cai Y, Xu X, Chen J, Wu Y, Yu H, Yu G, Liu S, Zhang A et al:Expression of active recombinant human lactoferrin in the milk oftransgenic goats. Protein Expr Purif2008,57(2):127-135.
    [61] Rokkones E, Fromm SH, Kareem BN, Klungland H, Olstad OK, Hogset A,Iversen J, Bjoro K, Gautvik KM: Human Parathyroid-Hormone as aSecretory Peptide in Milk of Transgenic Mice. Journal of CellularBiochemistry1995,59(2):168-176.
    [62] Park MH, Birck-Wilson E, Allard G, Masiello N, Day M, Murphy KP, ParagasV, Silver S, Moody MD: Purification and characterization of arecombinant version of human alpha-fetoprotein expressed in the milk oftransgenic goats. Protein expression and purification2004,38(2):177-183.
    [63] Maga EA, Shoemaker CF, Rowe JD, BonDurant RH, Anderson GB, MurrayJD: Production and processing of milk from transgenic goats expressinghuman lysozyme in the mammary gland. J Dairy Sci2006,89(2):518-524.
    [64] Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, BilodeauAS, Bellemare A, Cote M, Herskovits P et al: Recombinant humanbutyrylcholinesterase from milk of transgenic animals to protect againstorganophosphate poisoning. Proc Natl Acad Sci U S A2007,104(34):13603-13608.
    [65] Kling J: First US approval for a transgenic animal drug. Nat Biotechnol2009,27(4):302-304.
    [66] Adiguzel C, Iqbal O, Demir M, Fareed J: European community andUS-FDA approval of recombinant human antithrombin produced ingenetically altered goats. Clinical and applied thrombosis/hemostasis:official journal of the International Academy of Clinical and AppliedThrombosis/Hemostasis2009,15(6):645-651.
    [67] Shatzman AR, Rosenberg M: Expression, identification, andcharacterization of recombinant gene products in Escherichia coli.Methods Enzymol1987,152:661-673.
    [68] Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J: Beta-galactosidasegene fusions for analyzing gene expression in escherichia coli and yeast.Methods Enzymol1983,100:293-308.
    [69] Maina CV, Riggs PD, Grandea AG,3rd, Slatko BE, Moran LS, TagliamonteJA, McReynolds LA, Guan CD: An Escherichia coli vector to express andpurify foreign proteins by fusion to and separation from maltose-bindingprotein. Gene1988,74(2):365-373.
    [70] Marston FA, Hartley DL: Solubilization of protein aggregates. MethodsEnzymol1990,182:264-276.
    [71] Martin CE, Scheinbach S: Expression of proteins encoded by foreign genesin Saccharomyces cerevisiae. Biotechnol Adv1989,7(2):155-185.
    [72] Kukuruzinska MA, Bergh ML, Jackson BJ: Protein glycosylation in yeast.Annual review of biochemistry1987,56:915-944.
    [73] Lichstein PR: Psychiatric Management for Medical Practitioners-Kornfeld,Ds, Finkel,Jb. Gen Hosp Psychiat1985,7(2):180-181.
    [74] Matsuura Y, Possee RD, Overton HA, Bishop DH: Baculovirus expressionvectors: the requirements for high level expression of proteins, includingglycoproteins. J Gen Virol1987,68(Pt5):1233-1250.
    [75] Mellor J, Dobson MJ, Roberts NA, Kingsman AJ, Kingsman SM: Factorsaffecting heterologous gene expression in Saccharomyces cerevisiae. Gene1985,33(2):215-226.
    [76] Chen CY, Oppermann H, Hitzeman RA: Homologous versus heterologousgene expression in the yeast, Saccharomyces cerevisiae. Nucleic Acids Res1984,12(23):8951-8970.
    [77] Puigbo P, Guzman E, Romeu A, Garcia-Vallve S: OPTIMIZER: a webserver for optimizing the codon usage of DNA sequences. Nucleic Acids Res2007,35(Web Server issue):W126-131.
    [78] Jin Z, Danilova V, Assadi-Porter FM, Aceti DJ, Markley JL, Hellekant G:Critical regions for the sweetness of brazzein1. FEBS Letters2003,544(1-3):33-37.
    [79] Morini G, Bassoli A, Temussi PA: From small sweeteners to sweet proteins:anatomy of the binding sites of the human T1R2_T1R3receptor. J MedChem2005,48(17):5520-5529.
    [80] Temussi PA: Why are sweet proteins sweet? Interaction of brazzein,monellin and thaumatin with the T1R2-T1R3receptor. FEBS Lett2002,526(1-3):1-4.
    [81] Yu Z, Meng Q, Yu H, Fan B, Yu S, Fei J, Wang L, Dai Y, Li N: Expressionand bioactivity of recombinant human lysozyme in the milk of transgenicmice. J Dairy Sci2006,89(8):2911-2918.
    [82] Doud SK, Chou MM, Kendall DA: Titration of protein transport activityby incremental changes in signal peptide hydrophobicity. Biochemistry1993,32(5):1251-1256.
    [83] Izard JW, Doughty MB, Kendall DA: Physical and conformationalproperties of synthetic idealized signal sequences parallel their biologicalfunction. Biochemistry1995,34(31):9904-9912.
    [84] Alexopoulou AN, Couchman JR, Whiteford JR: The CMV earlyenhancer/chicken beta actin (CAG) promoter can be used to drivetransgene expression during the differentiation of murine embryonic stemcells into vascular progenitors. BMC Cell Biol2008,9:2.
    [85] Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, YamamuraK: Expression vector system based on the chicken beta-actin promoterdirects efficient production of interleukin-5. Gene1989,79(2):269-277.
    [86] Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expressiontransfectants with a novel eukaryotic vector. Gene1991,108(2):193-199.
    [87] Bayna EM, Rosen JM: Tissue-specific, high level expression of the rat wheyacidic protein gene in transgenic mice. Nucleic Acids Res1990,18(10):2977-2985.
    [88] Roberts B, DiTullio P, Vitale J, Hehir K, Gordon K: Cloning of the goatbeta-casein-encoding gene and expression in transgenic mice. Gene1992,121(2):255-262.
    [89] Chung JH, Bell AC, Felsenfeld G: Characterization of the chickenbeta-globin insulator. Proc Natl Acad Sci U S A1997,94(2):575-580.
    [90] Echelard Y, Williams JL, Destrempes MM, Koster JA, Overton SA, PollockDP, Rapiejko KT, Behboodi E, Masiello NC, Gavin WG et al: Production ofrecombinant albumin by a herd of cloned transgenic cattle. TransgenicResearch2009,18(3):361-376.
    [91] Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang Bet al: Cattle mammary bioreactor generated by a novel procedure oftransgenic cloning for large-scale production of functional humanlactoferrin. PloS one2008,3(10):e3453.
    [92] Assadi-Porter FM, Aceti DJ, Cheng H, Markley JL: Efficient production ofrecombinant brazzein, a small, heat-stable, sweet-tasting protein of plantorigin. Archives of biochemistry and biophysics2000,376(2):252-258.
    [93] Yuan JS, Reed A, Chen F, Stewart CN, Jr.: Statistical analysis of real-timePCR data. BMC bioinformatics2006,7:85.
    [94] Lee KK, Kim SJ, Sohn BH, Jeong S, Pak KW, Park JS, Park IY, Lee TH, ChoiYH, Lee CS et al: High-level expression of human lactoferrin in milk oftransgenic mice using genomic lactoferrin sequence. Journal ofbiochemistry1999,126(2):320-325.
    [95] Keren DF: Enzyme-linked immunosorbent assay for immunoglobulin Gand immunoglobulin A antibodies to Shigella flexneri antigens. InfectImmun1979,24(2):441-448.
    [96] DePeters EJ, Hovey RC: Methods for collecting milk from mice. JMammary Gland Biol Neoplasia2009,14(4):397-400.
    [97] Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J: Evaluatingthe 'labeled magnitude scale' for measuring sensations of taste and smell.Chemical Senses1996,21(3):323-334.
    [98] Wilson C, Bellen HJ, Gehring WJ: Position Effects on EukaryoticGene-Expression. Annu Rev Cell Biol1990,6:679-714.
    [99] Haruyama N, Cho A, Kulkarni AB: Overview: engineering transgenicconstructs and mice. Current protocols in cell biology/editorial board, JuanS Bonifacino [et al]2009, Chapter19:Unit1910.
    [100] Liu S, Li X, Lu D, Shang S, Wang M, Zheng M, Zhang R, Tang B, Li Q, DaiY et al: High-level expression of bioactive recombinant human lysozymein the milk of transgenic mice using a modified human lactoferrin BAC.Transgenic Res2011.
    [101] Parachin NS, Mulder KC, Viana AA, Dias SC, Franco OL: Expressionsystems for heterologous production of antimicrobial peptides. Peptides2012,38(2):446-456.
    [102] Zhang R, Guo C, Sui S, Yu T, Wang J, Li N: Comprehensive assessment ofmilk composition in transgenic cloned cattle. PloS one2012,7(11):e49697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700