用户名: 密码: 验证码:
甘油醛后巩膜交联治疗豚鼠形觉剥夺性近视的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     病理性近视(Pathologic myopia, PM)是成年人重要的致盲性眼病之一,目前尚无良好治疗对策。近视发病机制的研究提示:巩膜是各种致病因素作用的主要靶器官,巩膜病理性的薄弱是PM作用的结果,也是导致其它相关病变的诱因,而针对巩膜生物力学强度变化的干预有可能是阻断PM进展的一条可行途径。本研究通过建立豚鼠形觉剥夺性近视(form deprivation myopia, FDM)模型,应用甘油醛促进巩膜交联,探讨甘油醛对巩膜生物力学特征的影响及其对实验性近视的抑制作用,从控制巩膜重塑并增加其强度的角度,为防治PM提供新思路。
     研究内容和方法
     1.甘油醛对离体巩膜条带的交联作用:选用15只三周龄三色豚鼠,按随机数字表法分成3组,每组5只。均取右眼为实验眼。矢状位取2mm×6mm的巩膜条带,给予0.005mol/L甘油醛组,0.05mol/L甘油醛组和空白对照液室温下浸泡4天。应用微材料力学性能测试系统,对各组巩膜条带的极限应力(σmax (MPa)、极限应变εmax (%)、6%弹性模量E(MPs)进行统计分析。
     2.豚鼠FDM模型的建立:用6号乳白色半透明乳胶气球,依照豚鼠头部形状剪制成头套,暴露出动物的左眼,双耳及口鼻。制作动物右眼形觉剥夺模型。室温下饲养,正常昼夜节律。分别于实验开始前、形觉剥夺7、14、21天时测量眼轴长度、玻璃体腔长度及屈光度,进行统计学分析。
     3.甘油醛后巩膜交联:选用35只三周龄三色豚鼠,将动物按随机数字表法分成5组,每组7只,右眼为实验眼,左眼为对照眼。A组:右眼遮盖7天;B组:右眼遮盖21天,0.9%生理盐水第1、8、15天Tenon's囊下球后注射;C组:右眼遮盖21天,0.05mol/L甘油醛第1、8、15天Tenon's囊下球后注射;D组:右眼遮盖21天,0.5mol/L甘油醛第1、8、15天Tenon's囊下球后注射;E组:正常对照组。并于实验开始前、形觉剥夺7、14、21天时测量眼轴长度、玻璃体腔长度及屈光度。在实验结束时,应用微材料力学性能测试系统测量5个组巩膜的极限应力σmax (MPa)、极限应变εmax (%)、6%弹性模量E(MPa),并与对侧眼比较,进行统计学分析。绘制5个组的应力-应变曲线,比较甘油醛交联对豚鼠巩膜生物力学强度的影响。
     4.后巩膜交联术对豚鼠FDM眼超微结构影响的观察:选用18只三周龄三色豚鼠,随机抽取其中的15只豚鼠,按随机数字表法分成5组。右眼为实验眼,左眼为对照眼。实验方法同3。实验结束后处死豚鼠,在视神经颞侧连续切取5片组织,厚度0.5μm,2片行苏木精-伊红染色,3片行免疫组化染色,检测后极部巩膜、脉络膜、视网膜MMP-2表达,光学显微镜下观察并照相。余下的3只豚鼠给予0.5mol/L的甘油醛Tenon's囊下球后注射,分别在第3、7、14天处死。取注射相邻部位的角膜缘、眼外肌和视神经筛板做切片,行苏木精-伊红染色。判断甘油醛对视网膜、视神经是否有毒性。
     结果
     1.离体巩膜实验:不同浓度甘油醛组与对照组实验眼巩膜的应力-应变曲线有明显的梯度变化。空白对照组巩膜的极限应力σmaax、极限应变smax、6%弹性模量E分别为(7.198±0.991)MPa、(21.480±0.853)%和(22.808±2.159)MPa。甘油醛交联组中,6%弹性模量E0.005mol/L甘油醛组、0.05mo/L甘油醛组分别为(25.903±0.892) MPa (P=0.019)和(36.156±2.026) MPa (P=0.000),较空白对照组分别增加了13.57%和58.52%。0.005mol/L甘油醛组、0.05mo/L甘油醛极限应力σmax分别为(10.386±1.023)MPa(P=0.0012)和(14.851±1.602)MPa (P=0.000),较空白对照组分别增加了44.30%和106.32%;0.005mol/L甘油醛组、0.05mo/L甘油醛组极限应变smax分别为(19.320±±0.672)%(P=0.002)和(14.140±±1.001)%(P=0.000),较空白对照组分别降低10.06%和34.17%。
     2.形觉剥夺后,实验眼均出现了玻璃体腔长度和眼轴长度的增加以及相对近视度数的增加,在A组、B组和C组中,玻璃体腔长度、眼轴长度和屈光度与对侧眼相比,差异有统计学意义(P玻璃体腔=0.018,0.002,0.001;P眼轴=0.019,0.002,0.000;P屈光=0.000,0.005,0.001)。D组、E组玻璃体腔长度、眼轴长度与对侧眼相比,差异无统计学意义(P玻璃体腔=0.607,0.539;P眼轴=0.607,0.539)D组实验眼与对侧眼屈光度相比差异有统计学意义(P屈光=0.020)。
     3.在实验第21天结束时,B、C、D、E组实验眼的屈光度变化值分别为(8.800±0.616)D,(7.236±2.198)D,(6.271±1.112)D和(0.934±0.158)D,总体差异有统计学意义(F=61.249,P=0.000),B、C、D组的屈光度变化值较正常对照组大,差异有统计学意义(PB=0.000,PC=0.000,PD=0.000);B、C、D组的眼轴变化值较正常对照组大,但差异无统计学意义(PB=0.430,PC=0.840,PD=0.386)
     4.在实验第21天结束时,B组和E组对侧眼比较,B组玻璃体腔长度的增加值为(0.198±0.038)mm,E组为(0.139±0.026)mm,差异有统计学意义(t=-3.689,P=0.002);B组眼轴长度的增加值为(0.481±0.062)mm,E组为(0.438±0.068)mm,差异无统计学意义(t=-1.295,P=0.216)
     5.B组实验眼眼轴长度与屈光呈高度负相关(r=-0.832,P=0.000);B组实验眼玻璃体腔长度与屈光度呈高度负相关(r=-0.804,P=0.000);E组右眼的眼轴长度和屈光度呈中度负相关(r=-0.604,P=0.000);E组双眼的眼轴长度呈高度相关(r=0.940,P=0.000)。
     6.试验结束时,B组实验眼的极限应力和6%弹性模量分别为(7.988±3.677)MPa(P=0.002)和(19.938±4.871)MPa(P=0.001),较对侧眼分别降低了34.21%和34.38%,极限应变实验眼为(28.6±3.6)%(P=0.034),较对侧眼增加了19.17%。甘油醛交联后,C组实验眼的极限应力和6%弹性模量分别为(9.244±0.806)MPa(P=0.001)和(26.180±4.388)MPa(P=0.031),较对侧眼分别降低了23.13%和13.34%,极限应变实验眼为(26.2±1.0)%(P=0.016),较对侧眼增加了12.93%;D组实验眼的极限应力为(12.476-2.507)MPa(P=0.580),较对侧眼降低了5.50%,6%弹性模量为(30.446±3.410)MPa(P=0.314),较对侧眼增加了6.53%,极限应变为(23.8±1.8)%(P=0.253),较对侧眼降低了4.42%。在D组(0.5mol/L甘油醛)攻膜交联21天后与B组的实验眼相比,巩膜的极限应力增加了35.85%,6%弹性模量增加了52.70%,极限应变降低了16.78%。不同浓度甘油醛交联与对照组实验眼的应力-应变曲线有明显的梯度变化,D组的应力-应变曲线接近正常对照组,高于其它3组。
     7.组织学检查:随着豚鼠FDM的出现,表现为眼外组织疏松,巩膜厚度明显降低,纤维排列整齐,脉络膜厚度降低,可见血管腔,但未见大的窦腔,视网膜层次清晰。MMP-2在眼球表层结缔组织、巩膜表层结缔组织、浅层巩膜、脉络膜实质层以及视网膜外丛状层阳性表达比正常对照眼明显。甘油醛交联后出现了眼球表面结缔组织结构变得相对致密,排列有序,与巩膜连接紧密。巩膜组织的厚度变薄,细胞密度增加。脉络膜管腔扩大,厚度变化不明显。视网膜光感受器细胞核清晰,排列整齐,无炎性细胞浸润。MMP-2在除眼表结缔组织外的巩膜表面结缔组织,浅层巩膜、脉络膜实质层以及视网膜外丛状层的阳性表达明显降低。
     结论:
     1.甘油醛是一种安全有效的交联剂,能够显著增强巩膜的生物力学强度。
     2.头套法形觉剥夺成功诱导出以豚鼠为对象的动物近视模型,而且这种近视是以眼轴延长特别是玻璃体腔长度增加为主的轴性近视。
     3.随着眼轴的延长及近视度数的加深,巩膜的生物力学强度明显降低。
     4.本实验进一步证明了MMP-2与近视形成的相关性,而且发现甘油醛能够降低MMP-2的阳性表达。
     5.采用甘油醛交联的方法能够有效控制FDM动物模型眼近视的发展。为防治PM提供新思路。
[Objective]
     Pathologic myopia (PM) is one of the most serious eye disease to blindness in the clinic, especially for adults. There is no clinical successful therapeutic intervention that benefit at present. Studies on pathogenesis had shown that various agents had taken sclera as the essential target structure, and the weakness of sclera might be either the result of PM, or of the risk factor that could induce related lesions. Therefore, enhancement of sclera biomechanical strength could be as a referenced method to alleviate of the development of PM.The purpose of this study is to observe the effects of glyceraldehyde cross-linking on sclera biomechanical strength and experimental myopia, based on the model of the guinea pig form deprivation myopia (FDM). New therapeutic strategy for PM was explored from the view of scleral remodeling control.
     [Materials and Methods]
     1In vitro experiment:15three-color guinea pigs aged three weeks were randomly divided into3groups. Each group had5guinea pigs. The right eyes were treated and the left eyes were used as untreated controls.2mm x6mm sclera strip was taken after the eyeball extraction and treated respectively with glyceraldehyde at concentration of0.005mol/L,0.05mol/L, and foundational solution without glyceraldhyde at room temperature. After4-day cross-linking, biomechanical stress-strain measurements of all scleral strips were performed using a microcomputer-controlled biomaterial testing device. The parameters ultimate stress (σmax)(MPa) and ultimate strain (εmax)(%) and6%elastic modulus (MPa) were used for analysis.
     2In the MDF group, latex balloons were modified into facemasks, which only covered the right eye of the animals, leaving the left eye, nose, mouth and ears exposed. Guinea pigs breeding at room temperature, normal circadian rhythms Ocular axial length, vitreous cavity length and refractive error were measured before form deprivation and at mask day7,14,21.
     3Posterior scleral cross-linking:35three weeks aged guinea pigs were randomly divided into5groups:A, B, C, D, E. Each group had7guinea pigs. The right eye was set as the experimental eye, the left eye was used as control. Group A:7days mask; Group B:21days mask, plus physiological saline retrobulbar injection at mask day1,8,15; Group C:21days mask, plus0.05mol/L glyceraldehyde retrobulbar injection at mask day1,8,15; Group D:21days mask, plus0.5mol/L glyceraldehyde retrobulbar injection at mask day1,8,15; Group E:normal control group. Ocular axial length, vitreous cavity length and refractive error were measured before form deprivation and at mask day7,14,21.2mm x6mm sclera strip was taken after the eyeball extraction at the end of experiment, biomechanical stress-strain measurements of all scleral strips were performed using a microcomputer-controlled biomaterial testing device. The parameters ultimate stress (amax)(MPa) and ultimate strain (εmax)(%) and6%elastic modulus (MPa) were used for analysis.
     4Ultrastructure examination:15three weeks aged guinea pigs were randomly divided into5groups. The right eye was set as the experimental eye, the left eye was used as control. Administration of posterior scleral cross-linking was performed referring to protocols described in step3. Animals were humanly killed at the end of the experiment. Ocular ultrastructure structures examination of sclera, choroid, retina was performed by hematoxylin-eosin staining. The expression of MMP-2was detected by immunohistochemical staining. The effects of glyceraldehyde on adjacent tissues, including limbus, the extraocular muscles and optic nerve were also detected.
     [Results]
     1. The stress-strain curves showed the prominent increase of biomechanical stiffness in vitro. After the cross-linking treatment, the ultimate stress, the ultimate strain,6%elastic modulus were (7.198±0.991)MPa,(21.480±0.853)%and (22.808±2.159) MPa in the controls.6%elastic modulus of0.005mol/L. glyceraldehyde group and0.05mol/L glyceraldehyde group were (25.903±0.892)MPa(P=0.019)and(36.156±2.026)MPa(P=0.000), increased13.57%and58.52%versus the control group respectively. The ultimate stress of0.005mol/L glyceraldehyde group and0.05mol/L glyceraldehyde group were (10.386±1.023) MPa (P=0.0012) and (14.851±1.602) MPa (P=0.000) increased44.30%and106.32%respectively. The ultimate strain of groups0.005mol/L, glyceraldehyde group and0.05mol/L glyceraldehyde group were (19.320±0.672)%(P=0.002) and (14.140±1.001)%(P=0.000), decreased10.06%and34.17%respectively.
     2. Form deprivation, at the end of the experiment, the experimental eyes appeared the increase of the the vitreous cavity length, the axial length and myopia. In group A, group B and group C. the length of the vitreous cavity, the axial length and refractive error, compared with the fellow eye the difference was statistically significant statistically (Pvitreous cavity=0.018.0.002.0.001; Paxial=0.019.0.002.0.000; Prefraction=0.000,0.005,0.001). In group D and group E, the length of the vitreous chamber, axial length compared with the fellow eye, the difference was not statistically significant (P vitreous cavity=0.607,0.539; Paxial=0.607.0.539). The experimental eye and the fellow eye of group D, the difference of diopter was statistically significant (Prefraction=0.020), but diopter of group E was no significant difference.(Prefraction=0.580).
     3. At the end of the experiment, diopter change in value of experimental eye of group B, C, D, E was significantly different, the overall difference was statistically significant (F=61.249, P=0.000). Diopter change value of group B,C,D versus the normal control group, the difference was statistically significant (PB=0.000. Pc=0.000, PD=0.000):but the difference of axial length changes in the value was no statistical significance (PB=0.430, Pc=0.840. PD=0.386).
     4. At the end of the experiment, B and E groups contralateral eye, the added value of group B of the vitreous cavity length compared with group E, the difference was statistically significant (t=-3.689, P=0.002); the difference of the increase in axial length was not statistically significant (t=-1.295, P=0.216).
     5. Axial length and refractive error of experimental eye of group B was highly negative correlated (r=-0.832, P=0.000); vitreous cavity length and refractive error of experimental eye of group B was highly negative correlated (r=-0.804, P=0.000);the axial length and refraction of right eye of group E was a moderate negative correlation (r=-0.604, P=0.000); axial length of group E eyes was highly correlated (r=0.940, P=0.000).
     6. At the end of the experiment, the ultimate stress and6%elastic modulus of group B experimental eye was (7.988±3.677) MPa (P=0.002) and (19.938±4.871) MPa(P=0.001), decreased10.06%and34.17%versus the fellow eye respectively, the Ultimate strain was (28.6±3.6)%(P=0.034) increased19.17%respectively. After the cross-linking treatment, the ultimate stress and6%elastic modulus of group C experimental eye was (9.244±0.806)MPa(P=0.001)and(26.180±4.388) MPa (P=0.031). decreased23.13%and13.34%respectively. the ultimate strain was (26.2±1.0)%(P=0.016).increased12.93%respectively. The ultimate stress of group D experimental eye was (12.476±2.507) MPa (P=0.580).decreased5.50%,6%elastic modulus was (30.446±3.410) MPa (P=0.314) increased6.53%, ultimate strain was (23.8±1.8)%(P=0.253). decreased4.42%respectively. The ultimate stress of group D experimental eye increased35.85%versus group B,6%elastic modulus increased52.70%, ultimate strain decreased16.78%. The stress-strain curves showed the prominent increase of biomechanical stiffness.
     7. Ultrastructure examination:As the development of guinea pig FDM, Ultrastructure examination showed that, decreased scleral thickness with fibers lined up in order, decreased choroidal thickness with vascular lumen, lack of sinus cavity. The retinal structure was normal. Expressions of MMP-2were mainly in the episcleral tissue, the stroma of choroid, and the outer plexiform layer. After glyceraldehyde cross-linking, the loose episcleral tissue became dense and structured, and the adhesion with sclera became tight. Scleral thickness decreased while the dense of sclera cells increased. Lumens and cavities in the choroid became obvious, and no significant thickness change was noticed, The retinal structure was morphologically normal with distinct structural layers and regular arrangement of retinal photoreceptor cells, without inflammatory cells Infiltration. Expressions of MMP-2were mainly in the episcleral tissue. MMP-2in the stroma of choroid, and the outer plexiform layer.
     [Conclusion]
     1. Glyceraldehyde is a safe and effective cross-linking agent that could significantly enhance the sclera biomechanical strength.
     2. The monocularly-deprived facemask could successfully induce guinea pig for animal myopia model, which is axial extension myopia, especially the vitreous cavity length.
     3. With increasing of the axial length and progressing of myopia, the scleral biomechanical strength is significantly reduced.
     4. The correlation between MMP-2and progression of myopia model is meaningful, and glyceraldehyde could reduce the positive expression of MMP-2.
     5. Glyceraldehyde cross-linking method could effectively control the development of pathologic myopia in animal model. New therapeutic strategy for PM was explored from the view of scleral remodeling control.
引文
[1]Hu DN. Prevalance and mode of inheritance of major genetic eye diease in China[J]. J Med Genet,1987,24:584-588.
    [2]McKmickNathans Institute for Genetic Medicine. Johns Hopkins University(Baltimore, MD)and National Center for Biotechnology Information, National Library of Medicine(Bethesda, MD). Online Mendelian Inheritance in man[R].2000,10.
    [3]Palum P, Ronan SM, Heon E, et al. New locus for autosomal dominant high myopia maps to the long arm of chromosome 17[J]. Invest ophthalmol Vis Sci.2003.44:1830-1836.
    [4]Saw SM, Gazzard G, Au Eon g KG. Myopia:attempts to arrest progression[J]. Br J Ophthalmol,2002.86:1306-1313.
    [5]Cottriall CL, M cBrien NA, Anntes R, Leech EM. Prevention of form-deprivation myopia with pirenzepine:a study of drug delivery and distribution[J]. Ophthalmtc Phystol Opt,1999.19:327-335.
    [6]Funata M. Tokoro T. Scleral change in experimentally myopic monkeys[J]. Graefes Arch Clin Exp Ophthalmol,1990.228:174-179.
    [7]Kang RN.Norton TT.Alteration of scleral morphology in tree shrews with induced myopia[J].Invest Ophthalmol Vis Sci,1993,34:1209.
    [8]McBrien NA, Norton TT. Prevention of collagen crosslinking increases form-deprivation myopia in tree shrew[J]. Exp Eye Res,1994.59:475-486.
    [9]Wollensak G, Spoerl E.Collagen crosslinking of human and porcine sclera[J], J Cataract Refract Surg,2004.30:689-695
    [10]Curtin BJ, Teng CC. Scleral changes in pathological myopia[J]. Trans Am Acad Ophthalmol Otolaryngol,1958,62:777-788.
    [11]Curtin BJ, Iwamoto T. Renaldo DP. Normal and staphylomatous sclera of high myopia[J]. Arch Ophthalmol,1979,97:912-915.
    [12]Mcbrien NA,Cornell LM.Gentle A. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia[J]. Invest Ophthalmol Vis Sci, 2001,42:2179-2187.
    [13]Rada JA, Shelton S, Norton TT. The sclera and myopia [J].Exp Eye Res, 2006.82:185-200.
    [14]Bode W, Fernades-Catalan C, Tschese H, et al. Insight into MMP-TIMP interactions [J]. Cell Mol Life Sci,2001,54(4):6391.
    [15]龙琴,褚仁远.巩膜ECM及基质金属蛋白酶在近视发展中作用的研究进展[J].中华眼科杂志,2005,41(11):1047-1049.
    [16]Obata H, Kaburaki T, Kato M, et al. Expression of TGF-beta type I and type I receptor in rat eye[J]. Curr Eye Res,1996.15:335-340.
    [17]Wollensak G, Spoerl E, Collagen crosslinking of human and porcine sclera[J], J Cataract Refract Surg,2004.30:689-695
    [18]Wollensak G, Iomdina E. Crosslinking of scleral collagen in the rabbit using glyceraldehyde[J]. J Cataract Refract Surg,2008,34:651-656
    [19]侯芳玉,郭淼.晚期糖基化终末产物的检测和临床意义[J].国外医学临床生物化学与检验学分册,1999,20(6):256-258
    [20]Girton TS, Oegema TR, Tranquillo RT. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering [J]. J Biomed Mater Res.1999, 46:87-92
    [21]Tessier FJ, Monnier VM, Sayre LM, Kornfield JA. Triosidines:novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues[J]. Biochem J.2003,369:705-719
    [22]Wu W, Peter WH.Hammr ME.Basic mechanical properties of retina in simple elongation[J]. Biomech Eng,1987,109:65-69.
    [23]A.J. Bailey, R.G. Paul, L. Knott, Mechanisms of maturation and ageing of collagen[J].Mech. Ageing Dev.1998,106.1-56.
    [24]Ulrich P, Cerami A. Protein glycation, diabetes, and aging[J]. Recent Prog Horm Res.2001.56:1-21.
    [25]G. Wollensak, E. Spoerl, Collagen cross-linking in the human and porcine sclera[J]. J Cataract Refract Surg,2004.30:689-695.
    [26]Wollensak G, Spoerl E, Seiler T. Treatment of keratoconus by collagen crosslinking[J]. Ophthalmologe,2003,100(1):44-49.
    [27]Avila MY, Navia JL. Effect of genipin collagen crosslinking on porcine corneas [J]. J Cataract Refract Surg,2010,36:659-664.
    [28]Shiraki M, Kuroda T, Tanaka S, Saito M, Fukunaga M, Nakamura T. Nonenzymatic collagen cross-links Induced by glycoxidation (pentosidine) predicts vertebral fractures [J]. J Bone Miner Metab,2008,26:93-100.
    [29]余吉峰,黄一飞.圆锥角膜治疗进展[J].国际眼科杂志,2010,10(1):90-92.
    [30]Wollensak G, Iomdina E, Dittert DD, Salamatina O, Stoltenburg G. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA [J]. Acta Ophthalmol Scand,2005.83:477-482.
    [31]Wollensak G, Iomdina E. Long-term biomechanical properties after collagen crosslinking of scleral using glyceraldehyde [J]. Acta Ophthalmol,2008.86:887-893.
    [32]Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products:a review[J].Diabetologia.2001,44:129-146.
    [33]Pageon H.Bakala H,Monnier VM,et al.Collagen glycation triggers the formation of aged skin in vitro[J].Eur J Dermatol.2007,17(1):12-20.
    [34]Dukic Stefanovic S,Gasic Milenkovic J, Deuther Conrad W,et al.Signalling pathways involved in retinal endothelial cell proliferation induced by advanced glyeation end products:inhibitory efect of gliclazide[J].Diabetes Obes Metab, 2004,6(2):95-103.
    [35]Kato Y, Uchida K, Kawakishi S. Aggregation of collagen exposed to UVA in the presence of riboflavin:a plausible role of tyrosine modification[J]. Photochem Photobiol,1994,59:343-349
    [36]Wollensak G, Spoefl E. Collagen crosslinking of human, and porcine sclera[J]. J Cataract Refract Surg,2004.30(3):689—69.
    [37]Fung YC. Biomechanics. Mechanical Properties of Living Tissues.2nd ed. New York, NY:Springer-Verlag;1993.
    [38]杜春娟,王小兵,刘爱珍,曾衍均.眼固体生物力学研究,力学进展,2006.
    [39]潘红卫,陈建苏.紫外线核黄素交联治疗圆锥角膜的研究进展[J].眼科研究.2008,26(5):379-400.
    [40]Funata M.Tokoro T.Scleral change in experimentally myopic monkeys [J].Graefes Arch Clin Exp Ophthalmol,1990,228:174-179.
    [41]McBrien NA,Norton TT. Prevention of collagen crosslinking increases form-deprivation myopia in tree shrew [J].Exp Eye Res,1994,59:475-486.
    [42]Curtin BJ. Physiologic vs pathologic myopia:genetics vs enviroment[J]. Ophthalmology,1979,86:681-691.
    [43]Wildsoet CF & Norton TT. Toward controlling myopia progression [J] Optom Vis Sci.1999,76:341-342.
    [44]Summers Rada JA, Shelton S, Norton TT. The sclera and myopia[J]. Experimental Eye Research,2006,82:185-200.
    [45]Avetisov ES, Tarutta EP, Iomdina EN,Vinetskaya MI & Andreyeva MI.Nonsurgical and surgical methods of sclera reinforcement in progressive myopia[J]. Acta Ophthalmol Scand,1997,75:618-623.
    [46]Kosmala JD, Henthorn DB & Brannon-Peppas L.Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials[J]. Biomaterials. 2000,21,2019-2023.
    [47]Gregor Wollensak.Elena Iomdina. Long-term biomechanical properties after collagen crosslinking of sclera using glyceraldehyde[J]. Acta Ophthalmol,2008,86: 887-893.
    [48]Fredrick DR, Myopia[J].British Medical Journal,2002,34:1195-1199.
    [49]朱小松,刘家琦,陈瑞英等.实验性近视眼研究[J],国外医学眼科学分册,1993,17(2):91-94.
    [50]胡诞宁,褚仁远,吕帆等,近视眼学.北京:人民卫生出版社.2009.81.
    [51]程序.实验性近视的机制[J],国外医学眼科学分册,1998.22(5):282-287.
    [52]瞿佳.实验性近视研究进展[J],继续教育,2004,19(15)
    [53]程振英,李静海,李荣,谢英勃.闪烁光对豚鼠眼球发育及近视形成的影响[J],中华眼科杂志,2004,40:601-604.
    [54]Edwards MH.Animal models of myopia[J], Acta Ophthalmol,1996,74:312-219.
    [55]胡磊,汪芳润,李军等.实验性近视眼性质研究[J].眼科新进展,1999,19(2):85-88.
    [56]近视眼动物模型的巩膜研究进展08年浙江大学博士论文.
    [57]程振英,李静海,李荣等.形觉剥夺时限对豚鼠近视形成的影响[J].中华眼科杂志,2004,40:183-185.
    [58]赵海岚,周翔天,吕帆.近视发展中的巩膜病理改变及其影响因素[J.眼视光学杂志,2005,7(2):139-141.
    [59]孙朝晖,王超英,靳胜利等.实验性近视眼巩膜生物力学特征研究[J].眼视光学杂志,2006,8(4):209-213.
    [60]陈维毅王超英,张全有等.实验性近视眼巩膜成纤维细胞粘弹性研究[J].医用生物力学,2007,22(1):26-29.
    [61]朱子诚,张金嵩,柯根杰等.单眼形觉剥夺对豚鼠后极部巩膜整合素β1表达的影响[J],眼视光学杂志,2008,10(5):328-331.
    [62]Gottlieb MD, Fugate Wentzek L A, Wallman J. Different visual deprivations produce different ametropias and different eye shapes[J]. Investigative Ophthalmology and Visual Science,1987.28(8),1225-1235.
    [63]Li T, Troilo D, Glasser A, Howland H C. Constant light produces severe corneal flattening and hyperopia in chickens[J].Vision Research,1995,35(9),1203-1209.
    [64]Howlett M C, McFadden S A. A fast and effective mammalian model to study the visual regulation of eye growth [ARVO abstract] [J]. Investigative Ophthalmology and Visual Science.2002,43.
    [65]Jonson K M, Lyle J G Edwards M J, Penny R H.Spatial and non-spatial discrimination reversal (SDR) learning in the guinea pig[J]. Animal Behaviour. 1974.22(1),118-123.
    [66]Gaston M G, Stout R, Tom R. Imprinting in guinea pigs[J].Psychonomic Science,1969,16(1),53-54.
    [67]Petre C C, Sheridan C L. Interocular transfer in albino and pigmented perinatal guinea pig[J]. Psychonomic Science,1966,6(5),215-216.
    [68]Peichl L, Gonzalez Soriano J. Morphological types of horizontal cell in rodent retinae:A comparison of rat, mouse,gerbil, and guinea pig[J]. Visual Neuroscience, 1994,11(3),501-517.
    [69]Jacobs G H, Deegan J F. Spectral sensitivity, photopigments.and color vision in the guinea pig (Cavia porcellus) [J].Behavioral Neuroscience,1994,108(5),993-1004.
    [70]Parry J W, Bowmaker J K. Visual pigment coexpression in guinea pig cones:A microspectrophotometric study [J]. Investigative Ophthalmology and Visual Science, 2002,43(5),1662-1665.
    [71]Rohlich P, van Veen T, Szel A. Two different visual pigments in one retinal cone cell[J]. Neuron,1994,13(5),1159-1166.
    [72]Lodge A, Peto T, McFadden S. Form deprivation myopia and emmetropization in the guinea pig[J]. Proceedings of the Australian Neuroscience Society,1994,5.123.
    [73]欧阳朝祜,胡文政,褚仁远等.凹透镜对豚鼠眼生长及屈光发展的影响[J].眼科研究,2002.20(5):391-393.
    [74]胡文政,褚仁远,张利能.豚鼠实验性近视眼豚鼠的羟脯氨酸含量的改变[J].眼视光学杂志,2001,(3):103.
    [75]龙琴.MMP-2在长波光诱导新生豚鼠近视化模型巩膜胶原代谢中的作用机制研究.2004年中国博士学位论文.
    [76]赵海岚,王瑞卿,吕帆.幼年期豚鼠FDM的动态变化[J],临床眼科杂志,2006.14(2):170-175.
    [77]赵小云,黄悦,赵少贞.视黄酸在早期FDM豚鼠后巩膜中的变化[J],眼科研究.2009.27(12):1115-1119.
    [78]Lu F, Zhou XT, Wang RQ, et al. Axial myopia induced by a monocularly-deprived facemask in guinea pigs:A non-invasive and effective model[J]. Exp Eye Res,2006.82:628-636.
    [79]McFadd A, HowlettMH, et al. Retinoic acid signals the direction of ocular elongation in the guinea pig eye[J]. Visions.2004,44 (7):643-653.
    [80]Lovell D, King D, Festing M F W. Breeding performance of specific pathogen free guinea-pigs[J]. Guinea-pig News Letter,1972.6,6-11.
    [81]Wallman J, Adams J I.Developmental aspects of experimental myopia in chicks: Susceptibility, recovery and relation to emmetropization[J]. Vision Research,1987, 27(7),1139-1163.
    [82]Smith EL, Bradley DV, Fernandes A, Boothe R G. Form deprivation myopia in adolescent monkeys. Optometry and Vision Science[J],1999,76(6),428-432.
    [83]Troilo D, Nickla DL. The response to visual form deprivation differs with age in marmosets[J]. Investigative Ophthalmology and Visual Science.2005,46(6), 1873-1881.
    [84]Gentle A, McBrienNA. Modulation of scleral DNA synthesis in development of and recovery from induced axial myopia in the tree shrew[J]. Experimental Eye Research,1999,68(2),155-163.
    [85]Siegwart JT,Norton TT. The susceptible period for deprivation-induced myopia in tree shrew[J]. Vision Research,1998.38(22).3505-3515.
    [86]Jin N, Stjernschantz J. Regional blood flow in the myopic chick eye during and after form deprivation:A study with radioactively-labelled microspheres[J]. Experimental Eye Research,2000,71(3),233-238.
    [87]Napper GA, Brennan NA, Barrington M, Squires MA.Vessey GA, Vingrys AJ. The duration of normal visual exposure necessary to prevent form deprivation myopia in chicks[J]. Vision Research,1995,35(9),1337-1344.
    [88]McFadden S.,& Wallman, J. Guinea pig eye growth compensates for spectacle lenses [ARVO abstract] [J]. Investigative Ophthalmology and Visual Science.1995, 36, S758.
    [89]Weiss S, Schaeffel F. Diurnal growth rhythms in the chicken eye:relation to myopia development and retinal dopamine levels[J].J Comp Physiol,1993,172, 263-270.
    [90]Nickla DL, Wildsoet C, Visual Influences on Diurnal Rhythms in OcularLength and Choroidal Thickness in Chick Eyes[J]. Experimental Eye Research,1998,66, 163-181.
    [91]Nickla DL, Wildsoet C, Wallman J. The circadian rhythm in intraocular pressure and its relation to diurnal ocular growth changes in chicks[J].Exp Eye Res. 1998,66,183-193.
    [92]Nickla DL, Rada JA, Wallman J. Isolated chick sclera shows a circadian rhythm in proteoglycan synthesis perhaps associated with the rhythm in ocular elongation[J].J Comp Physiol,1999,185,81-90.
    [93]Mapstone R, Clark CV. Diurnal variation in the dimensions of the anterior chamber[J].Arch Ophthalmol,1985,103,1485-1486.
    [94]Nickla DL, Wildsoet CF, Troilo D. Endogenous rhythms in axial length and choroidal thickness in chicks:implications for ocular growth regulation[J].Invest Ophthalmol Vis Sci,2001.42,584-588.
    [95]Nickla DL, Wildsoet CF. Troilo D. Diurnal rhythms in intraocular pressure, axial length, and choroidal thickness in a primate model of eye growth, the common marmoset[J].Invest Ophthalmol Vis Sci.2002,43.2519-2528.
    [96]Stone RA, Quinn GE. Francis EL, et al. Diurnal axial length fluctuations in human eyes [J].Invest Ophthalmol Vis Sci,2004,45,63-70.
    [97]Wiechmann AF. Melatonin:parallels in pineal gland and retina[J]. Exp Eye Res, 1986,42,507-527.
    [98]Hoffmann M, Schaeffel F. Melatonin and deprivation myopia in chickens [J]. Neurochem Int,1996,28,95-107.
    [99]Wiechmann AF, Rada JA. Melatonin receptor expression in the cornea sclera[J].Exp Eye Res,2003.77,219-225.
    [100]Bradley DV, Fernandes A, Boothe RG.. The refractive development of untreated eyes of rhesus monkeys varies according to the treatment received by their fellow eyes[J]. Vision Research,1999,39(10),1749-1757.
    [101]Schaeffel F, Burkhardt B.. Measurement of refractive state and deprivation myopia in a black wildtype mouse [AVRO Abstract]. Investigative Ophthalmology and Visual Science, (2002) 43.
    [102]Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks[J]. Vision Research,1995,35(9),1175-1194.
    [103]Bell GR,Ed MS.Biomechanieal considerations of high myopia:part I-physiological characteristics[J], J Am Optom As-SOC,1993,64(5):332-338.
    [104]McBrien NA, Metlapally R, Jobling AL, et al. Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia[J]. Invest Ophthalmol Vis Sci,2006,47(11): 4674-1682.
    [105]高岩,崔冬梅,吴开力等.FDM豚鼠巩膜形态学观察[J],眼科研究,2006,24(3):244-247.
    [106]Howlett MHC, McFadden SA. Form-deprivation myopia in the guinea pig [J]. Vision Research.2006,46:267-283.
    [107]Eduard S, Avetisov ES, Savitskaya NF, et al. A study of biochemical and biomechanical qualities of normal and myopia eye sclera in humans of different age groups[J]. Metaholic, Pediatric and Systemic Ophthalmology,1984;7:183.
    [108]Wollensak G, Spoerl E. Collagen crosslinking of human and porcine sclera [J]. J Cataract Refract Surg,2004,30:689-695.
    [109]Kumar CM, McNeela BJ. Ultrasound localization of anaesthetic fluid using sub-Tenon's cannulae of three different lengths[J]. Eye,2003,17:1003-1007.
    [110]Bergman L, Berglin L, Algvere PV, et al. Limbal sub-Tenon's administration of retrobulbar anesthesia using a blunt irrigating cannula[J]. Ophthalmic Surg Lasers,1996.27:106-112.
    [111]Paul RG, Knott L. Mechanisms of maturation and ageing of collagen[J]. Mech Age Dev,1998,106:1-56.
    [112]Sady C, Khosrof S, Nagaraj R. Advanced Maillard reaction and crosslinking of corneal collagen in diabetes[J]. Biochem Biophys Res Commun,1995,214:793-797.
    [113]Paul RG, Bailey AJ. Glycation of collagen:the basis of its central role in the late complications of ageing and diabetes[J]. Int J Biochem Cell Biol, 1996,28:1297-1310.
    [114]Taylor CR, Kwangsukstith C, Wimberly J, et al. Turbo-PUVA: dihydroxyacetone-enhanced photochemotherapy for psoriasis; a pilot study [J]. Arch Dermatol,1999,135:540-544.
    [115]Siegwart IT,Norton 1Tr, et al.Time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery [J]. Invest Ophthalmol Vis Sci, 2002,43(7):2067-2075.
    [116]陶凯忠,陈尔瑜,丁光宏.胶原纤维的结构和生物力学[J].解剖科学进展,1998,4(4):289-292.
    [117]Young TL, Guo XD. King RA, et al. Identification of genes expressed in a human scleral cDNA library [J]. Mol Vis.2003,7(9):508-514.
    [118]Iomdina EN, Daragan VA, Ilyina EE. Certain biomechanical properties and cross linking of the scleral shell of the eye in progressive myopia. Proceedings of XIVth Congress on Biomechanics.Paris, France, International Society of Biomechanics.1993; 616-617.
    [119]McBrien NA. Gentle A. Role of the sclera in the development and pathological complications of myopia[J]. Prog Retin Eye Res,2003,22:307-338.
    [120]Bell GR. Biomechanical considerations of high myopia:part I-physiological characteristics[J]. J Am Optom Assoc.1993,64:332-338.
    [121]Pierro L, Brancato R, Robino X, Lattanzio R, Jansen A, Calori G. Axial length in patients with diabetes[J]. Retina,1999,19:401-404.
    [122]Bailey AJ. Structure, function and ageing of the collagens of the eye[J]. Eye,1987.1:175-183.
    [123]Nagase H,Woessner JF.Matrix Metelloproteinases[J].The journal of Biological Chemistry.1999.31:21491-21494.
    [124]Bode W. Structural basis of matrix metalloproteinase function[J]. Biochem Soc Symp,2003,70:1-14.
    [125]Rada JA, Perry CA, Slover ML, Achen VR. Gelatinase A and TIMP-2 expression in the fibrous sclera of myopic and recovering chick eyes[J]. Invest Ophthalmol Vis Sci,1999,40:3091-3099.
    [126]Strongin AY, Collier I.Bannikov G, et al. Mechanism activation of 72-kDa type Ⅳcollagenase[J].The journal Chemistry,1995,10:5331-5338.
    [127]Aimes RT, Quigey JP. collagenase Matrix Metallopreinase-2 Is an interstitial[J].The Journal of Biological Chemitry.1995,11:5872-5876.
    [128]Walls, GL. The Vertebrate Eye and its Adaptive Radiations. Bloomfield Hills, Mich,1942.
    [129]Krebs W, Krebs IP. Ultrastructural evidence for lymphatic capillaries in the primate retina[J]. ArchOphthal,1988,106:1615-1616.
    [130]Junghans BM, Crewther SG, Crewther DP. Choroidal lympthatics:An active storage reservoir[J]? Invest Ophthalmol Vis Sci,1998,39:S504.
    [131]Debora L. Nickla, Josh Wallman. The multifunctional choroid[J]. Prog Retin Eye Res.2010,29(2):144-168.
    [132]Curtin BJ. The posterior staphyloma of pathologic myopia[J].Trans Am Ophthalmol Soc,1977.75:67-86.
    [133]Bell GR. A review of the sclera and its role in myopia[J].J Am Optom Assoc, 1978,49:1399-1403.
    [134]Avetisov ES,Savitskaya NF,Vinetskaya MI, et al.A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups[J].Metab Pediatr Syst Ophthalmol,1984,7:183-188.
    [135]Tezel G, Luo C, Yang X. Accelerated aging in glaucoma:immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head[J]. Invest Ophthalmol Vis Sci 2007.48:1201-1211
    [136]Spoerl E, Boehm AG, Pillunat LE. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera[J]. Invest Ophthalmol Vis Sci.2005.46:1286-1290.
    [137]Mitchel P, Smith W, Chey T. Healey PR. Open-angle glaucoma and diabetes. The Blue Mountains Eye Study, Australia[J]. Ophthalmology.1997,104:712-718.
    [138]Lesk MC, Connell AM, Hyman LG, Schachat AP, the Barbados Eye Study Group. Risk factors for open-angle glaucoma. The Barbados Eye Study[J]. Arch Ophthalmol.1995,113:918-924.
    [139]Klein BE, Klein R, Jensen SC. Open-angle glaucoma and older-onset diabetes. The Beaver Dam Eye Study[J]. Ophthalmology.1994,101:1173-1177.
    [140]Dielemans I, de Jong PT, Stolk R, Vingerling JR, Grobbee DE, Hofman A. Primary open-angle glaucoma, intraocular pressure, and diabetes mellitus in the general elderly population. The Rotterdam Study[J]. Ophthalmology. 1996,103:1271-1275.
    [141]Tielsch JM, Katz J, Quigley HA, Javitt JC, Sommer A. Diabetes, Intraocular pressure, and primary open-angle glaucoma in the Baltimore Eye Survey [J]. Ophthalmology,1995,102:48-53.
    [142]Gordon MO, Beiser JA, Brandt JD, et al. for the Ocular Hypertension Treatment Study Group. The Ocular Hypertension Treatment Study. Baseline factors that predict the onset of primary openangle glaucoma[J]. Arch Ophthalmol.2002.120: 714-720.
    [143]Traverso N, Odetti P, Pronzano MA, Marinari UM, Cottalasso D.Intensive insulin treatment reduces the accumulation of oxidation and glycation end-products in diabetic rat collagen. Aging (Milano),1997,9:432-433.
    [144]Odetti P, Traverso N, Cosso L, Noberasco G. Pronzato MA, Marinari UM.Good glycaemic control reduces oxidation and glycation end-products in collagen of diabetic rats[J]. Diabetologia,1996.39:1440-1447.
    [145]Robinson MR, Lee SS, Kim H, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide[J]. Exp Eye Res.2006, 82:479-487
    [146]Garzino A. Modificazione del collagene sclerale nella miopia maligna[J]. Ross Ital Ottal,1956,25:241-244.
    [147]Liu KR, Chen MS, Ko LS. Electron microscopic studies of the scleral collagen fiber in excessively high myopia[J]. J Formos Med Assoc,1986,85:1032-1038.
    [148]Bell GR. The Coleman theory of accommodation and its relevance to myopia[J]. Am J Opt Assoc,1980.51:582-588.
    [149]Reeder AP, McBrien NA. Biochemical changes in the sclera of tree shrews with high degrees of experimental myopia[J]. Ophthal Physiol Opt,1993,13:105.
    [150]Christensen AM, Wallman J. Evidence that increasedscleral growth underlies visual deprivation myopia in chicks[J]. Invest Ophthalmol Vis Sri,1991,32: 2143-2150
    [151]Norton TT. Experimental myopia in tree shrews. In:Bock G, Widdows K, eds. Myopia and the Control ofEye Growth. Ciba Foundation Symposium; Chichester John Wiley & Sons,1990.155:178-199.
    [152]Schaeffel F, Glasser A, Howland HC. Accommodation,refractive error, and eye growth in chickens[J]. VisionRes.1988.28:639-657.
    [153]Siegwart JT, Norton TT. Refractive and ocular changes in tree shrews raised with plus or minuslenses. ARVO Abstracts. Invest Ophthalmol Vis Sri.1993,34:1208.
    [154]Curtin BJ, Teng CC. Scleral changes in pathologic myopia[J]. Trans Am Acad Ophthalmol Otolaryngol,1958,62:777-788。 discussion788-790.
    [155]Rada JA,Achen VR,Penugonda S.et al.Proteoglycan compositionin the human sclera during growth and aging[J].Invest Ophthalmol Vis Sci,2000,41:1639-1648.
    [156]Siegwart JT Jr,Noon TT.Regulation of the mechanical properties of tree shrew sclera by th e visual environment[J].Vision Res.1999.39:387-407.
    [157]Mcbrien NA,Cornel LM.Gentle A. Structural and ultrastructuralchanges to the sclera in a manlmalian model of high myopia[J].InvestOphthalmol Vis Sci.2001,42: 2179-2187.
    [158]Jeremy A. Guggenheim and Neville A. McBri. Form-Deprivation Myopia Induces Activation of Scleral Matrix Metalloproteinase-2 in Tree Shrew[J]. Investigative Ophthalmology & Visual Science,1996,37(7):1380-1395.
    [1]Wong TY, Foster PJ, Hee J, et al. Prevalence and risk factors for refractive errors in adult Chinese in Singapore.Invest Ophthalmol Vis Sci,2000; 41:2486-2494.
    [2]Xu L, Wang Y, Li Y, et al. Causes of blindness and visual impairment in urban and rural areas in beijing. Ophthalmology,2006; 113(7):1134-41.
    [3]Liang YB, Friedman DS, Wong TY, et al. Prevalence and causes of low vision and blindness in a rural Chinese adult population:the Handan Eye Study. Ophthalmology,2008:115:1965-72.
    [4]Nangia V, Jonas JB, Sinha A, et al. Refractive error in central India:the Central India Eye and Medical Study. Ophthalmology,2010,117(4):693-699.
    [5]Huang TL, Hsu SY, Tsai RK, et al. Etiology of ocular diseases in elderly Amis aborigines in Eastern Taiwan (The Amis Eye Study). Jpn J Ophthalmol,2010, 54(4):266-271.
    [6]Hayashi K.Ohno-Matsui K.Shimada N.et al.Long-term pattern of progression of myopic maculopathy:a natural history study. Ophthalmology,2010. Forthcoming.
    [7]Chen H, Wen F, Li H, et al. The types and severity of high myopic maculopathy in Chinese patients. Ophthalmic Physiol Opt,2011. doi: 10.1111/j.1475-1313.2011.00861.x.
    [8]Saw SM, Carkeet A, Chia KS. et al. Component dependent risk factors for ocular parameters in Singapore Chinese children. Ophthalmology,2002,109(11):2065-2071.
    [9]Liang CL, Yen E, Su JY, et al. Impact of family history of high myopia on level and onset of myopia. Investigative ophthalmology & visual science.2004, 45(10):3446-3452.
    [10]Saka N, Ohno-Matsui K. Shimada N, et al. Long-term changes in axial length in adult eyes with pathologic myopia. Am J Ophthalmol,2010,150(4):562-568 e561.
    [11]Saw SM, Chua WH, Gazzard G, et al. Eye growth changes in myopic children in Singapore. The British journal of ophthalmology,2005,89(11):1489-1494
    [12]Tekiele BC, Semes L.The relationship among axial length, corneal curvature, and ocular fundus changes at the posterior pole and in the peripheral retina. Optometry,2002.73(4):231-236.
    [13]Kobayashi K, Ohno-Matsui K. Kojima A, Shimada N, Yasuzumi K, Yoshida T. Futagami S, Tokoro T. Mochizuki M:Fundus characteristics of high myopia in children. Jpn J Ophthalmol 2005,49(4):306-311.
    [14]Neville A,McBrien, Alex Gentle. Role of the sclera in the development and pathological complications of myopia. Progress in Retinal and Eye Research.2003,22 (2003)307-338.
    [15]Avila MP, Weiter JJ, Jalkh AE, et al. Natural history of choroidal neovascularization in degenerative myopia. Ophthalmology,1984;91:1573-81.
    [16]Steidl SM, Pruett RC. Macular complications associated with posterior staphyloma. Am J Ophthalmol,1997; 123:181-187.
    [17]P Mehta, S Dinakaran, D Squirrell, et al. Retinal pigment epithelial changes and choroidal neovascularisation at the edge of posterior staphylomas; a case series and review of the literature. Eye(Lond),2006; 20:150-153
    [18]Curtin BJ. The posterior staphyloma of pathologic myopia. Trans Am Ophthal Soc,1977;75:67-86.
    [19]Hsiang HW, Ohno-Matsui K, Shimada N, et al. Clinical characteristics of posterior staphyloma in eyes with pathologic myopia. Am J Ophthalmol,2008:146:102-10.
    [20]Ohno-Matsui K, Shimada N, Yasuzumi K, et al. Long-term development of significant visual field defects in highly myopic eyes. Am J Ophthalmol,2011. 152(2):256-265 e251.
    [21]Deng ZH, Tan J. Liu SZ, et al. The correlation between the regulation of recombinant human IGF-2 on eye growth and form-deprivation in guinea pig. Graefes Arch Clin Exp Ophthalmol,2010,248(4):519-525.
    [22]Quaranta M.Arnold J,Coscas G, et al.Indocyanine green angiographic features of pathologic myopia. Am J Ophthalmol,1996;122:663-671.
    [23]Ohno-Matsui K, Morishima N, Tto M, et al. Indocyanine green angiographic findings of lacquer cracks in pathologic myopia. Jpn J Ophthalmol.1998:42:293-299.
    [24]Ruth A S.Daniel C.Ethan P.et al.Indocyanine green angiography in high myopia. Ophthalmic Surg Lasers Imaging,2004:35:139-145.
    [25]Ohno-Matsui K, Yoshida T. Futagmi S. et al. Patchy atrophy and lacquer cracks predispose to the development of choroidal neovascularisation in pathological myopia. Br J Ophthalmol,2003; 87:570-573.
    [26]Kim YM. Yoon JU, Koh HJ. The analysis of lacquer crack in the assessment of myopic choroidal neovascularization. Eye (Lond),2011,25(7):937-946.
    [27]Ikuno Y, Jo Y, Hamasaki T, et al. Ocular risk factors for choroidal neovascularization in pathologic myopia. Invest Ophthalmol Vis Sci,2010. 51(7):3721-3725.
    [28]文峰,吴德正,姜利斌等.单纯型高度近视黄斑出血的眼底特征分析。中国实用眼科杂志,2002.20(2):111-113.
    [29]李海涛,文峰,吴德正等。漆样裂纹性单纯型高度近视黄斑出血的眼底特征及视力预后。Chin Ophthal Res,2003,21(6):622-624.
    [30]Muka M, Kyoko OM, Noriaki S. Correlation between visual prognosis and fundus autofluorescence and optical coherence tomographic findings.Retina,2011, 31:74-80.
    [31]Morito Takano, Shoji Kishi. Foveal Retinoschisis and Retinal Detachment in Severely Myopic Eyes With Posterior Staphyloma. Am J Ophthalmol,1999;128:472-476.
    [32]Ichibe M, Yoshizawa T, Murakami K, et al. Surgical management of retinal detachment associated with myopic macular hole:anatomic and functional status of the macula. Am J Ophthalmol,2003,136:277-84.
    [33]Hee MR, Puliafito CA, Wong C.et al. Optical coherence tomography of macular holes. Ophthalmology,1995,102:748-756.
    [34]Puliafito CA,Hee MR,Lin CP, et al.Imaging of macular diseases with optical coherence tomography. Ophthalmology,1995,102:217-29.
    [35]Gaucher D, Haouchine B, Tadayoni R, et al. Long-term follow-up of high myopic foveoschisis:natural course and surgical outcome. Am J Ophthalmol,2007,143:455-462.
    [36]Shimada N, Ohno-Matsui K, Baba T, et al. Natural course of macular retinoschisis in highly myopic eyes without macular hole or retinal detachment. Am J Ophthalmol.2006,142:497-500.
    [37]Benhamou N, Massin P, Haouchine B, et al. Macular retinoschisis in highly myopic eyes. Am J Ophthalmol,2002.133:794-800.
    [38]Baba T, Ohno-Matsui K, Futagami S, et al.Prevalence and characteristics of foveal retinal detachment without macular hole in high myopia. Am J Ophthalmol,2003,135:338-342.
    [39]Sun CB, Liu Z, Xue AQ, et al. Natural evolution from macular retinoschisis to full-thickness macular hole in highly myopic eyes. Eye (Lond),2010,24(12):1787-1791.
    [40]Tanaka Y, Shimada N, Moriyama M, et al. Natural history of lamellar macular holes in highly myopic eyes. Am J Ophthalmol,2011,152(1):96-99.
    [41]Mark W. Johnson. Posterior Vitreous Detachment:Evolution and Complications of Its Early Stages. Am J Ophthalmol,2010,149:371-382.
    [42]Androudi S, Stangos A, Brazitikos PD.Lamellar macular holes:tomographic features and surgical outcome. Am J Ophthalmol,2009,148(3):420-426.
    [43]Witkin AJ, Ko TH, Fujimoto JG, et al. Redefining lamellar holes and the vitreomacular interface:an ultrahigh-resolution optical coherence tomography study. Ophthalmology,2006,113(3):388-397.
    [44]Hajime Bando,, Yasushi Ikuno,, Jun-Sub Choi.et al. Ultrastructure of Internal Limiting Membrane in Myopic Foveoschisis. Am J Ophthalmol,2005.391:197-199.
    [45]Ikuno Y, Gomi F, Tano Y. Potent retinal arteriolar traction as a possible cause of myopic foveoschisis. Am J Ophthalmol,2005,139:462-467.
    [46]Kishi S, Hagimura N, Shimizu K. The role of the premacular liquefied pocket and premacular vitreous cortex in idiopathic macular hole development. Am J Ophthalmol,1996,122:622-628.
    [47]Theodossiadis PG, Grigoropoulos VG, Emfietzoglou I, et al. Evolution of lamellar macular hole studied by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol,2009,247:13-20.
    [48]Benhamou N,Massin P.Haouchine B.et al.Macular retinoschisis in highly myopic eyes.Am J Ophthalmol,2002,133(6):794-800.
    [49]Nishimura A, Kimura M, Saito Y, et al. Efficacy of primary silicone oil tamponade for the treatment of retinal detachment caused by macular hole in high myopia. Am J Ophthalmol,2011,151(1):148-155.
    [50]Mikio I, Toyohisa Y, Kenji M,et al. Surgical Management of Retinal Detachment Associated With Myopic Macular Hole:Anatomic and Functional Status of the Macula. Am J Ophthalmol,2003,136:77-284.
    [51]Ikuno Y,Sayanagi K.Oshima T,et al.Optical coherence tomographic findings of macular holes and retinal detachment after vitrectomy in highly myopic eyes. Am J Ophthalmol,2003,136(3):477-481.
    [52]Lam RF.Lai WW,Cheung BT,et al.Pars plana vitrectomy and perfluoropropane (C3F8) tamponade for retinal detachment due to myopic macular hole:a prognostic factor analysis.Am J Ophthalmol,2006,142(6):938-944.
    [53]Nakanishi H, Kuriyama S.Saito Let al.Prognostic factor analysis in pars plana vitrectomy for retinal detachment attributable to macular hole in high myopia:a multicenter study. Am J Ophthalmol,2008,146(2):198-204.
    [54]Kobayashi H, Kishi S.Vitreous surgery for highly myopic eyes with foveal detachment and retinoschisis. Ophthalmology,2003,110(9):1702-1707.
    [55]刘杏.努力提高光相干断层扫描在观察特发性黄斑裂孔病程进展中的应用.中华眼底病杂志,2005,21:67-68.
    [56]Ikuno Y, Sayanagi K, Ohji M, et al. Vitrectomy and internal limiting membrane peeling for myopic foveoschisis. Am J Ophthalmol,2004,137:719-724.
    [57]Sayanagi K, Ikuno Y, Gomi F, et al. Retinal vascular microfolds in highly myopic eyes. Am J Ophthalmol,2005,139:658-663.
    [58]Chihara E, Chihara K. Apparent cleavage of the retinal nerve fiber layer in asymptomatic eyes with high myopia. Graefes Arch Clin Exp Ophthalmol.1992. 230:416-420.
    [59]Komeima K, Kikuchi M, Ito Y, et al. Paravascular inner retinal cleavage in a highly myopic eye. Arch Ophthalmol,2005:123:1449-1450.
    [60]Shimada N, Ohno-Matsui K, Baba T, et al. Natural course of macular retinoschisis in highly myopic eyes without macular hole or retinal detachment. Am J Ophthalmol,2006.142:497-500.
    [61]Takano M, Kishi S. Foveal retinoschisis and retinal detachment in severely myopic eyes with posterior staphyloma. Am J Ophthalmol.1999.128:472-476.
    [62]Sayanagi K, Ikuno Y. Soga K, et al. Photoreceptor inner and outer segment defects in myopic foveoschisis. Am J Ophthalmol,2008,145:902-908.
    [63]Gaucher D, Haouchine B, Tadayoni R, et al. Long-term follow-up of high myopic foveoschisis:natural course and surgical outcome.Am J Ophthalmol.2007,143:455-462.
    [64]Bando H. Ikuno Y, Tano Y, et al. Ultrastructure of internal limiting membrane in myopic foveoschisis. Am J Ophthalmol,2005,139:197-199.
    [65]Sakaguchi H, Ikuno Y, Choi JS, et al. Multiple components of epiretinal tissues detected by triamcinolone and indocyanine green in macular hole and retinal detachment as a result of high myopia. Am J Ophthalmol,2004,138:1079-1081.
    [66]Spaide RF, Fisher Y. Removal of adherent cortical vitreous plaques without removing the internal limiting membrane in the repair of macular detachments in highly myopic eyes. Retina,2005.25:290-295.
    [67]Gaucher D, Erginay A, Lecleire-Collet A, et al. Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol,2008,145:909-914.
    [68]Freund KB, Ciardella AP, Yannuzzi LA, et al. Peripapillary detachment in pathologic myopia. Arch Ophthalmol,2003,121:197-204.
    [69]Toranzo J, Cohen SY, Erginay A, et al. Peripapillary intrachoroidal cavitation in myopia. Am J Ophthalmol,2005,140:731-732.
    [70]Karlson P著,张增明译.病理生化学.北京:科学出版社,1984,94-96.
    [71]Sandberg-Lall M, Hagg P O, Wahlstrom I, et al. Type ⅩⅢ collagen is widely expressed in the adult and developing human eye and accentuated in the ciliary muscle, the optic nerve and the neural retina. Exp. Eye Res,2000,70,775-787.
    [72]Wessel H, Anderson S. Fite D. et al. Type Ⅻ collagen contributes to diversities in human corneal and limbal extracellular matrices. Invest Ophthalmol Vis Sci,1997,38,2408-2422.
    [73]Spitznas M. The fine structure of human scleral collagen. Am J Ophthalmol, 1971,1,68.
    [74]Liu KR, Chen MS,Ko LS. Electron microscopic studies of the scleral collagen fiber in excessively high myopia.J. Formos. Med.Assoc,1986.85,1032-1038.
    [75]王丽娜,张丰菊,李宏等;正常中国人非高度近视眼前极和后极部巩膜内层组织中Ⅰ型胶原蛋白的表达水平.眼视光杂志,2008,10(4):285-287.
    [76]Gentle A, Liu Y, Martin JE, et al. Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia. J Biol Chem,2003,278(19):16587-94。
    [77]Siegwart Jr JT, Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci,2005,46:3484-92.
    [78]Neville A. McBrien, Lynn M. Cornell, and Alex Gentle.Structural and Ultrastructural Changes to the Sclera in a Mammalian Model of High Myopia.Investigative Ophthalmology & Visual Science,2001,42,(10):2179-2187.
    [79]McBrien NA, Gentle A, Cottriall C. Optical correlation of induced axial myopia in the tree shrew:implications for emmetropization.Optom Vis Sci,1999.76, 419-427.
    [80]Rada JA, Nickla DL, Troilo D. Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes.Invest Ophthalmol Vis Sci,2000,41, 2050-2058.
    [81]Avetisov ES, Savitskaya NF, Vinetskaya MI, et al. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups. Metab.Pediatr Syst Ophthalmol,1984,7,183-188.
    [82]Norton TT, Rada JA. Reduced extracellular-matrix in mammalian sclera with induced myopia.Vision Res.1995,35,1271-1281.
    [83]张丰菊,黄立,李宏等,LAMA1基因与单纯性高度近视的相关性研究.眼视光学杂志,2008,10(1):6-9.
    [84]Maumenee IH.The eye in the Marfan syndrome. Trans Am Ophthalmol Soc, 1981,79,684-733.
    [85]Robinson PN, Boons P.The molecular pathogenesis of the Marfan syndrome. Cell Mol. Life Sci,2001,58,1698-1707.
    [86]Siegwart JT Jr, Norton TT. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vision Res,1999,39:387-407.
    [87]Curtin BJ. Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc.1969.67:417-61.
    [88]Phillips JR, McBrien NA. Form deprivation myopia:elastic properties of sclera. Ophthalmic Physiol Opt,1995.15:357-362.
    [89]Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci,2000.41:2028-2034.
    [90]Avetisov ES, Savitskaya NF, Vinetskaya MI, et al. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups. Metab Pediatr Syst Ophthalmol,1983,7:183-188.
    [91]Summers Rada JA, Shelton S, Norton TT. The sclera and myopia. Experimental Eye Research,2006.82:185-200
    [92]Howlett MHC, McFadden SA.Form-deprivation myopia in the guinea pig. Vision Research,2006,46:267-283.
    [93]Gerinec A, Slezakova G,Posterior scleroplasty in children with severe myopia.Bratisl Lek Listy,2001,102(2):73-78.
    [94]Curtin BJ.Physiopathologic aspects of scleral stress-strain.Trans Am Ophthalmol Soc,1969,67:417-461.
    [95]St Helen R, McEwen WK.Rheology of the human sclera anelastic behavior,.Am J Ophthalmol,1961,52:539-548.
    [96]靳涛,王超英.不同应力水平对幼兔巩膜生物力学特性的影响.眼科研究,2007,25(9):641-643.
    [97]Avetisov ES, Savitskaya NF, Vinetskaya MI, et al. A study of biochemical and biomechanical qualities of normal and myopic eye sclera in humans of different age groups.Metab Pediatr Syst Ophthalmol,1983,7(4):183-188.
    [98]李富德,周炳华,马洪顺.巩膜生物力学性能的实验研究.试验技术与试验机,1991,31(5):40-41.
    [99]王超英,陈维毅,郝岚等.高度近视眼巩膜生物力学特性初步研究.眼科研究,2003.21(2):113-115.
    [100]Funata M,Tokoro T.Scleral change in experimentally myopic monkeys.Graefes Arch Clin Exp Ophthalmol,1990,228:174-179.
    [101]Kang RN,Norton TT.Alteration of scleral morphology in tree shrews with induced myopia.Invest Ophthalmol Vis Sci.1993.34:1209.
    [102]McBrien NA,Norton TT.Prevention of collagen crosslinking increases form-deprivation myopia in tree shrew.Exp Eye Res,1994,59:475-486.
    [103]Wollensak G,Spoerl E.Collagen crosslinking of human and porcine sclera.J Cataract Refract Surg,2004,30:689-695.
    [104]Wollensak G, Iomdina E.Crosslinking of scleral collagen in the rabbit using glyceraldehyde.J Cataract Refract Surg,2008,34;651-656.
    [105]Avila MY, Navia JL.Effect of genipin collagen crosslinking on porcine corneas.J Cataract Refract Surg,2010,36:659-664
    [106]Shiraki M, Kuroda T, Tanaka S, et al. Nonenzymatic collagen cross-links Induced by glycoxidation (pentosidine) predicts vertebral fractures.J Bone Miner Metab,2008,26:93-100.
    [107]余吉峰,黄一飞.圆锥角膜治疗进展.国际眼科杂志,2010,10(1):90-92.
    [108]Wollensak G, Iomdina E.Dittert DD. et al. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol Scand,2005,83:477-482.
    [109]Wollensak G, Iomdina E.Long-term biomechanical properties after collagen crosslinking of scleral using glyceraldehyde. Acta Ophthalmol,2008,86:887-893.
    [110]陈维毅,王超英,张全有等.实验性近视眼巩膜成纤维细胞黏弹性研究.医用生物力学,2007,22(1):26-29.
    [111]Gentle A, McBrien NA.Modulation of scleral DNA synthesis in development of and recovery from induced axial myopia in the tree shrew. Exp Eye Res,1999.68:155-163.
    [112]Cui W, Bryant MR, Sweet PM, McDonnell PJ.Changes in gene expression in response to mechanicalstrain in human scleral fibroblasts.Experimental Eye Research.2004,78:275-284.
    [113]Ingber DE,Cellular tensegrity I.Cell structure and hierarchical systems biology.Cell Sci,2003,1157-1173.
    [114]王晓君,李涛,陈维毅.巩膜胶原含量与其生物力学性能的关系研究.太原理工大学学报,2007,38(4):371-373.
    [115]龙永华,余腾,高小明.巩膜加固术治疗进行性近视的临床研究.现代实用医学,2011,23(1):102-103.
    [116]游昌涛,张效房,张金嵩.巩膜加固术对变性近视并发症的治疗效果.眼外伤职业眼病杂志,2010,32(11):813-816.
    [117]马代金,刘双珍.后巩膜加固术作用机制的实验研究.中国现代医学杂志,2004,14(10):96-97,101.
    [118]肖林,赵广喜,刘晶.不同材料后巩膜加固术的研究.眼科研究,2000,18(2),132-135.
    [119]张凤兰,范慧君,王卿等LASEK治疗中高度近视疗效分析.国际眼科杂志,2010,10(2):285-287.
    [120]李婧,姜黎,沈政伟.角膜交联术新进展与临床运用.国际眼科杂志,2010,10(9):1713-1715.
    [121]Wollensak G,Iomdina E, Dittert DD, et al. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA.Acta Ophthalmol Scand.2005,83:477-482.
    [122]Hans peter iseli.Eberhard Spoerl.Perter Wiedemann, et al. Efficacy and Safety of Blue-light Scleral Cross-linking.J Refract Surg,2008.24:S752-S755.
    [123]Gregor Wollensak.Thermomechanical stability of sclera after glyceraldehyde crosslinking.Graefes Arch Clin Exp Ophthalmol,2011,249(3):399-406.
    [124]ShihYF.Chew CH,Chou AC.Effects of differert concentrations of atropine on controlling myopia in mypic children.J Ocul Pharmacol Ther,1999,15:85-90.
    [125]Shih YF,Hsiao CK,Lin LK.Effects of atropine and muotifocal glasses in controlling myopic progression.Myopia 2000:Proceedins of the Ⅷ International Conference on Myopia.Boston:Confererce on Myopia;2000:352-356.
    [126]吉红云 李春霞 汪芳润.哌仑西平抑制实验性近视眼的研究进展.眼科新进展,2005,25(5):461-465.
    [127]Tan DT,Lam D.Chua WH,et al.Ptrenzeptne ophthalmtc gel(PIR):safety and efficacy for pediatric myopia in one-yea r study in Asial.Invest Ophthalmol Vts Set.2003,44:801.
    [128]Siatkowski RM,Co tter SA,M iller JM. Ptrenzeptne 2% ophthalmic gel retards myopic progresion in 8-12 year old childten over two years.Invest Ophthalmol Vts Set.2004,45:2733.
    [129]程娟,王润生.葛根素及噻吗心安滴眼液对实验性近视眼的作用.中国中医眼科杂志,2008,18(1):23-25.
    [130]陈悦.神经生长因子及其受体在形觉剥夺性近视中作用的实验研究.2007年第06期医药卫生科技辑(博士论文)
    [131]Wollensak G,Iomdina E.Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J Cataract Refract Surg.200834:651-656.
    [132]Wollensak G, Iomdina E, Dittert DD, et al. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA, Acta Ophthalmol Scand,2005,83:477-482.
    [133]Kolli S,Aslanides IM.Expert Opin Drug Saf.2010,9 (6):949-957.
    [134]Wollensak G,Iomdina E.Long-term biomechanical properties after collagen Crosslinking of scleral using glyceraldehydes.Acta Ophthalmol,2008,86:887-893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700