用户名: 密码: 验证码:
褐藻寡糖促进植物生长与抗逆效应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从植物生长与抵抗逆境的特性出发,利用外源性寡糖对其进行作用,通过检测植物生长指标和抗逆指标变化,来研究寡糖在植物促生长与诱导抗逆过程中的作用机制。一方面对褐藻寡糖在植物促生长与抗逆领域的作用机理进行表征,另一方面,也希望能够通过此研究获得具有优良生物功能活性的寡糖制剂,为农业生产抗灾减灾做出贡献。
     本论文首先选择三种来源(褐藻胶、果胶、壳聚糖)的不同分子量大小的九种寡糖片段进行研究。利用植物的促生长和抗逆指标进行筛选,获得了一种既具有明显的促生长作用,又具有抗逆作用的寡糖片段,为褐藻寡糖HZ3,经过质谱分析,其组分是以二、三糖为主的含有少量四糖和五糖的寡糖混合物。
     本研究第二部分是利用植物的植株、愈伤组织和悬浮细胞为材料,建立起寡糖促生长的综合性的验证方法。对植株分别选择了双子叶植物豌豆和单子叶植物玉米,利用寡糖浸种,分别考察在种子萌发与幼苗生长初期其体内蛋白酶、淀粉酶和激素含量的变化,结合种子与植株的生长指标,探讨寡糖的促生长作用机理。研究发现,寡糖对豌豆和玉米的促生长作用不同。对双子叶植物豌豆,以0.15%褐藻寡糖效果最好,第7d根和芽干重的增长率分别为79.2%和53.5%,是通过促进激素含量、蛋白酶和脂肪酶的活力来促进种子萌发和幼苗的生长;对单子叶植物玉米,以0.20%褐藻寡糖效果最好,第7d根和芽干重的增长率分别为140%和143.8%,是通过促进激素含量、脂肪酶、淀粉酶和蛋白酶共同作用来促进种子萌发和幼苗生长。通过对愈伤组织的诱导和继代培养的研究,发现,此褐藻寡糖具有激素的作用,在极低的浓度下能够诱导愈伤组织的产生,并能够在有2,4-D的培养基中促进愈伤组织的诱导和生长。对悬浮细胞的研究发现,0.03%寡糖能够明显增强细胞内的激素含量,从而对细胞的生长进行调控。
     本论文第三部分以植物在各种逆境下的生理指标的变化为检测目标,通过寡糖刺激作用于植物,探讨褐藻寡糖对植物抗逆的影响与作用机制。在低温逆境时,寡糖处理能迅速增强其抗逆酶类,对引起细胞损伤的物质进行清除,从而提高植物的抗逆能力。对植物的干旱逆境,通过寡糖作用,能够使其体内的抗旱指标明显增强,如ABA的含量升高显著,对干旱下植株的生长状态进行调控,降低干旱胁迫对植株的损伤,从而达到诱导抗旱的目的。对植物的抗病性能的提高,通过检测烟草花叶病毒和白粉病对植株的致病作用。对烟草花叶病毒,通过将寡糖作用于病毒与植株的侵染过程、体内复制阶段进行诱导抗病毒研究,发现褐藻寡糖可以明显提高植株的抗病毒能力,同时还能直接作用于病毒,在体外对其进行钝化,降低传染几率,达到抗病毒的效果。对抗白粉病研究,通过体外和体内两条途径对白粉病菌进行抗病能力的检测,发现褐藻寡糖不能抑制白粉病菌的生长,而是通过提高植株的体内抗逆酶类,达到抗病的效果,其对烟草白粉病的最佳防效为4d,比三唑酮的最佳防效减少了2d,缩短了白粉病的治疗时间,降低了烟草的损伤。对植物果实的抗病保鲜的研究,发现褐藻寡糖能够改变草莓的呼吸过程,减少水分散失,降低外界对其造成的损伤。0.20%处理组储藏9d后仍能保留一定的鲜度品质。因此褐藻寡糖对植物的抗逆机制是通过诱导作用实现的。诱导植物体内产生各种抗性物质来缓解逆境因素对植物造成的损伤,从而达到抗逆的目的。
     为了研究褐藻寡糖与细胞的结合机制与作用规律,利用激光共聚焦技术对标记的寡糖与烟草细胞进行结合,观察其动态结合过程,研究发现,褐藻寡糖能够与植物的细胞壁进行结合,又可以穿过细胞壁进入细胞内部与细胞膜进行结合。通过将蛋白酶以及蛋白变性剂SDS对膜蛋白进行处理后研究发现能够对寡糖的结合产生影响。表明褐藻寡糖的结合是与膜上的蛋白有关。通过封闭细胞膜上的钙离子通道,对其进行阻断后结合寡糖,研究发现,褐藻寡糖与细胞膜的结合与钙离子通道无关。
A fragment of alginate-derived oligosaccharide (ADO) HZ3 was screened out from 9 oligosaccharides of different origins by comparing the parameters of growth promotion and stress resistance. This active oligosaccharide fragment was identified by ESI-MS method, with the polymerization degree between 2 and 5. The most content of the oligosaccharides mixture were trisaccharide and disaccharide.
     The growth promotion effects were determined from 3 aspects: plant (including the seed), callus and suspension cells. By soaking the seed with different concentration of HZ3 and then germination, the growth promotion of plants was measured by detecting the shoot and root length, dry weight, protease, lipase, amylases and growth hormones in germination period of pea and maize. The results showed that 0.15% HZ3 showed the best growth promotion effect of pea by enhancing the activity of protease and lipase and the growth hormones of IAA and GA. The 0.20% HZ3 could enhance the growth of maize by promoting the activity of amylase, lipase, protease and hormones of IAA and GA. By measuring the callus inducing rate, the HZ3 exhibited hormone effect and could induce tobacco callus formation. In the procedure of subculture of tobacco callus, the 0.03 % HZ3 showed the best growth promotion effect. In suspension cells subculture, the presence of HZ3 could promote the tobacco cells growth by increasing the content of IAA and GA in the suspension cells.
     The inducing resistance of the plants by HZ3 towards different adversities was investigated by detecting the damage parameters (MDA and electrolyte leakage), activities of defense enzymes, osmotic substances (including proline, soluble sugar) and some other parameters. The inducing low temperature resistance was testified by spraying the HZ3 solution on the surface of tobacco leaves and stored at 4℃. The presence of HZ3 could induce the changes of various parameters. The defense enzymes activities were enhanced in a short time which could reduce the content of MDA and electrolyte leakage of tobacco leaves. The most effective HZ3 concentration was determined as 0.20%. However, the presence of HZ3 can neither promote the activity of defense enzymes nor the damage of the leaves, suggesting that this concentration of HZ3 exhibited the activity of protecting tobacco leaves from chilling damage. The effects of HZ3 on tomato seedlings under drought stress were detected with the parameters of leaves damage, defense enzymes, stress inducing ABA, and the osmotic substance. The results indicated that 0.20% HZ3 showed the best drought resistance inducing effect which could reduce plant damage by increasing the defense enzymes and osmotic substances. With the increasing of ABA, the defense reactions of the tomato plant were increased. The disease resistance was measured in two aspects: anti-TMV and anti-powdery mildew. 0.20% HZ3 exhibited the best anti-TMV and anti-powdery mildew and could reduce the cure time of powdery mildew 2 days ahead of triazolone. The HZ3 also exhibited fresh keeping ability of strawberry.
     In the final area, the combination mechanism of HZ3 with tobacco cells was investigated by Confocal Laser Seanning Mieroseopy. The results showed that the HZ3 could combine with cell wall and membrance and the combination had the relationship with protein in membrance and no effect with Ca2+-CaM.
     This study showed that this alginate derived oligosaccharide HZ3 has potential for applications in plant growth promotion and adversities stress resistance in modern agricultures.
引文
1.陈娟.干旱胁迫和外源性ABA对生姜生长和根际效应的影响研究[D].四川大学. 2007.
    2.邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能[J].植物学通报. 2001, 18(5) : 521-530.
    3.董合忠,李维江.植物诱导抗病性及其利用[J].莱阳农学院学报. 2001,18(4):268-273.
    4.费云标,高素琴,王维香等.植物冻害与抗冻研究对策探讨[J].科学新闻. 2001,13: 42-43.
    5.冯彩平,薛松,张殿忠.水分和高温胁迫对谷子叶片组分I蛋白的影响[J].干旱区农业研究.1995.13(2):88-92.
    6.郭成瑾.壳寡糖诱导烟草抗烟草花叶病毒研究[D].西北农林科技大学. 2006.
    7.郭丽红,王定康,杨晓虹,陈善娜.外源乙烯利对干旱胁迫过程中玉米幼苗某些抗逆生理指标的影响[J].云南大学学报.2004, 26 (4): 352-356.
    8.郭卫华,赵小明,杜昱光.壳寡糖对黄瓜种子萌发和幼苗生长及光合特性的影响[J].中国农学通报. 2009, 25 (3):164-169.
    9.郝林华,陈靠山,李光友.牛蒡寡糖促进黄瓜生长及抗低温胁迫的生理效应[J].上海交通大学学报. 2006, 24(1): 6-12.
    10.何军贤,傅家瑞.种子Lea蛋白的研究进展[J].植物生理学通讯. 1996,32(4):241-246.
    11.胡晓珂.褐藻胶裂合酶工程化研究与应用[D].中国海洋大学.2004.
    12.扈学文,许秋瑾,金相灿等.不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究[J].中国农学通报. 2007, 23 (02) :221-225.
    13.黄建安.茶树保护酶类与抗寒性的关系[J].茶叶科学. 1990, 10(1):35-40.
    14.姜东,于振文,李永庚,等.冬小麦叶茎粒可溶性糖含量变化及其与籽粒淀粉积累的关系[J].麦类作物学报. 2001, 21(3): 38-41.
    15.蒋冬花,孔世海,郭泽建.载体的构建.激发子隐地蛋白(cryptogein)基因的克隆及其植物表达[J].浙江大学学报. 2002, 28 (6):649-652.
    16.蒋冬花,郭泽建,郑重.隐地蛋白(cryptogein)基因定点突变及其广谱抗病烟草转化植株的获得[J].植物生理与分子生物学学报.2002, 28(5): 399-406.
    17.李冠,欧阳光察.植物诱导抗病性[J].植物生理学通讯.1990,(6):1-5.
    18.李璟琦.寡糖素对黄瓜幼苗抗低温胁迫的影响[J].安徽农业科学. 2008, 36(11):4393-4394.
    19.梁慧敏,夏阳,王太明.植物抗寒冻、抗旱、耐盐基因工程研究进展[J].草业学报. 2003,12(3):1-7.
    20.梁元存,商明清,刘爱新等.病菌激发子诱导烟草抗赤星病的研究[J].山东农业大学学报.2000, 31(1):8-10.
    21.林葵,黄祥辉,王隆华,等.甜瓜子叶不定芽分化过程中PAL活性和木质素含量变化研究[J].华东师范大学学报.1996, 2: 92-97.
    22.潘汝谦,黄旭明,古希听.活性氧清除酶类在黄瓜感染霜霉病过程中的活性变化[J].植物病理学报. 1999, 29(3):287-288.
    23.邱德文.微生物蛋白农药研究进展[J].中国生物防治.2004,20 (2):91-94.
    24.曲东,邵丽丽,王保莉,周莉娜.干旱胁迫下硫对玉米叶绿素及MDA含量的影响[J].干旱地区农业研究. 2004,22(2): 91-94.
    25.孙大业等.细胞信号传导[M].农业出版社.1998. pp. 240-259.
    26.孙利军,吴少云,张亚莉,柳春燕,陈靠山.牛蒡寡糖对草决明幼苗生长的影响[J].安徽农学通报, 2007,13 (19): 38-39.
    27.孙利军,吴少云,张亚莉,柳春燕,陈靠山,秦国正.钕和牛蒡寡糖对秦艽种子萌发的影响[J].西北农业学报, 2008, 17 (2):266-269 .
    28.王国莉.非生物胁迫和ABA处理对水稻酸性可溶性蛋白含量的影响[J].河南农业科学. 2008, 4: 25-29.
    29.王松.褐藻寡糖的制备及诱导烟草抗性研究[D].中国海洋大学.2003.
    30.王学君,董亮,张玉凤,董晓霞,刘兆辉.壳寡糖、钕、微量元素对菠菜产量和品质的影响[J].山东农业科学. 2009, 1: 84-86.
    31.王以柔等.对水稻和黄瓜幼苗SOD,GR活性及GSH,ASA含量的影响[J].植物学报. 1995, 37(10):776-780.
    32.谢丙炎,朱国任,罗宽,李宗道.苎麻疫霉激发蛋白基因断裂现象初探[J].菌物系统. 1999,18 (2):151-158.
    33.薛应龙.苯丙氨酸解氨酶在植物抗病中的作用[M].农业生物化学,科学出版社. 1984,pp.34-50.
    34.于孝如,袁文焕等.条锈病菌侵染小麦不同时期过氧化物酶同工酶的变化[J].西北农业大学学报. 1993, 2(2):27-30.
    35.余奕珂,胡建恩,赵小明,陈娅斐,白雪芳,杜昱光.珠蛋白酶解液对植物诱抗活性的研究[J].陕西农业科学. 2006, 5: 16-18.
    36.赵小明.壳寡糖诱导植物抗病性及其诱抗机理的初步研究[D].中国科学院研究生院. 2006.
    37.张文清,隋雪燕,夏玮,张元兴,林彩玲.壳寡糖的制备及其对黄瓜的促生长作用[J].功能高分子学报. 2002, 15(02):199-202.
    38.张真庆.质谱分析外源性和内源性寡糖的方法学研究[D].中国海洋大学. 2006.
    39.张宗申,彭新湘,姜子德,李明启.草酸对黄瓜叶片中几种与抗病有关酶的系统诱导作用[J].华南农业大学学报. 1998, 19(1):16-20.
    40.周自云.低聚糖激发子诱导杨树细胞抗病机制的研究[D].西北农林科技大学. 2004.
    41.周人纲,樊志和,李晓芝.高温锻炼对小麦细胞膜热稳定性的影响[J].华北农学报.1993, 8(3):33-37.
    42.朱维琴,吴良欢,陶勤南.干旱逆境对不同品种水稻生长、渗透调节物质含量及保护酶活性的影响[J].科技通报.2006, 22(2):116-181.
    43.周卫,孙庆杰,张楚富等.不同耐盐性水稻幼苗根氨同化酶对盐胁迫的反应[J].植物学报. 2004, 46(8): 921-927.
    44. Adam A, Farkas T, Somlyai G, Hevesi M, and Király Z. Consequence of O2·? generation during a bacterially induced hypersensitive reaction in tobacco: deterioration of membrane lipids [J]. Physiol. Mol. Plant Pathol. 1989, 34(1):13-26.
    45. Albersheim P, Darvill AG. Oligosaccharins [J]. Scientific American. 1985, 253 (3):44-50.
    46. Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P. Host-Pathogen Interactions: IX. Quantitative Assays of Elicitor Activity and Characterization of the Elicitor Present in the Extracellular Medium of Cultures of Phytophthora megasperma var. sojae [J]. Plant Physiol. 1976, 57(5):751–759.
    47. Bandurska H, Stroinski A, Jan K. The effect of Jasmonate on the accumulation of ABA, proline and its influence on membrane injury under water deficient in two barley genotypes [J]. Acta Physiol. Plantarum. 2003, 25(3): 279-285.
    48. Barber MS, Bertram RoE and Ricle JR. Chitin oligosaccharides and elicit lignification wounded wheat leaves[J]. Physiol. Mol. Plant Pathol. 1989, 34:3-12.
    49. Barker CJ, Orlandi EW. Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 1995, 33:299.
    50. Bilisics L, Vojtaák J, Capek P, Kollarov K, Li D. Changes in glycosidase activities during galactoglucomannan oligosaccharide inhibition of auxin induced growth [J]. Phytochemistry. 2004, 65 (13): 1903-1909.
    51. Blein JP, Milat ML, Ricci P. Responses of cultured tobacco cells to cryptogein, a proteinaceous elicitor from Phytophthora [J]. Plant Physiol. 1991, 95:486-491.
    52. Burkhard J, Ulrich H. Photoproduction and detoxification of hydroxyl radicals in choloroplasts and leaves and relation to photoinactivation of photosystems l and 2 [J]. Plant Cell Physiol. 1996, 37:629-635.
    53. CAS Shanghai Institute of Plant Physiology.Modern Plant Physiology Test Guide [M]. Beijing:Science Press. 1999.
    54. Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid [J]. Science. 1993, 262(5141):1883-1886
    55. Cohen Y, Reuveni M, and Baider A. Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines [J]. Eur. J. Plant Pathol. 1999, 195:351-361
    56. Dixon RA, Dey PM, Lawton MA, Lamb CJ. Phytoalexin induction in French bean. Intercellular transmission of elicitation in cell suspension cultures and hypocotyl sections of Phaseolus vulgaris [J]. Plant Physiol. 1983, 71:251-256.
    57. Dixon RA, Harrison MJ. Early events in the activation of plant defense responses [J]. Annu. Rev. Phytopathol. 1994, 32:479.
    58. Doke N.Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components [J]. Physiol. Plant Pathol. 1983, 23:345-357.
    59. Doubravo NS, Dean RA, Kuc J. Induction of systemic acquired resistance to anthracnose caused by Colletotrichum lagenarium in cucumber by oxalate and extracts from spinach and rhubarb leaves [J]. Physiol. Mol. Plant Pathol. 1988, 33:69-79.
    60. Durel. Plant responses to cellular dehydration during environment stress [J].Plant Physiol. 1993, 103(10):91-93.
    61. Elizabeth D, Brian D, et al. Effect of treating soybean with 2,6-dichloroisonicotinia acid and benzothiadiazole on seed yields and the level of disease caused by Sclerotinia sclerotiorum in field and greenhouse studies [J]. Eur. J. Plant Pathol. 1998, 104:271-278
    62. Fridovich I. Free radical in biology [M].New York: Academic Press. 1976.
    63. Fry SC. The structure and functions of xyloglucan [J]. J. Exp. Bot. 1989.40(210): 1-11
    64. Gao XP, Wang XF, Lu YF, et al. Jasmonic acod is involved in the water-stress-induced betaine accumulation in pear leaves [J]. Plant Cell Envi- ron. 2004, 27: 497-507.
    65. Gross KC, Pharr DM, Locy RD. Growth of callus initiated from cucumber hypocotyls on galactose and galactose-containing oligosaccharides [J]. Plant Sci. Lett.1981, 20 (4):333-341.
    66. Hargreaves JA, Bailey JA. Phytoalexin production phypocotyls of Phaseolus vulgarisinresponse to constitutive metabolites released by damaged bean cells [J]. Physiol. Plant Pathol. 1978, 13:89-100.
    67. Hargreaves JA, Selby C. Phytoalexin formation in cell suspensions of Phaseolusvulgaris in response to an extract of bean hypocotyls [J]. Phytochemistry. 1978, 17:1099-1102.
    68. Hargreaves JA. Investigations into the mechanism of mercuric chloride stimulated phytoalexin accumulation in Phaseolus vulgaris and Pisum sativum [J]. Physiol. Plant Pathol.1979, 15:279-287.
    69. Hargreaves JA. Accumulation of phytoalixins in cotyledons of french bean (Phaseolus vulgaris L.) following treatment with triton (Toctylphenol polyethoxyethanol) surfactants [J]. NewPhytol. 1981, 87: 733-741.
    70. Hellebust, JA, Haug A. Photosynthesis, translocation, and alginic acid synthesis in Laminaria digitata and Laminaria hyperborean [J]. Canad. J. Bot. 1972a, 50: 169-176.
    71. Hellebust, JA, Haug A. In situ studies on alginic acid synthesis and other aspects of the metabolism of Laminaria digitata. Canad [J]. J. Bot. 1972b, 50: 177-184.
    72. Heino P, Sandman G, Lfing V, Nordin K, Palva ET. Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh [J]. Theor. Appl. Genet. 1990, 79:801-806.
    73. Hsiao TC. Physiological effects of plant in response to water stress [J]. Ann. Rev. Plant Physiol. 1973,24:519-570.
    74. Hwang BK, Sunwoo JY, Kim YJ, Kim BS. Accumulation of d-1,3-glucanase and chitinase isoforms, and salicylic acid in the DL-β-amino-n-butyric acid-induced resistance response of pepper stems to Phytophthora capsici [J]. Physiol Mol Plant Pathol.1997, 51:305-322.
    75. Ishii H, Tomita Y, Horio T, et al. Induced resistance of acibenzolar-S-methyl (CGA 245704) to cucumber and Japanese pear diseases [J]. Eur. J. Plant Pathol.1999, 105 (1):77-85.
    76. Ishikawa M, Nisizawa K. Some enzymatic properties of polymannuronic 5-epimerase in brown algae [J]. Proc. Int. Seaweed Symp. 1981a, 10: 419-424.
    77. Ishikawa M, Nisizawa K. Polymannuronic 5-epimerase activities in several brown algae and its location in frond [J]. Proc. Int. Seaweed Symp. 1981b, 47(7): 899-893.
    78. Iwasaki K, Matsubara Y. Purification of pectate oligosaccharides showing root-growth-promoting activity in lettuce using ultrafiltration and nanofiltrat [J]. J. Biosci.Bioeng. 2000a, 89 (5)495-497.
    79. Iwasaki K, Matsubara Y. Purification of alginate oligosaccharides with root growth- promoting activity toward lettuce [J]. Biosci. Biotech. Biochem. 2000b, 64(5): 1067.
    80. Jones AM. Surprising signals in plant cells. Science. 1994, 263(5144):183-184.
    81. Jesen BD, Latunde Dada AO, Hudson D, Lucas JA. Protection of Brassica seedings against downy mildew and damping-off by seed treatment with CGA 245704, an activator of systemic acquired resistance [J]. Pestic. Sci. Chichester, West Sussex: John Wiley and Sons Limited. 1998, 52(1):63-69.
    82. Kamoun S, Young M, Glascock CB, et al. Extracellular protein elicitors from phytophthora host-specificity and induction of resistance to bacterial and fungal phytopathogens [J]. Mol. Plant-Microb. Inter. 1993, 6:15-25.
    83. Kintake S. Photoinhibition of photosystemⅠ: Its physiological significance in the chilling sensitivity of plants [J]. Plant Cell Physiol. 1996, 37(3): 239-247.
    84. Kogel KH, Beckhove U, Dreschers J, et al. Acquired resistance in barley the resistance mechanism induced by 2,6-dichloroisonicotinic acid is a Phenocopy of a genetically based mechanism governing race-specifid powdery mildew resistance [J]. Plant Physiol. 1994, 106:1269-1277.
    85. Kuc J. Immunization for the control of plant disease In:Biological Control of Soil Brone Plant Pathogens.1990.pp.355-373.CHET, i., John Wiley and Sons, New York.
    86. Kuc J, In Beiley JA, Deverall NJ, Sydney et al. The dynamics of host defense [J]. Acad. Press, 1983,191.
    87. Li M, Li FX, Ma HC,et al. Ecophysiological response of Manglietia aromatica to short-term low temperature treatment[J]. Northern Horticulture. 2006, 1: 37-39.
    88. Liu YL. Water stress physiology of plants [M]. Beijing: Agriculture Publishing House.1992.
    89. Locy RD, Chang CC, Nielsen BL, Singh NK. Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants [J]. Plant Physiol. 1996, 110:321-328.
    90. Lyons JM, Raison JK. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury [J]. Plant Physiol.1970, 45:386
    91. Lyon GD, Albersheim P. Host-pathogen interactions elicitor of Phytoalexin accumulation from frozen soybean stems. XXI. Extraction of a heat-labile [J]. Plant Physiol. 1982, 70:406-409
    92. Marie-Noelle B, Sophie C, Sherman VT, Jean-Pierre P. Acibenzolar- S-methyl induces the accumulation of defense -related enzymes in apple and protects from fire blight [J]. Eur. J. Plant Pathol. 2000, 106:529-536.
    93. Marc D, Anderson et al. Differential gene expression in chilling- acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance [J]. Plant Physiol. 1994, 105:331-339.
    94. Mehdy MC. Active oxygen species in plant defense against pathogens [J]. Plant Physiol.1994, 105:467
    95. Michael R. Moynihan et al. Chilling-induced heat evolution in plants [J]. Plant Physiol. 1995, 108:995-999.
    96. Montalbim P, Buonaurio R. Effect of tobacco mosaic virus infection on leavers of soluble superoxide dismutase (SOD) in Nicotiana tabacum and Nicotiana ghctinosa leaves [J]. Plant Sci. 1986, 47:135.
    97. Munns R, Bracely CJ, Barlow EWR. Solute accumulation in the apex and leaves of wheat during water stress [J]. Aust. J. Plant Physiol. 1979, (6):379-389.
    98. Muranaka T, Miyata M, Ito K, Tachibana S. Production of podophyllotoxin in juniperus chinensis callus cultures treated with oligosaccharides and a biogenetic precursor in honour of Professor G. H. Neil towers 75th birthday.
    99. Nagao M, Arahawa K, Takezawa D, et al. Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells [J]. Planta. 2008, 227: 477-489.
    100. Natsume M, Kamo Y, Hirayama M, et al. Isolation and characterization of alginate derived oligosaccharides with root growth promoting activities [J]. Carbohydr. Res. 1994, 258: 187.
    101. Olivieri FP, Lobato MC, Gonzalez AE, et al. Enhancement of potato defense mechanisms by BABA in multigenic resistance potato cultivars. Systemic response against Phytophthora and Fusarium [J]. Pest Manag. Sci. 2006, 62(2): 162-170.
    102. Oono Y, Seki M, Satou M, et al. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays[J]. Funct. Integr. Genomics. 2006, 6:212-234.
    103. Ortega-Martínez O, Pernas M, Carol RJ, Dolan L. Ethylene modulates stem cell division in the Arabidopsis thaliana root [J]. Science. 2007, 317:507-510.
    104. Otterlei M, et al. Induction of cytokine production monocytes stimulated with alginate [J]. Immunother. 1991, 10 (4): 286.
    105. Quoc HN, Naotsugu N, Xuan TL, et al. Growth-promotion of plants with depolymerized alginate by irradiation [J]. Radiation Phys. Chem. 2000, 59: 97.
    106. Philippe R, Auzanne G, Kalannethee P, et al. Oligogalacturonide defense signal in plants: Large fragments interact with the plasma membrane in vitro[J]. Proc. Natl. Acad. Sci. USA. 1995, 92: 4145- 4149.
    107. Prasad TK.Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings [J]. Plant Physiol. 1997, 114:1369-1376.
    108. Powles SB. Photoinhibition of photosynthesis induced by visible light [J].Annu Rev Plant Physiol, 1984, 35: 15-44.
    109. Rakitin VY , Dolgikh YI, Shaikina EY, Kuznetsov V V. Oligosaccharide inhibits ethylene synthesis and stimulates somatic embryogenesis in a cotton cell culture [J]. Rus J Plant Physiol. 2001, 48:628-632.
    110. Raskin I. Salicylate, a new plant homone [J]. Plant Physiol. 1992, 99(3):799-803.
    111. Ren YY, West CA. Elicitiation of diterpene biosynthesis in rice (Oryzae sativa L.) by chitin [J]. Plant Physiol. 1992, 99:1169-1178.
    112. Ross AF. Localized acquired resistance to plant virus infection in hypersensitive hosts [J].Virology. 1961,14:329-339.
    113. Ryan CA, Farmer EE. Oligosaeeharide signa1sinplants: a current assement [J]. Annu Rev Plant Physiol. Plant Mol. Biol. 1991,42: 651-674.
    114. Satoshi I, et al. Novel drought-inducible giemes in the highty drought-tolerant cowpea: cloning of CDNAS and analgsis of the expression of the corresponding genes [J]. Plant Cell Physiol., 1996, 37(8):1073-1082.
    115. Sergei L, Mekhedov, Hans Kende. Submergence enhances expression of a gene encoding 1-aminorycy clopropane- 1-carboxylate oxidase in deepwater rice [J]. Plant Cell Physiol. 1996, 37(4):531-537
    116. Sharp JK, Nalent B, Albersbeim P. Purification and partual characterization of a bata-glucan fragment that elicits phtoalexin accumulation in soybean [J]. J. Biol. Chem.1984a, 259:11312-11320.
    117. Sharp JK, McNeil M, Albersbeim P. The primary structures of one elicitor-active and seven elicitor-inactive bexa (β-D-glucopyranosyI)- D-glucitols isolated from the mycelial walls of Phytophthorc inegcspermc fsp.glvcinec [J]. J. Biol. Chem. 1984b, 259:11321-11336.
    118. Stroble NE, Kuc J. Chemical and biological inducers of systemic resistance to pathogens protect cucumber and tobacco plants from damage caused by paraquat and cupric chloride [J]. Phytopathology. 1995, 85(10):1306-1310.
    119. Schwarz AM, et al. The role of photosynthesis/light relationships in determining lower depth limits of Characeae in South Island, New Zealand Lakes [J]. Fresh-water Biology.1996, 35:69-80.
    120. Sunwoo JY, Lee YK, Hwang BK. Induced resistance against Phytophthora capsici in pepper plants in response to DL-β-amino-n-butyric acid [J]. Eur. J. Plant Pathol.1996, 102:663-670.
    121. Tepfer D, Boutteaux C, Vigon C, et al. Phytophthora resistance through production of a fungal protein elicitor (β-cryptogein) in tobacco[J]. Mol. Plant-Microbe Interact. 1998, 11:64-67.
    122. Toal ES, Jones PW. Induction of systemic resistance to Sclerotinia sclerotiorum by oxalic acid in oilseed rape [J]. Plant Pathol. 1999, 48:759-767.
    123. Tomiyama K, Fukaya M. Accumulation of rishitin in dead potato-tuber tissue following treatment with HgCI2 [J]. Ann. Phytopathol. Soc. Jpn. 1975, 41:418-420.
    124. Tomoda Y, Umemura K, Adachi T. Promotion of barely root elongation under hypoxic conditions by alginate lyase-lysate [J]. Biosci. Biotech. Biochem. 1994, 58: 202.
    125. Toshisada S, Kaori TY, Hirokazu T, Shigeki Y, Isao K, Kosumi Y, Yoichi M, Koji H. Plant growth-promoting oligosaccharides produced from tomato waste [J]. Bioresource Tech. 2002, 81 (2)91-96.
    126. Tosi L, Luigetti R., Zazzerini A. Benzothiadiazole induces resistance to Plasm helianthi in sunflower plants [J]. J phytopathol.1999, 147(6):365-370.
    127. Vallelian BL, Schweizer P, et al. Heat-induced resistance in barley to powdery mildew (Blumeria graminis fsp. hordes) is associated with a burst of active oxygen species [J]. Physiol. Mol. Plant Pathos.1998, 52(3):185-199.
    128. Vernooij B, Friedrich L, Ahl-Goy P, Staub T, Kessmann H, Ryals J. 2,6-dichloroisonicotinic acid-induced resistance to pathogens does not require the accumulation of salicylic acid [J].Mol. Plant-Microbe Inter. 1995, 8:228-234.
    129. Vogel JT, Zarka DG, Van Buskirk HA, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis [J]. Plant J. 2005, 41:195-211.
    130. Wang W, Wan SB, Zhang P, Wang HL, Zhan JC, Huang WD. Prokaryotic expression, polyclonal antibody preparation of the stilbene synthase gene from grape berry and its different expression in fruit development and under heat acclimation [J]. Plant Physiol Biochem.2008,46(12):1085-1092.
    131. Wang SY. Methyl Jasmonate reduces water stress in strawberry [J]. J.Plant Growth Regul. 1999, 18: 127-134.
    132. Ward ER, Uknes SJ, Williams SC, et al. Coordinate gene activity in response to agents that induced systemic acquired resistance [J].Plant Cell 1991, 3:1085-1094.
    133. Wei ZM, Laby RJ, Zumoff CH, et al., Harpin elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora [J]. Science. 1992. 257: 85-88.
    134. Werner C, Hohl H R.The effects of Ca2+ and Mg2+ on accumulation and secretion of isoflavonoids by soybean roots [J].Plant Sci.1990,72(2):181-191.
    135. White RF. Acetyl salicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco [J]. Viyology. 1979, 99(360):62-65.
    136. Wildon DC, Thain JF, et al. Electrical signaling and systemic proteinase inhibitor induction in the wounded plant [J]. Nature 1992, 360:62-65.
    137. Rause WE. Phytochelatins and related peptides (structure, biosynthesis, and function) [J]. Plant Physiol. 1995, 109:1141-1149.
    138. York WS, Darvill AG, Alberseim P. Inhibition of 2,4- diehlorophenoxyacetic acid Stimulated elongation of pea stem segments by a xyloglucan oligosaccharide [J]. Plant Physiol, 1984, 75:295-297.
    139. Yu LM. Elicitin from Phytophthora and basic resistance in tobacco [J]. Proc. Natl. Acad Sci. USA. 1995, 92: 4088-4094.
    140. Zabotina O, Ayupova D, Toroshina T, Zabotin A. Involvement of oligosaccharides in adaptation of winter wheat seedlings to subzero temperatures [J]. Biol. Bull. Rus. Acad. Sci. (biological section). 2003, 30 (5):560-564.
    1.郝林华,陈靠山,李光友.牛蒡寡糖促进黄瓜生长及抗低温胁迫的生理效应[J].上海交通大学学报. 2006, 24(1): 6-12.
    2.扈学文,许秋瑾,金相灿等.不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究[J].中国农学通报.2007,23 (02) :221-225.
    3.余奕珂,胡建恩,赵小明,陈娅斐,白雪芳,杜昱光.珠蛋白酶解液对植物诱抗活性的研究[J].陕西农业科学. 2006, 5: 16-18.
    4.张文清,隋雪燕,夏玮,张元兴,林彩玲.壳寡糖的制备及其对黄瓜的促生长作用[J].功能高分子学报. 2002, 15(02):199-202.
    5. Bilisics L, Vojtaák J, Capek P., Kollarov K, Li D. Changes in glycosidase activities during galactoglucomannan oligosaccharide inhibition of auxin induced growth [J].. Phytochemistry, 2004, 65 (13):1903-1909.
    6. Hu XK, Jiang XL, Hwang HM, Liu SL, Guan HS. Promotive effects of alginate-derived oligosaccharide on maize seed germination [J]. J. Appl. Phycol. 2004, 16: 73–76.
    7. Iwasaki KI, Matsubara Y Purification of pectate oligosaccharides showing root-growth-promoting activity in lettuce using ultrafiltration and nanofiltrat [J]. J. Biosci. Bioeng. 2000, 89 (5):495-497.
    8. Madar Z., Solel Z., Riov J., Sztejnberg A. Phytoalexin production by cypress in response to infection by Diplodia pinea f.sp. cupressi and its relation to water stress [J]. Physiol Mol Plant Pathol.1995,47(1):29-38.
    9. Tomoda Y, Umemura K, Adachi T. Promotion of barely root elongation under hypoxic conditions by alginate lyase-lysate [J]. Biosci. Biotech. Biochem. 1994, 58: 202.
    10. Wang W, Wan SB, Zhang P, Wang HL, Zhan JC, Huang WD. Prokaryotic expression, polyclonal antibody preparation of the stilbene synthase gene from grape berry and its different expression in fruit development and under heat acclimation [J]. Plant Physiol Biochem.2008, 46(12):1085-1092.
    11. Werner C, Hohl H R.The effects of Ca2+ and Mg2+ on accumulation and secretion of isoflavonoids by soybean roots [J]. Plant Sci.1990,72(2):181-191.
    12. Yamaguchi T, Maehara Y, Kodama O, Okada M, et al. Two purified oligosaccharide elicitors,N-acetylchitohepatose and tetraglucosyl glucitol, derived from Magnaporthe grisea cell walls, synergistically activate biosynthesis of phytoalexin in suspension-cultured rice cells [J]. J Plant Physiol. 2002, 150 (10): 1147-1149.
    13. Zhao HC, Li GJ, Wang JB. The accumulation of phytoalexin in cucumber plant after stress [J]. Coll. Surf. B: Biointerf. 2005, 43 (3-4): 187-193.
    1.毕辛华,戴心维.种子学.高等教育出版社[M].北京:中国农业出版社,1980.
    2.房江玉,王贺,张福锁.硅对盐胁迫烟草悬浮细胞的影响[J].作物学报. 2003,29(4):610-614.
    3.胡晓珂.褐藻胶裂合酶工程化研究与应用[D].中国海洋大学.2004.
    4.匡银近,覃彩芹,孟志卿.壳寡糖对秋海棠叶片离体培养的影响[J].安徽农业科学,2008,36(16):6657-6659.
    5.李合生,孙群,赵世杰,章文华.植物生理生化实验原理和技术[M].高等教育出版社. 2000.
    6.李心治,章银梅,张宇等.抗氧化型枯草杆菌碱性蛋白酶高产工程菌的构建及其酶学特性[J].高技术通讯. 2000,10:13-18.
    7.王克夷.作为信息分子的糖类[J].化学进展. 1996, 8(2):98-108.
    8.徐刚标,何方,陈良昌.银杏愈伤组织诱导与继代培养的研究[J].中南林学院学报.1999,19(3):32-36.
    9.杨途熙,魏安智,郑元等.高效液相色谱法同时分离测定仁用杏花芽中8种植物激素[J].分析化学.2007, 9:1359-1361.
    10.余淑文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社.1998:93-112.
    11.周立刚,郑光植.生产培养基中寡糖素对滇紫草愈伤组织培养的影响[J].天然产物研究与开发. 1992,4(2): 38-43.
    12. Albersheim P,Darvill AG.Oligosaeeharins[J].Seientific Ameriean. 1985,253(3):44-50.
    13. Gomes-Junior R.A ,Moldes C.A., Delite F.S.,Grat?o P.L, Mazzafera P, Lea P.J.. Azevedo R.A.Nickel elicits a fast antioxidant response in Coffea arabica cells [J].Plant Physiol Biochem. 2006, 44:420–429.
    14. Iwasaki K, Matsubara Y. Purification of alginate oligosaccharides with root growth- promoting activity toward lettuce. Biosci Biotech Biochem, 2000, 64(5): 1067.
    15. Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A. Analysis and Effects of Cytosolic Free Calcium Increases in Response to Elicitors in Nicotiana plumbaginifolia Cells [J]. The Plant Cell, 2002,14: 2627–2641.
    16. McNeil M, Darvill AG, Fry SC, Albersheim, P.. Structure and function of the primary cell walls of plants [J]. A. Rev. Biochem. 1984,53: 625-663.
    17. Natsume, M, Kamo, Y, Hirayama, M, et al. Isolation and characterization of alginate derived oligosaccharides with root growth promoting activities [J]. Carbohydr Res.1994, 258: 187.
    18. Tomoda Y, Umemura K, Adachi T. Promotion of Barely Root Elongation under Hypoxic Conditions by alginate lyase-lysate [J]. Biosci Biotech Biochem.1994, 58: 202.
    19. YonemotoY, Uanaka H, Mashjta T, Kitabatake N, IshjdaY, Kimura A,MurataK,Promotion of germinationand shoot elongation of some plants by alginateoligomers prepared with bacterial alginatelyase [J]. J. Ferment.Bioengng. 1993, 75:68-70.
    1.陈卫国,周冀衡,杨虹琦.烟草抗寒性生理生化研究进展[J].作物研究.2007,1:81-83.
    2.邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能[J].植物学通报, 2001, 18(5) : 521-530.
    3.丁福章,李继新,雷波等.超氧化物歧化酶在烟草上的应用研究进展[J].安徽农业科学, 2008, 36(5): 1897-1898.
    4.杜昱光,白雪芳,赵小明等.壳寡糖对烟草防御酶活性及同功酶谱的影响[J].中国生物防治. 2002, 18 (2) : 83-86.
    5.费云标,高素琴,王维香等.植物冻害与抗冻研究对策探讨[J].科学新闻, 2001,13: 42-43.
    6.高俊凤.植物生理学实验指导[M].高等教育出版社, 2006.
    7.郭成瑾.壳寡糖诱导烟草抗烟草花叶病毒研究[D].西北农林科技大学. 2006.
    8.郝林华,陈靠山,李光友.牛蒡寡糖促进黄瓜生长及抗低温胁迫的生理效应[J]. 2006, 24(1): 6-12.
    9.扈学文,许秋瑾,金相灿等.不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究[J].中国农学通报. 2007, 23 (02) :221-225.
    10.李璟琦.寡糖素对黄瓜幼苗抗低温胁迫的影响[J].安徽农业科学, 2008, 36(11):4393-4394.
    11.李绍军,龚月华,王俊儒等.茚三酮法测定脯氨酸含量中茚三酮与脯氨酸反应探讨[J].植物生理学通讯, 2005, 41(3): 365-368.
    12.刘风权,王金生.水杨酸对水稻防卫反应酶系的系统诱导[J].植物生理学通讯.2002,38:121-123.
    13.刘子会,郭秀林,王刚,李广敏,干旱胁迫与ABA的信号转导[J].植物学通报.2004,21(02): 228-234.
    14.卢航,赵小明,白雪芳,杜昱光.寡聚半乳糖醛酸诱导烟草抗烟草花叶病毒研究初探[J].植物保护.2008,34(3):38-41.
    15.彭金光,孙玉宏,师瑞红等. 10℃低温对西瓜幼苗耐性生理指标的影响[J].安徽农学通报.2006,12(10):42-45.
    16.任红,商宪库,曹兵,李劲松.羧甲基壳聚糖涂膜在草莓保鲜中的应用研究[J].食品科技.2007,32(4):211-213.
    17.商文静,吴云锋,商鸿生,赵小明,杜昱光.壳寡糖对烟草花叶病毒的体外钝化作用[J].病毒学报.2008,24(1):76-78.
    18.申莉莉,王凤龙,钱玉梅,陈德鑫,吴惠惠,何京美,牛柱峰.拮抗细菌对烟草花叶病毒(TMV)的抑制作用研究[J].中国烟草科学.2007,28(5): 9-11.
    19.孙慧,吴祖建,谢联辉等.杨树菇(Agrocybe aegerita)中种抑制TMV侵染的蛋白质纯化及部分特性[J].生物化学与生物物理学报.2001,33(3):351-354.
    20.王松.褐藻寡糖的制备及诱导烟草抗性研究[D].中国海洋大学.2003.
    21.韦新葵,雷朝亮.蝇蛆几丁低聚糖对花生白绢病菌菌丝形态及超微结构的影响[J].华中农业大学学报.2004,2; 47-50.
    22.吴楚,王政权等.膜脂变化与植物抗寒性及HII相位形成的关系[J].湖北农学院学报.2002,2 (1): 84-88.
    23.萧浪涛,王三根.植物生理学实验技术[M].中国农业出版社.2005:192-196.
    24.徐大明,姜华.壳寡糖的诱导抗性及对TMV的体外钝化研究[J].辽宁农业科学.2008(2):18-20.
    25.朱贤朝等.中国烟草病毒[M].中国农业出版社2002.
    26.朱素琴.膜脂与植物抗寒性关系研究进展[J].湘潭师范学院学报,2002,(4): 49-52.
    27.朱贤朝等.中国烟草病害[M].中国农业出版社. 2001.
    28. Albersheim P, Darvill A G. Oligosaccharins: novelmolecules that can regulate growth, development, reproduction, and defense againstdisease in plant [J]. Sci Am.1985, 253(3): 58-64.
    29. Angela R. PatriciaC. LuzM. Oligosaccharides released by pectinase treatment of Citrus lim on seedlings are elicitors of the plant response [J]. Photochem.1993, 33(6): 1301~1306.
    30. Ayers A R, Ebel J,Fineli F,et al.. Host-pathogen interactions XI,Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytopothora megasperma var.sajae[J].Plant Physiol.1976,57:751.
    31. Azada K. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants [J].Physiol Plant. 1992, 85: 235-241.
    32. Azevedo S A, Alas R M, Smith R J, et al. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley [J]. Physiol Plant.1998, 104: 280-292.
    33. Bianco T J, Le P, Degivry M T. ABA synthesis in protoplasts of different origin in response to osmotic stress [J].Plant Growth Regul. 1998,25:135-141.
    34. Chen Yf, Zhan Y, Zhao Xm, Guo P, An Hl, Du Yg, Han Yg, Liu H, Zhang Yh. Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco. Plant Physiology and Biochemistry, In Press, Uncorrected Proof, Available online 28 March 2009.
    35. Dlauney A J,Verma D P S. Proline biosynthesis and osmoregulation in plants [J]. Plant J.1993, (4): 323-328.
    36. Fritig B, Gosse J, Legrand M, Hirth L. Changes in phenylalanine ammonia-lyase during the hypersensitive reaction of tobacco to TMV [J].Virology.1973, 55(2):371-379.
    37. Gechev T, Willekens H, Montagu M V, et al. Different responses of tobacco antioxidant enzymes to light and chilling stress [J]. J. Plant Physiol. 2003,160:509–515.
    38. Gomes-Junior R A, Moldes C A, Delite F S, et al. Nickel elicits a fast antioxidant response in Coffea arabica cells [J]. Plant Physiol Biochem.2006,44:420-429.
    39. Gray G R, Boese S R, Hurter N P A. A comparison of low temperature growth VS low temperature shifts to induce resistance to photoinhibition in spinach(Spinocia oleracea)[J].Plant Physiol.1994, 90:560-566.
    40. Khedr A H, Abbas M A, Wahid AA, et a1. Proline induces the expression of salt- stress-responsive proteins and may improve the adaptation of Pancratium maritimum L to salt-stress [J]. J Exp Bot. 2003, 54:2553-2562.
    41. Leopold A C, Musgrave M E, Williams K M. Solute leakage resulting from leaf desiccation [J].Plant Physiol.1981, 68:1222-1225.
    42. Lichtenthaler Hartmut K., Alexander A?, Michal V. Marek, et al. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species[J]. Plant Physiol Biochem.2007, 45(8): 577-588.
    43. Nagao M, Arahawa K, Takezawa D, et al. Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells [J]. Planta.2008, 227: 477-489.
    44. Oono Y, Seki M, Satou M, et al. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays[J]. Funct Integr Genomics.2006, 6:212-234.
    45. Prasad TK. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings [J]. Plant Physiol.1997,114:1369-1376.
    46.Vogel JT, Zarka DG, Van Buskirk HA, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis [J]. Plant J.2005, 41:195-211.
    47. Yamori W, Suzuki K, Noguchi K, et al. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures [J]. Plant Cell Environ.2006, 29(8):1659-1670.
    48. Zabotina O, Ayupova D, Toroshina T, Zabotin A. Involvement of oligosaccharides in adaptation of winter wheat seedlings to subzero temperatures [J]. Bio Bull Rus Acad Sci (biological section). 2003,30(5):560-564.
    49. Newman M-A., Roepenack-Lahaye E. V., Parr A., Daniels M. J., Dow J. M. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria [J]. PlantJ.2002, 29(4): 487~495.
    50. Ning W, Chen F, Mao B, et al. N2acetylchitooligosaccharides elicit rice defence responses including hypersensitive response-like cell death, oxidative burst and defence gene expression [J]. Physiol. Mol. Plant Pathol.2004, 64: 263-271.
    51. Zhou W J, Leul M. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape [J]. Plant Growth Regul.1998, 26: 41-47.
    52. Philippe R, Auzanne G,Kalannethee P. Oligogalacturonide defense signal in plants:Large fragments interact with the plasmamembrane in vitro[J]. ProcNatlAcad Sci USA. 1995, 92:4145~414.
    53. Hino F,Okazaki M,Miura Y.Effects of kinetin on formation of seopoletin and seopolin in tobacco tissue cultures[J].Agri Biol Chem.1982,46:2l95-2202.
    54. Pagtera M, Liub F, Jensenb CR, Petersen KK. Effects of chilling temperatures and short photoperiod on PSII function, sugar concentrations and xylem sap ABA concentrations in two hydrangea species [J]. Plant Sci.2008, 175(4):547-555.
    55. Chirkov S N. The Antiviral Activity of Chitosan [J]. Appl Biochem Microbiology. 2002,38:5-13.
    56. Zhao Xm,She Xp, Du Yg, Liang Xm. Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco pesticide [J]. Biochem. Physiol. 2007,87(1):78-84.
    57. Zabotina O, Ayupova D, Toroshina T, Zabotin A. Involvement of oligosaccharides in adaptation of winter wheat seedlings to subzero temperatures [J]. Bio Bull Rus Acad Sci (biological section). 2003, 30 (5):560-564.
    1.赵小明.壳寡糖诱导植物抗病性及其诱抗机理的初步研究.中国科学院研究生院(大连化学物理研究所).2006.
    2. Basse CW, Fatb A, Boller T. Higb affiniy binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific gb'can suppressors. J. Biol. Chem. 1993, 268(20): 14724-14731.
    3. George O,James L, et al. High-Performance Liquid Chromatographic Analysis of Complex N-Linked Glycans Derivatized with 2-Aminoacridone. Anal. Chem..1997, 69 (24): 4985–4993.
    4. Haug, A. Composition and properties of alginates. Norwegian Inst. of Seaweed Res. , Trondheim. Report 30.
    5. Haug, A. Fractionation of alginic acid. Acta Chem. Scand. 1959, 13(3): 601-603.
    6. Haug, A. Larsen, B. Quantitative determination of the uronic acid composition of alginates. Acta Chem. Scand. 1962, 16: 1908-1918.
    7. Jackson P.Polyacrylamide gel electrophoresis of reducing saccharides labeled with the fluorophore 2-Aminoacridone :Subpicomolar detection using an lamaging system based on acooled charge-coupled device. Anal. Biochem. 1991,196:238-244.
    8. Montesaimo M.,Brader G.,Palva ET. Pathogen derived elicitorsaearching for receptors in plants. Mol Plant Pathol.2003, 4(1):73-79.
    9. Navazio L,Moscatielo R,Bellincarnpi D , et a1.The role of calcium in oligogalacturonide-activated signalling in soybean cells [J].Planta.2002,215(4):596-605.
    10. Okada M.Identification of a high-affinity binding protein for N-acetylchitoligosaccaride elicitor in the plasma membrane from rice leaf and root cell [J].J Plant Physiol,2001,(158):121-124.
    11. Okafo G,James L.,North S. High-Performance Liquid Chromatographic Analysis of Complex N-Linked Glycans Derivatized with 2-Aminoacridone. Anal. Chem.. 1997, 69 (24):4985–4993.
    12. Umemoto N,Kakitani M,1wamatsu A,et a1.The structure and function of soybeanβ-glucan-elicitor-binding protion[J].Proc Natl Acad Sci USA.1997,(94):1029-1034.
    13. Wendebemle D,Binet MN,Blein JP,Ricci P,Pugin A. Evidence for specific.High affiniy binding sites for a proteinaceous elicitor in tobacco plasma membrane .FEBS Letter. 1995,5374:203-207.
    14. Yokoyarm T,Kobayashi N,Kouchi H ,et al.A lipochito oligosaccharide,Nod factor,induces transient calcium influx in soyben suspension-cultured cells[J].Plant J.2000,22(1):71-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700