用户名: 密码: 验证码:
基于氧化石墨烯的荧光生物传感新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物分子的快速灵敏检测一直以来都是生物医学和分析化学领域十分关注的课题。现代社会的快速发展对生物传感技术提出了更高的要求,发展新的分析方法和技术以应对越来越多的分析难题和社会热点问题为分析化学工作者提出了严峻的挑战。荧光生物传感技术具有灵敏度高和响应速度快等优点,被广泛应用于各种生物分子的检测,包括蛋白质、生物小分子、核酸和酶活性等。传统的荧光生物传感技术往往需要多重荧光标记和一系列的放大方法来提高灵敏度,从而增加了检测的成本和实验的复杂性。另外,传统的荧光传感技术还存在较高背景荧光的干扰。因此进一步改进和发展新的荧光传感技术,以提高生物分析的性能和降低检测的成本有十分重要的意义。
     氧化石墨烯(GO)由于其独特的DNA吸附性能和通用型荧光淬灭剂的性质,被广泛应用于生物分子的检测。基于GO的荧光传感器与传统荧光传感器相比有诸多优势,例如改进了检测灵敏度、降低了检测成本和增大了信背比等,这表明基于GO的荧光传感器在生物分子检测方面有很大的应用前景。这类传感器大多依赖GO能强烈吸附荧光染料标记的单链DNA同时淬灭其荧光,目标物与荧光单链DNA结合使其构象转变,进而使荧光染料与GO距离拉大,荧光恢复,从而实现对目标物的检测。但是这类传感器的检测限一般有限且需要荧光标记,有待进一步改进。将DNA嵌入染料与GO相结合进行生物分子检测已有报道,其检测性能显著改善,我们推断此类非标荧光传感器有望在生物分子检测中得到广泛应用。
     本论文针对以上问题,在综合文献报道的基础之上,基于GO独特的DNA吸附和荧光染料淬灭性能发展了一系列简单、快速、灵敏的荧光生物传感新方法用于DNA酶活性、核酸和三磷酸腺苷(ATP)等生物分子的检测,具体内容如下:
     第2章中,基于发夹引物和聚合延伸,结合GO独特的DNA吸附和通用型荧光淬灭性能发展了一种新型非标荧光检测方法用于DNA3'磷酸酶的检测及其抑制剂的定量表征。本实验设计了一条3'磷酸化的DNA发夹引物,只有经DNA3'磷酸酶的去磷酸作用后,发夹引物才能发生聚合延伸生成双链DNA产物。由于GO与双链DNA的结合力较弱不能有效淬灭染色双链产物的荧光,因此得到较强的荧光信号。无DNA3'磷酸酶时,发夹引物不能去磷酸化引发聚合延伸,进而被GO吸附淬灭,得到较弱的背景信号,从而实现对目标DNA3'磷酸酶的灵敏检测。该方法可实现对两种DNA3'磷酸酶(T4多聚核苷酸激酶和小虾碱性磷酸酶)活性的同时检测,检测限分别为0.07U/mL和0.003U/mL。另外,该方法不仅可以对DNA3'磷酸酶的抑制剂进行定量表征,还适用于复杂生物环境中目标物的测定。本方法设计简单、操作方便、灵敏度高且选择性好,有望成为DNA3'磷酸酶检测的一种很好的选择并能应用于DNA损伤修复机理的研究。
     第3章中,基于等温循环链置换聚合反应(ICSDPR)和DNA嵌入染料的光学特性,结合GO独特的吸附和淬灭性能发展了一种非标放大荧光DNA检测方法。实验设计了一条3'磷酸化的发夹探针,只有加入目标DNA与发夹杂交引发其构象转变,引物才能与发夹打开的茎端杂交,然后在聚合酶作用下发生ICSDPR。经过多步的循环放大,产生大量的双链DNA产物,进而得到放大的荧光信号。无目标DNA时,发夹探针不能发生构象转变和ICSDPR,经SYBR Green I(SG)染色和GO吸附后,生成较低的背景信号,从而实现对目标DNA的放大荧光检测。该方法首次提出在GO平台上结合SG和ICSDPR放大检测DNA,有较宽的线性范围和高选择性,检测限为4pM,跟基于GO的均相DNA检测相比有明显优势。该方法设计简单、方便经济,有望成为DNA灵敏检测的一种常用方法。
     第4章中,基于ATP依赖的DNA连接反应和GO独特的吸附和淬灭性能,发展了一种高灵敏的ATP检测新方法。实验设计的三种DNA探针退火杂交形成带有单链缺口的荧光双链DNA,在辅助因子ATP和T4DNA连接酶同时存在下,缺口被连接形成完整的双链DNA。连接产物有较高的熔链温度能在实验加热条件下保持双链结构,不被GO有效淬灭,得到较强的荧光信号。无ATP时,DNA连接反应不能发生,三链退火的复合物在实验加热条件下解链进而被GO吸附,荧光淬灭,从而实现对目标ATP的灵敏检测。该方法简单快速、灵敏度高选择性好,检测限达0.3nM,跟大多数无放大的均相ATP适配体传感方法相比有明显优势,跟电化学适配体方法的检测限有可比性。该方法具有高选择性,不仅能使ATP从其它三磷酸核苷中分离开来,还可使ATP与其同系物区分开来。
     第5章中,基于核酸外切酶Ⅲ(ExoⅢ)对酶切底物的选择性和GO对单双链DNA结合力的差别发展了一种非标荧光ATP检测方法。实验设计的5'磷酸化的发夹探针能跟互补DNA退火杂交形成带单链缺口的双链DNA产物。在辅助因子ATP和连接酶同时存在时,缺口被连接形成完整的长茎端发夹产物,且靠近3'端的碱基硫代处理。这种发夹产物不能被ExoⅢ酶切,经SG染色和GO混合后,得到显著的荧光信号。无ATP时,缺口不能被连接进而被ExoⅢ酶切,互补DNA被降解同时释放发夹探针,染色后的发夹被GO吸附淬灭,生成较低的背景信号,从而实现对目标ATP的灵敏检测。该方法设计巧妙新颖,有较高的灵敏度和选择性,检测限达0.2nM。
     第6章中,基于限制性核酸内切酶酶切的特异性和GO对不同的DNA结构结合力大小的差别发展了一种新型荧光方法用于检测核酸内切酶的活性及其抑制剂。我们设计了一条单标记荧光发夹探针,发夹的茎端序列包含有内切酶的识别位点。当目标内切酶存在时,发夹探针被酶切成三部分,其中带荧光染料的DNA短片段与GO结合力较小而游离到溶液中,生成较强的荧光信号。无目标内切酶时,发夹荧光探针被GO吸附,发生荧光共振能量转移荧光淬灭,得到较弱的背景信号,从而实现对目标内切酶的灵敏检测。该方法设计简单、操作方便、经济快捷,为进一步研究蛋白质与DNA的相互作用机理提供一个新的选择,对内切酶抑制剂的定量表征又使其在新药研发方面有一定的应用潜力。
Rapid and sensitive detection of biomolecules has always been the researchinterest in biomedical and analytical chemistry. The rapid development of modernsociety imposes higher requirements on biosensing technology. Developing newanalytical techniques for solving more and more analytical problems and social crisishas proposed a great challenge for analysts. Fluorescent biosensing technology hasbeen widely applied in the detection of various biomolecules, including protein, smallmolecules, nucleic acids and enzyme activity, attributing to its analytical advantages ofhigh sensitivity and rapid response time. In order to improve the sensitivity, traditionalfluorescent biosensing technology usually requires multiple-fluorophore labeling anddifferent amplification techniques, which might add cost and complexity for the assay.
     In addition, traditional fluorescent biosensing technology suffers from a relativelyhigh background signal. Therefore, it is of great importance to develop new fluorescentbiosensing techniques so as to enhance the bioanalytical performance and reduce thecost.
     Due to its unique DNA absorbing ability and universal quenching properties forfluorophores, graphene oxide (GO) has been widely applied in biomolecular detection.GO-based fluorescent biosensors show several advantages compared with thetraditional ones, including improved assay sensitivity, low cost and enhanced signal tobackground ratio and so on. These advantages reveal that GO-based fluorescentbiosensors hold great potential in biomolecular detection. Most of these biosensorsrely on the fact that GO can adsorb the dye-labeled single-stranded DNA (ssDNA) andeffectively quench its fluorescence, the binding of analyte with dye-labeled ssDNAresults in the departure of the dye and GO, and the recovery of fluorescence which canbe used for target detection. However, these biosensors require fluorophore-labeledprobes and show relatively poor detection limits, which need further improvements.There has been report for biomolecular detection based on the combination of DNAinteracting dyes and GO, which shows an improved detection limit and it is expectedthat this kind of biosensor may find wide applications in biomolecular detection.
     Focusing on the above questions and making use of the achievements of previousresearchers, this thesis developed several novel fluorescent biosensing methods for thedetection of DNA enzyme activity, DNA and adenosine triphosphate (ATP) based on the unique DNA adsorption and fluorescence quenching property of GO. The detailsare described in following chapters.
     In Chapter2, we developed a novel label-free fluorescent strategy for thedetection of DNA3' phosphatase and its inhibitors based on hairpin primer andpolymerase elongation. Only in the presence of DNA3' phosphatase, DNA hairpinprimer with3'-phosphorylated end can be dephosphated, then polymerase elongationwas initiated to produce the double-stranded DNA (dsDNA). Because GO shows weakbinding affinity toward the SYBR Green I (SG) stained dsDNA that it cannoteffectively quench the fluorescence, thus one can obtain a strong fluorescence signal.Whereas, the hairpin primer would not be dephosphated in the absence of DNA3'phosphatase and its polymerase elongation would not occur. Adsorption of hairpinprimer by GO generates a rather weak background signal. This method can realize thesimultaneous detection of two kinds of DNA3' phosphatase (T4PNKP and SAP) withachieved detection limits of0.07U/mL and0.003U/mL, respectively. In addition, thismethod is able to quantitatively evaluate the inhibition effect of the inhibitorcompounds and also applicable for complex biological sample.
     In Chapter3, a label-free sensitive fluorescent DNA biosensor was presentedbased on isothermal circular strand-displacement polymerization reaction (ICSDPR)combined with GO binding. This biosensor relies on the hybridization of target DNAwith hairpin probe as the prerequisite for ICSDPR and the preferential binding of GOto stained single stranded DNA (ssDNA) over double stranded one to improve thesignal to background ratio. By combining the properties of GO and SG with theICSDPR amplification, this fluorescent DNA biosensor displays a wide dynamic rangefrom0.01nM to10nM and a low detection limit of4pM. The proposed strategy issimple, cost-effective and sensitive, which might provide a promising method ofchoice for convenient DNA detection.
     In Chapter4, a simple, amplification-free and sensitive fluorescent biosensor forATP detection was developed based on the ATP-dependent enzymatic reaction(ATP-DER) and GO binding. In this assay, two half DNA probes anneal with adye-labeled template to form a DNA duplex substrate with a single-stranded nick. Theformed nick could be sealed by T4DNA ligase in the presence of ATP, and theresulting unnicked DNA duplex was resistant to thermal denaturation. Whereas, theligation reaction would not happen in the absence of ATP, and the nicked DNA duplexwas subject to thermal denaturation, which leads to the separation of two half DNAprobes and template. After addition of GO, the fluorescence of the nicked DNA duplex was greatly quenched, whereas efficient fluorescence quenching did not occur to theunnicked DNA duplex and high fluorescence intensity was obtained. The proposedstrategy was simple, amplification-free and showed high selectivity to ATP that coulddistinguish ATP from its analogues. The results revealed that the method allowedsensitive quantitative assay of ATP with a wide linear response range from0.5nM to100nM and a low detection limit of0.3nM.
     In Chapter5, we present a novel, label-free exonuclease Ⅲ-aided fluorescentassay strategy for ATP based on the ATP-dependent enzymatic reaction and GO. In thisassay, hairpin probe with5' phosphorylated end anneals with complementary DNA toform a dsDNA complex with a single-stranded nick, which can be ligated by T4DNAligase in the presence of its cofactor ATP, resulting in a hairpin product with a stem oflong dsDNA. Because the five phosphorothioate nucleosides near the3' end of hairpinprobe can hamper the Exo Ⅲ cleavage, thus the hairpin product after ligation couldkeep intact upon treatment with Exo Ⅲ. After addition of GO, a strong fluorescencesignal was observed. Whereas, the single-stranded nick cannot be ligated in theabsence of ATP, Exo Ⅲ cleaves the annealed dsDNA complex from the nick site anddigests the C-DNA, releasing the hairpin probe. GO selectively adsorb the hairpinprobe leading to efficient quenching of the fluorescence. This sensor displays animproved sensitivity and a wide linear range within the ATP concentration from1nMto200nM with a low detection limit of0.2nM. The proposed approach is simple,cost-effective and convenient, which might create a new methodology for developingsensitive ATP biosensor.
     In Chapter6, we developed a simple and novel fluorescent strategy for thedetection of endonuclease activity and its inhibitors based on hairpin probe and GO. Inthis assay, we designed a single dye-labeled hairpin probe that contains the recognitionsite for the endonuclease in the stem. Upon treatment with the target endonuclease,hairpin probe was digested into three pieces. One of the digested products, thedye-labeled short DNA would not be absored by GO, leads to a strong fluorescencesignal. In the absence of endonuclease, hairpin probe kept intact and was immediatelyabsorbed by GO, resulting in an effective fluorescence quenching. In addition, thismethod was applicable for inhibitor quantification. Given the simplicity, convenienceof this approach, the proposed method may provide an alternative approach for thestudy of the interaction between protein and DNA.
引文
[1]樊春海.纳米生物传感器.世界科学,2008,11:21-22
    [2]许春向.生物传感器及其应用.北京:科学出版社,1993
    [3]张先恩.生物传感技术原理与应用.长春:吉林科学技术出版社,1990,6-8
    [4]覃柳,刘仲明,邹小勇.电化学生物传感器研究进展.中国医学物理学杂志,2007,24(1):60-62
    [5] Webster J R, Burns M A, Burke D T, et al. Monolithic capillary electrophoresisdevice with integrated fluorescence detector. Analytical Chemistry,2001,73(7):1622-1626
    [6] Diggle C P, Bentley J and Kiltie A E. Development of a rapid, small-scale DNArepair assay for use on clinical samples. Nucleic Acids Research,2003,31(15):e83
    [7] Zhu X, Zhou X M, Xing D. Ultrasensitive and selective detection of mercury (II)in aqueous solution by polymerase assisted fluorescence amplification.Biosensors and Bioelectronics,2011,26(5):2666-2669
    [8] He J L, Wu Z S, Zhou H, et al. Fluorescence aptameric sensor for stranddisplacement amplification detection of cocaine. Analytical Chemistry,2010,82(4):1358-1364
    [9] Arthanari H, Basu S, Kawano T L, et al. Fluorescent dyes specific for quadruplexDNA. Nucleic Acids Research,1998,26(16):3724-3728
    [10] Hu D, Huang Z Z, Pu F, et al. A label-Free, quadruplex-based functionalmolecular beacon (LFG4-MB) for fluorescence turn-on detection of DNA andnuclease. Chemistry-A European Journal,2011,17(5):1635-1641
    [11] He H Z, Ma V P Y, Leung K H, et al. A label-free G-quadruplex-based switch-onfluorescence assay for the selective detection of ATP. Analyst,2012,137(7):1538-1540
    [12] Xiang Y, Tong A J, Lu Y. Abasic site-containing DNAzyme and aptamer forlabel-free fluorescent detection of Pb2+and adenosine with high sensitivity,selectivity, and tunable dynamic range. Journal of the American ChemicalSociety,2009,131(42):15352-15357
    [13] Xiang Y, Wang Z D, Xing H, et al. Label-free fluorescent functional DNAsensors using unmodified DNA: A vacant site approach. Analytical Chemistry,2010,82(10):4122-4129
    [14] Xu Q F, Cao A P, Zhang L F, et al. Rapid and label-free monitoring ofexonuclease III-assisted target recycling amplification. Analytical Chemistry,2012,84(24):10845-10851
    [15] Cruz-Aguado J A and Penner G. Fluorescence polarization based displacementassay for the determination of small molecules. Analytical Chemistry,2008,80(22):8853-8855
    [16] Ruta J, Perrier S, Ravelet C, et al. Noncompetitive fluorescence polarizationaptamer-based assay for small molecule detection. Analytical Chemistry,2009,81(17):7468-7473
    [17] Straka R J, Hoon T J, Lalonde R L, et al. Liquid chromatography andfluorescence polarization immunoassay methods compared for measuringflecainide acetate in serum. Clinical Chemistry,1987,33(10):1898-1900
    [18] Tian J N, Zhou L J, Zhao Y C, et al. Multiplexed detection of tumor markerswith multicolor quantum dots based on fluorescence polarization immunoassay.Talanta,2012,92,72-77
    [19] Moerke N J. Fluorescence polarization (FP) assays for monitoringpeptide-protein or nucleic acid-protein binding. Current Protocols in ChemicalBiology,2009,1,1-15
    [20] Loomans E E, van Doornmalen A M, Wat J W, et al. High-throughput screeningwith immobilized metal ion affinity-based fluorescence polarization detection, ahomogeneous assay for protein kinases. Assay and Drug DevelopmentTechnologies,2003,1(3):445-453
    [21] Freeman B D, Buchman T G, McGrath S, et al. Template-directed dye-terminatorincorporation with fluorescence polarization detection for analysis of singlenucleotide polymorphisms implicated in sepsis. Journal of MolecularDiagnostics,2002,4(4):209-215
    [22] Breunig M, Lungwitz U, Liebl R, et al. Fluorescence resonance energy transfer:evaluation of the intracellular stability of polyplexes. European Journal ofPharmaceutics and Biopharmaceutics,2006,63(2):156-165
    [23] Ghadiali J E, Lowe S B, Stevens M M. Quantum-Dot-based FRET detection ofhistone acetyltransferase activity. Angewandte Chemie International Edition,2011,50(15):3417-3420
    [24] Nguyen A W, You X, Jabaiah A M, et al. Reviews in Fluorescence2008. NewYork: Springer New York,2010,321-335
    [25] Wang H, Wang Y X, Jin J Y, et al. Gold nanoparticle-based colorimetric and“turn-on” fluorescent probe for mercury (II) ions in aqueous solution. AnalyticalChemistry,2008,80(23):9021-9028
    [26] Tyagi S and Kramer F R. Molecular beacons: probes that fluoresce uponhybridization. Nature Biotechnology,1996,14(3):303-308
    [27] Li J W J, Fang X H, Schuster S M, et al. Molecular beacons: a novel approach todetect protein-DNA interactions. Angewandte Chemie International Edition,2000,39(6):1049-1052
    [28] Li J W J, Geyer R, and Tan W H. Using molecular beacons as a sensitivefluorescence assay for enzymatic cleavage of single-stranded DNA. NucleicAcids Research,2000,28(11): e52
    [29] Fang X H, Li J W J, and Tan W H. Using Molecular beacons to probe molecularinteractions between lactate dehydrogenase and single-stranded DNA. AnalyticalChemistry,2000,72(14):3280-3285
    [30] Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acidsphosphorylation process using molecular beacons. Nucleic Acids Research,2005,33(11): e97
    [31] Liu L F, Tang Z W, Wang K M, et al. Using molecular beacon to monitoractivity of E. coli DNA ligase. Analyst,2005,130(3):350-357
    [32] Tang Z W, Liu P, Ma C B, et al. Molecular beacon based bioassay for highlysensitive and selective detection of nicotinamide adenine dinucleotide and theactivity of alanine aminotransferase. Analytical Chemistry,2011,83(7):2505-2510
    [33] Ma C B, Yang X H, Wang K M, et al. A novel kinase-based ATP assay usingmolecular beacon. Analytical Biochemistry,2008,372(1):131-133
    [34] Mhlanga M M, Vargas D Y, Fung C W. tRNA-linked molecular beacons forimaging mRNAs in the cytoplasm of living cells. Nucleic Acids Research,2005,33(6):1902-1912
    [35] Santangelo P J, Nix B, Tsourkas A, et al. Dual FRET molecular beacons formRNA detection in living cells. Nucleic Acids Research,2004,32(6): e57
    [36] Feng F D, Wang H Z, Han L L, et al. Fluorescent conjugated polyelectrolyte asan indicator for convenient detection of DNA methylation. Journal of theAmerican Chemical Society,2008,130(34):11338-11343
    [37] Duan X R, Liu L B, Feng F D, et al. Cationic conjugated polymers for opticaldetection of DNA methylation, lesions, and single nucleotide polymorphisms.Accounts of Chemical Research,2010,43(2):260-270
    [38] Feng F D, Tang Y L, He F, et al. Cationic conjugated polymer/DNA complexesfor amplified fluorescence assays of nucleases and methyltransferases. AdvancedMaterials,2007,19(21):3490-3495
    [39] Freeman R, Girsh J, Jou A F J, et al. Optical aptasensors for the analysis of thevascular endothelial growth factor (VEGF). Analytical Chemistry,2012,84(14):6192-6198
    [40] Chi C W, Lao Y H, Li Y S, et al. A quantum dot-aptamer beacon using a DNAintercalating dye as the FRET reporter: Application to label-free thrombindetection. Biosensors and Bioelectronics,2011,26(7):3346-3352
    [41] Goldman E R, Medintz I L, Whitley J L, et al. A hybrid quantum dot-antibodyfragment fluorescence resonance energy transfer-based TNT sensor. Journal ofthe American Chemical Society,127(18):6744-6751
    [42] Boeneman K, Mei B C, Dennis A M, et al. Sensing caspase3activity withquantum dot-fluorescent protein assemblies. Journal of the American ChemicalSociety,2009,131(11):3828-3829
    [43] Bailey V J, Easwaran H, Zhang Y, et al. MS-qFRET: a quantum dot-basedmethod for analysis of DNA methylation. Genome Research,2009,19(8):1455-1461
    [44] Cheng A K H, Su H P, Wang Y A, et al. Aptamer-based detection of epithelialtumor marker Mucin1with quantum dot-based fluorescence readout. AnalyticalChemistry,2009,81(15):6130-6139
    [45] Song S P, Liang Z Q, Zhang J, et al. Gold-nanoparticle-based multicolornanobeacons for sequence-specific DNA analysis. Angewandte Chemie,2009,121(46):8826-8830
    [46] Ray P C, Fortner A, and Darbha G K. Gold nanoparticle based FRET asssay forthe detection of DNA cleavage. The Journal of Physical Chemistry B,2006,110(42):20745-20748
    [47] Zhen S J, Chen L Q, Xiao S J, et al. Carbon nanotubes as a low backgroundsignal platform for a molecular aptamer beacon on the basis of long-rangeresonance energy transfer. Analytical Chemistry,2010,82(20):8432-8437
    [48] Li H L, Zhang Y W, Wang L, et al. Nucleic acid detection using carbonnanoparticles as a fluorescent sensing platform. Chemical Communications,2011,47(3):961-963
    [49] Hom E F Y and Verkman A S. Analysis of coupled bimolecular reaction kineticsand diffusion by two-color fluorescence correlation: spectroscopy: enhancedresolution of kinetics by resonance energy transfer. Biophysical Journal,2002,83(1):533-546
    [50] Miyagi H and Maruyama I N. Analysis of ligand-receptor interaction on thesurface of living cells by fluorescence correlation spectroscopy. The OpenSpectroscopy Journal,2010,4(1):28-31.
    [51] Medina M A, Schwille P. Fluorescence correlation spectroscopy for the detectionand study of single molecules in biology. Bioessays,2002,24(8):758-764
    [52] Hesterkamp T, Barker J, Davenport A, et al. Fragment based drug discoveryusing fluorescence correlation: spectroscopy techniques: challenges andsolutions. Current Topics in Medicinal Chemistry,2007,7(16):1582-1591
    [53] Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6(3):183-191
    [54] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films. Science,2004,306(5696):666-669
    [55] Novoselov K S, Jiang D. Two-dimensional atomic crystals. Proceedings of theNational Academy of Sciences,2005,102(30):10451-10453
    [56] Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide bysodium borohydride and its effect on electrical conductance. AdvancedFunctional Materials,2009,19(12):1987-1992
    [57] Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence inpatterned epitaxial graphene. Science,2006,312(5777):1191-1196
    [58] Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrarysubstrates by chemical vapor deposition. Nano Letters,2009,9(1):30-35
    [59] Yang X Y, Dou X, Rouhanipour A, et al. Two-dimensional graphene nanoribbons.Journal of the American Chemical Society,2008,130(13):4216-4217
    [60] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping ofcarbon nanotubes to form graphene nanoribbons. Nature,2009,458,872-876.
    [61]徐秀娟,秦金贵,李振.石墨烯研究进展.化学进展.2009,21(12):2559-2567
    [62] Chen D, Tang L H, and Li J h. Graphene-based materials in electrochemistry.Chemical Society Reviews,2010,39(8):3157-3180
    [63] Feng L Y, Chen Y, Ren J S, et al. A graphene functionalized electrochemicalaptasensor for selective label-free detection of cancer cells. Biomaterials,2011,32(11):2930-2937
    [64] Wang Y, Li Y M, Tang L H, et al. Application of graphene-modified electrode forselective detection of dopamine. Electrochemistry Communications,2009,11(4):889-892
    [65] Wu L, Wang J S, Feng L Y, et al. Label-free ultrasensitive detection of humantelomerase activity using porphyrin-functionalized graphene andelectrochemiluminescence technique. Advanced Materials,2012,24(18):2447-2452
    [66] Leng C, Wu J, Xu Q N, et al. A highly sensitive disposable immunosensorthrough direct electro-reduction of oxygen catalyzed by palladium nanoparticledecorated carbon nanotube label. Biosensors and Bioelectronics,2011,27(1):71-76
    [67] Haque A M J, Park H, Sung D, et al. An electrochemically reduced grapheneoxide-based electrochemical immunosensing platform for ultrasensitive antigen.Analytical Chemistry,2012,84(4):1871-1878
    [68] Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules.Angewandte Chemie International Edition,2009,48(26):4785-4787
    [69] He S J, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, andmulticolor fluorescent DNA analysis. Advanced Functional Materials,2010,20(3):453-459
    [70] Zhang C L, Xu J, Zhang S M, et al. One-pot synthesized DNA–CdTe quantumdots applied in a biosensor for the detection of sequence-specificoligonucleotides. Chemistry-A European Journal,2012,18(27):8296-8300
    [71] Zhang Y, Liu Y, Zhen S J, et al. Graphene oxide as an efficientsignal-to-background enhancer for DNA detection with a long range resonanceenergy transfer strategy. Chemical Communications,2011,47(42):11718-11720
    [72] He Y, Wang Z G, Tang H W, et al. Low background signal platform for thedetection of ATP: When a molecular aptamer beacon meets graphene oxide.Biosensors and Bioelectronics,2011,29(1):76-81
    [73] Lu C H, Li J, Lin M H, et al. Amplified aptamer-based assay through catalyticrecycling of the analyte. Angewandte Chemie International Edition,2010,49(45):8454-8457
    [74] Sheng L F, Ren J T, Miao Y Q, et al. PVP-coated graphene oxide for selectivedetermination of ochratoxin A via quenching fluorescence of free aptamer.Biosensors and Bioelectronics,2011,26(8):3494-3499
    [75] Wang H B, Chen T T, Wu S, et al. A novel biosensing strategy for screeningG-quadruplex ligands based on graphene oxide sheets. Biosensors andBioelectronics,2012,34(1):88-93
    [76] Zhang J R, Huang W T, Wan Y X, et al. Highly sensitive, selective, and rapidfluorescence Hg2+sensor based on DNA duplexes of poly(dT) and grapheneoxide. Analyst,2012,137(14):3300-3305
    [77] Zhao X H, Kong R M, Zhang X B, et al. Graphene-DNAzyme based biosensorfor amplified fluorescence “Turn-On” detection of Pb2+with a high selectivity.Analytical Chemistry,2011,83(13):5062-5066
    [78] Gao Y, Li Y, Zou X, et al. Highly sensitive and selective detection of biothiolsusing graphene oxide-based "molecular beacon"-like fluorescent probe.Analytica Chimica Acta,2012,731,68-74
    [79] Wen Y Q, Xing F F, He S J, et al. A graphene-based fluorescent nanoprobe forsilver (I) ions detection by using graphene oxide and a silver-specificoligonucleotide. Chemical Communications,2010,46(15):2596-2598
    [80] Jang H J, Kim Y K, Kwon H M, et al. A graphene-based platform for the assay ofduplex-DNA unwinding by helicase. Angewandte Chemie International Edition,2010,49(33):5703-5707
    [81] Lu C H, Li J, Qi X J, et al. Multiplex detection of nucleases by a graphene-basedplatform. Journal of Materials Chemistry,2011,21,10915-10919.
    [82] Feng D, Zhang Y Y, Feng T T, et al. A graphene oxide-peptide fluorescencesensor tailor-made for simple and sensitive detection of matrix metalloproteinase2. Chemical Communications,2011,47,10680-10682.
    [83] Gu X G, Yang G, Zhang G X, et al. A new fluorescence turn-on assay for trypsinand inhibitor screening based on graphene oxide. ACS Applied Materials&Interfaces,2011,3(4):1175-1179
    [84] Li J, Lu C H, Yao Q H, et al. A graphene oxide platform for energytransfer-based detection of protease activity. Biosensors and Bioelectronics,2011,26(9):3894-3899
    [85] Liu J J, Song X R, Wang Y W, et al. A graphene oxide (GO)-based molecularbeacon for DNA-binding transcription factor detection. Nanoscale,2012,4(12):3655-3659
    [86] Wang X H, Wang C Y, Qu K G, et al. Ultrasensitive and selective detection of aprognostic indicator in early-stage cancer using graphene oxide and carbonnanotubes. Advanced Functional Materials,2010,20(22):3967-3971
    [87] Yu F, Huang Y, Cole A J, et al. The artificial peroxidase activity of magnetic ironoxide nanoparticles and its application to glucose detection. Biomaterials,2009,30(27):4716-4722
    [88] Song Y J, Wang X H, Zhao C, et al. Label-free colorimetric detection of singlenucleotide polymorphism by using single-walled carbon nanotube intrinsicperoxidase-like activity. Chemistry-A European Journal,2010,16(12):3617-3621
    [89] Asati A, Santra S, Kaittanis C, et al. Oxidase-like activity of polymer-coatedcerium oxide nanoparticles. Angewandte Chemie International Edition,2009,48(13):2308-2312
    [90] Song Y J, Qu K G, Zhao C, et al. Graphene oxide: intrinsic peroxidase catalyticactivity and its application to glucose detection. Advanced Materials,2010,22(19):2206-2210
    [91] Qu F L, Li T, Yang M H. Colorimetric platform for visual detection of cancerbiomarker based on intrinsic peroxidase activity of graphene oxide. Biosensorsand Bioelectronics,2011,26(9):3927-3931
    [92] Wang Y, Li Z H, Hu D H, et al. Aptamer/Graphene oxide nanocomplex for in situmolecular probing in living cells. Journal of the American Chemical Society,2010,132(27):9274-9276
    [93] Wang H B, Zhang Q, Chu X, et al. Graphene oxide-peptide conjugate as anintracellular protease sensor for caspase-3activation imaging in live Cells.Angewandte Chemie International Edition,2011,50(31):7065-7069
    [94] Yang X Y, Wang Y S, Huang X, et al. Multi-functionalized graphene oxidebased anticancer drug-carrier with dual-targeting function and pH-sensitivity.Journal of Materials Chemistry,2011,21(10):3448-3454
    [95] Yang Y, Zhang Y M, Chen Y, et al. Construction of a graphene oxide basednoncovalent multiple nanosupramolecular assembly as a scaffold for drugdelivery. Chemistry-A European Journal,2012,18(14):4208-4215
    [96] Deshpande R A and Wilson T E. Identification of DNA3'-phosphatase active siteresidues and their differential role in DNA binding, Mg2+coordination, andcatalysis. Biochemistry,2004,43(26):8579-8589
    [97] Henner W D, Rodriguez L O, Hecht S M, et al. gamma Ray induceddeoxyribonucleic acid strand breaks3'Glycolate termini. The Journal ofBiological Chemistry,1983,258(2):711-713
    [98] Ames B N, Gold L S, Willett W C. The causes and prevention of cancer.Proceedings of the National Academy of Sciences,1995,92(12):5258-5265
    [99] Busheri F K, Daly G, Robins P, et al. Molecular characterization of a humanDNA kinase. Proceedings of the National Academy of Sciences,1999,274(34):24187-24194
    [100] Henner W D, Grunberg S M and Haseltine W A. Enzyme action at3' termini ofionizing radiation-induced DNA strand breaks. The Journal of BiologicalChemistry,1983,258(24):15198-15205
    [101] Yang S W, Jr. Burgin A B, Huizenga B N, et al. A eukaryotic enzyme that candisjoin dead-end covalent complexes between DNA and type I topoisomerases.Proceedings of the National Academy of Sciences,1996,93(21):11534-11539
    [102] Jilani A, Ramotar D, Slack C, et al. Molecular cloning of the human gene, PNKP,encoding a polynucleotide kinase3’-phosphatase and evidence for its role inrepair of DNA strand breaks caused by oxidative damage. The Journal ofBiological Chemistry,1999,274(34):24176-24186
    [103] Cameron V, Uhlenbeck O C.3'-Phosphatase activity in T4polynucleotide kinase.Biochemistry,1977,16(23):5120-5126
    [104] Busheri F K, Nia A R, Turner J A, et al. Human polynucleotide kinaseparticipates in repair of DNA double-strand breaks by nonhomologous endjoining but not homologous recombination. Cancer Research,2007,67(14):6619-6625
    [105] Rasouli-Nia A, Karimi-Busheri F, Weinfeld M. Stable down-regulation of humanpolynucleotide kinase enhances spontaneous mutation frequency and sensitizescells to genotoxic agents. Proceedings of the National Academy of Sciences,2004,101(18):6905-6910
    [106] Wang L K and Shuman S. Domain structure and mutational analysis of T4polynucleotide kinase. The Journal of Biological Chemistry,2001,276(29):26868-26874
    [107] Song C, Zhang C, and Zhao M P. Development of a high-throughput screeningplatform for DNA3'-phosphatases and their inhibitors based on a universalmolecular beacon and quantitative real-time PCR. Chemistry-An Asian Journal,2010,5(5):1146-1151
    [108] Zhang C, Su X, Liang Y, et al. A transformer of molecular beacon for sensitiveand real-time detection of phosphatases with effective inhibition of the falsepositive signals. Biosensors and Bioelectronics,2011,28(1):13-16
    [109] Lee K W, Maisel K, Rouillard J M, et al. Sensitive and selective label-free DNAdetection by conjugated polymer-based microarrays and intercalating dye.Chemistry of Materials,2008,20(9):2848-2850
    [110] Cheng Y Q, Li Z P, Zhang X, et al. Homogeneous and label-free fluorescencedetection of single-nucleotide polymorphism using target-primed branchedrolling circle amplification. Analytical Biochemistry,2008,378(2):123-126
    [111] Tan Y, Zhang X, Xie Y H, et al. Label-free fluorescent assays based onaptamer-target recognition. Analyst,2012,137,2309-2312
    [112] Zheng D M, Zou R X, and Lou X H. Label-free fluorescent detection of ions,proteins, and small molecules using structure-switching aptamers, SYBR gold,and exonuclease I. Analytical Chemistry,2012,84(8):3554-3560
    [113] Wang J and Liu B. Highly sensitive and selective detection of Hg2+in aqueoussolution with mercury-specific DNA and Sybr Green I. ChemicalCommunications,2008,39,4759-4761
    [114] Pu W D, Zhao H W, Huang C Z, et al. Fluorescent detection of silver(I) andcysteine using SYBR Green I and a silver(I)-specific oligonucleotide.Microchimica Acta,2012,177(1-2):137-144.
    [115] Xu H, Gao S L, Liu Q W, et al. A highly sensitive and selective competitionassay for the detection of cysteine using mercury-specific DNA, Hg2+and SybrGreen I. Sensors,2011,11(11):10187-10196
    [116] Liao D L, Jiao H P, Wang B, et al. KF polymerase-based fluorescence aptasensorfor the label-free adenosine detection. Analyst,2012,137(4):978-982
    [117] Go′mez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport propertiesof individual chemically reduced graphene oxide sheets. Nano Letters,2007,7(11):3499-3503
    [118] Sun X M, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging anddrug delivery. Nano Research,2008,1(3):203-212
    [119] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials. Nature,2006,442(7100):282-286
    [120] Bi S, Zhao T T and Luo B Y. A graphene oxide platform for the assay ofbiomolecules based on chemiluminescence resonanceenergy transfer. ChemicalCommunications,2012,48(1):106-108
    [121] Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energytransfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6):2341-2346
    [122] Liu M, Zhao H M, Chen S, et al. A “turn-on” fluorescent copper biosensor basedon DNA cleavage-dependent graphene-quenched DNAzyme. Biosensors andBioelectronics,2011,26(10):4111-4116
    [123] Hu P, Zhu C Z, Jin L H, et al. An ultrasensitive fluorescent aptasensor foradenosine detection based on exonuclease III assisted signal amplification.Biosensors and Bioelectronics,2012,34(1):83-87
    [124] Bao H Q, Pan Y Z, Ping Y, et al. Chitosan-functionalized graphene oxide as ananocarrier for drug and gene delivery. Small,2011,7(11):1569-1578
    [125] Li Y G and Wu Y Y. Coassembly of graphene oxide and nanowires for large-areananowire alignment. Journal of the American Chemical Society,2009,131(16):5851-5857
    [126] Lin L, Liu Y, Zhao X, et al. Sensitive and rapid screening of T4polynucleotidekinase activity and inhibition based on coupled exonuclease reaction andgraphene oxide platform. Analytical Chemistry,2011,83(22):8396-8402
    [127] Miao P, Ning L M, Li X X, et al. An electrochemical alkaline phosphatasebiosensor fabricated with two DNA probes coupled with λ exonuclease.Biosensors and Bioelectronics,2011,27(1):178-182
    [128] Müller B and Sheen J. Advances in cytokinin signaling. Science,2007,318(5847):68-69
    [129] Marley A E, Sullivan J E, Carling D, et al. Biochemical characterization anddeletion analysis of recombinant human protein phosphatase2Ca. BiochemicalJournal,1996,320(3):801-806
    [130] Connolly A R and Trau M. Isothermal detection of DNA by beacon-assisteddetection amplification. Angewandte Chemie,2010,122(15):2780-2783
    [131] Hacia J G, Fan J B, Ryder O, et al. Determination of ancestral alleles for humansingle-nucleotide polymorphisms using high-density oligonucleotide arrays.Nature Genetics,1999,22(2):164-167
    [132] Mirkin C A, Rosi N L, Giljohann D A, et al. Oligonucleotide-modified goldnanoparticles for intracellular gene regulation. Science,2006,312(5776):1027-1030
    [133] Rodriguez-Mozaz S, de Alda M J and Barceló D. Biosensors as useful tools forenvironmental analysis and monitoring. Analytical and Bioanalytical Chemistry,2006,386(4):1025-1041
    [134] Palchettia I and Mascini M. Nucleic acid biosensors for environmental pollutionmonitoring. Analyst,2008,133(7):846-854
    [135] Saiki R K, Gelfand D H, Stoffel S, et al. Primer-directed enzymatic amplificationof DNA with a thermostable DNA polymerase. Science,1988,239(4839):487-491
    [136] Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR. GenomeResearch,1996,6(10):986-994
    [137] Barany F. Genetic disease detection and DNA amplification using clonedthermostable ligase. Proceedings of the National Academy of Sciences,1991,88(1):189-193
    [138] Wee E J H, Shiddiky M A, Brown M A, et al. eLCR: electrochemical detection ofsingle DNA base changes via ligase chain reaction. Chemical Communications,2012,48(98):12014-12016
    [139] Park S J, Taton T A, and Mirkin C A. Array-based electrical detection of DNAwith nanoparticle probes. Science,2002,295(5559):1503-1506
    [140] Taton T A, Mirkin C A, and Letsinger R L. Scanometric DNA array detectionwith nanoparticle probes. Science,2000,289(5485):1757-1760
    [141] Nam J M, Stoeva S I, and Mirkin C A. Bio-bar-code-based DNA detection withPCR-like sensitivity. Journal of the American Chemical Society,2004,126(19):5932-5933
    [142] Liu G, Wan Y, Gau V, et al. An enzyme-based e-DNA sensor forsequence-specific detection of femtomolar DNA targets. Journal of the AmericanChemical Society,2008,130(21):6820-6825
    [143] Caruana D J and Heller A. Enzyme-amplified amperometric detection ofhybridization and of a single base pair mutation in an18-base oligonucleotide ona7-μm-diameter microelectrode. Journal of the American Chemical Society,1999,121(4):769-774
    [144] Wei F, Wang J H, Liao W, et al. Electrochemical detection of low-copy numbersalivary RNA based on specific signal amplification with a hairpin probe.Nucleic Acids Research,2008,36(11): e65
    [145] Nakayama S, Yan L, and Sintim H O. Junction probes-sequence specificdetection of nucleic acids via template enhanced hybridization processes. Journalof the American Chemical Society,2008,130(38):12560-12561
    [146] Sanchez J A, Pierce K E, Rice J E, et al. Linear-after-the-exponential(LATE)–PCR: an advanced method of asymmetric PCR and its uses inquantitative real-time analysis. Proceedings of the National Academy ofSciences,2004,101(7):1933-1938
    [147] Guo Q P, Yang X H, Wang K M, et al. Sensitive fluorescence detection ofnucleic acids based on isothermal circular strand-displacement polymerizationreaction. Nucleic Acids Research,2009,37(3): e20
    [148] Xuan F, Luo X T, Hsing I M. Sensitive immobilization-free electrochemicalDNA sensor based on isothermal circular strand displacement polymerizationreaction. Biosensors and Bioelectronics,2012,35(1):230-234
    [149] Gao F L, Zhu Z, Lei J P, et al. Sub-femtomolar electrochemical detection ofDNA using surface circular strand-replacement polymerization and goldnanoparticle catalyzed silver deposition for signal amplification. Biosensors andBioelectronics,2013,39(1):199-203
    [150] Zhou X M and Xing D. Amplified electrochemiluminescence detection ofnucleic acids by hairpin probe-based isothermal amplification. Analyst,2012,137(18):4188-4192
    [151] Lu C H, Li J, Liu J J, et al. Increasing the sensitivity and single-base mismatchselectivity of the molecular beacon using graphene oxide as the “nanoquencher”.Chemistry-A European Journal,2010,16(16):4889-4894
    [152] Peng L, Zhu Z, Chen Y, et al. An exonuclease III and graphene oxide-aidedassay for DNA detection. Biosensors and Bioelectronics,2012,35(1):475-478
    [153] Zhao X H, Ma Q J, Wu X X, et al. Graphene oxide-based biosensor for sensitivefluorescence detection of DNA based on exonuclease III-aided signalamplification. Analytica Chimica Acta,2012,727,67-70.
    [154] Ming Luo, Xi Chen, Guohua Zhou, et al. Chemiluminescence biosensor for DNAdetection using graphene oxide and horseradish peroxidase-mimickingDNAzyme. Chemical Communications,2012,48(8):1126-1128
    [155] Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctionaloligonucleotide probe for homogeneous parallel fluorescence detection ofprotein and nucleotide sequence. Analytical Chemistry,2011,83(8):3050-3057
    [156] Feng K J, Qiu L P, Yang Y F, et al. Label-free optical bifunctionaloligonucleotide probe for homogeneous amplification detection of diseasemarkers. Biosensors and Bioelectronics,2011,29(1):66-75
    [157] Zhao C Q, Wu L, Ren J S, et al. A label-free fluorescent turn-on enzymaticamplification assay for DNA detection using ligand-responsive G-quadruplexformation. Chemical Communications,2011,47(19):5461-5463
    [158] Cui L, Ke G L, Wang C M, et al. A cyclic enzymatic amplification method forsensitive and selective detection of nucleic acids. Analyst,2010,135(8):2069-2073
    [159] Knowles J R. Enzyme-catalyzed phosphoryl transfer reactions. Annual Reviewof Biochemistry,1980,49,877-919.
    [160] Perez-Ruiz T, Martine-Lozano C, Tomas V, et al. Determination of ATP via thephotochemical generation of hydrogen peroxide using flow injection luminolchemiluminescence detection. Analytical and Bioanalytical Chemistry,2003,377(1):189-194
    [161] Campbell N A, Williamson B, Heyden R J. Biology: Exploring Life. Boston,Massachusetts: Pearson Prentice Hall,2006.
    [162] Abraham E H, Okunieff P, Scala S, et al. Cystic fibrosis transmembraneconductance regulator and adenosine triphosphate. Science,1997,275(5304):1324-1325.
    [163] Gruenhagena J A, Lovellb P, Moroz L L, et al. Monitoring real-time release ofATP from the molluscan central nervous system. Journal of NeuroscienceMethods,2004,139(2):145-152
    [164] Patriarca A, Eliseo T, Sinibaldi F, et al. ATP acts as a regulatory effector inmodulating structural transitions of cytochrome c: implications for apoptoticactivity. Biochemistry,2009,48(15):3279-3287
    [165] Bush K T, Keller S H, Nigam S K. Genesis and reversal of the ischemicphenotype in epithelial cells. Journal of Clinical Investigation,2000,106(5):621-626
    [166] Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity.Clinical Neuroscience Research,2001,1(6):407-418
    [167] Yu F, Li L, Chen F. Determination of adenosine disodium triphosphate usingprulifloxacin-terbium (III) as a fluorescence probe by spectrofluorimetry.Analytica Chimica Acta,2008,610(2):257-262
    [168] Lee S J, Park J S, Im H T. A microfluidic ATP-bioluminescence sensor for thedetection of airborne microbes. Sensors and Actuators B: Chemical,2008,132(2):443-448
    [169] Wilson T, Hastings J W. Bioluminescence. Annual Review of Cell andDevelopmental Biology,1998,14,197-230.
    [170] Wang Z, Haydon P G, Yeung E S. Direct observation of calcium-independentintercellular ATP signaling in astrocytes. Analytical Chemistry,2000,72(9):2001-2007
    [171] Kamidate T, Yanashita K, Tani H, et al. Firefly bioluminescent assay of ATP inthe presence of ATP extractant by using liposomes. Analytical Chemistry,2006,78(1):337-342
    [172] Li C, Numata M, Takeuchi M, et al. A sensitive colorimetric and fluorescentprobe based on a polythiophene derivative for the detection of ATP. AngewandteChemie International Edition,2005,44(39):6371-6374
    [173] An L L, Tang Y L, Feng F D, et al. Water-soluble conjugated polymers forcontinuous and sensitive fluorescence assays for phosphatase and peptidase.Journal of Materials Chemistry,2007,17(39):4147-4152
    [174] Mizukami S, Nagano T, Urano Y, et al. A fluorescent anion sensor that works inneutral aqueous solution for bioanalytical application. Journal of the AmericanChemical Society,2002,124(15):3920-3925
    [175] McCleskey S C, Griffin M J, Schneider S E, et al. Differential receptors createpatterns diagnostic for ATP and GTP. Journal of the American Chemical Society,2003,125(5):1114-1115
    [176] Butterfield S M, Waters M L. A designed β-hairpin peptide for molecularrecognition of ATP in water. Journal of the American Chemical Society,2003,125(32):9580-9581
    [177] Li N. Detection of non-nucleic acid targets with an unmodified aptamer and afluorogenic competitor. Journal of Laboratory Automation,2010,15(3):189-197
    [178] Zuo X L, Xiao Y, and Plaxco K W. High specificity, electrochemical sandwichassays based on single aptamer sequences and suitable for the direct detection ofsmall-molecule targets in blood and other complex matrices. Journal of theAmerican Chemical Society,2009,131(20):6944-6945
    [179] Ma C B, Yang X H, Wang K M, et al. A novel kinase-based ATP assay usingmolecular beacon. Analytical Biochemistry,2008,372(1):131-133
    [180] Zhou Z X, Du Y, Dong S J. DNA-Ag nanoclusters as fluorescence probe forturn-on aptamer sensor of small molecules. Biosensors and Bioelectronics,2011,28(1):33-37
    [181] Kashefi-Kheyrabadi L, Mehrgardi M A. Aptamer-conjugated silver nanoparticlesfor electrochemical detection of adenosine triphosphate. Biosensors andBioelectronics,2012,37(1):94-98
    [182] Wang J, Wang L H, Liu X F, et al. A gold nanoparticle-based aptamer targetbinding readout for ATP assay. Advanced Materials,2007,19(22):3943-3946
    [183] Song K, Kong X G, Liu X M, et al. Aptamer optical biosensor withoutbio-breakage using upconversion nanoparticles as donors. ChemicalCommunications,2012,48(8):1156-1158
    [184] Wang Y H, He X X, Wang K M, et al. A sensitive ligase-based ATPelectrochemical assay using molecular beacon-like DNA. Biosensors andBioelectronics,2010,25(9):2101-2106
    [185] Lu L M, Zhang X B, Kong R M, et al. A ligation-triggered DNAzyme cascade foramplified fluorescence detection of biological small molecules withzero-background signal. Journal of the American Chemical Society,2011,133(30):11686-11691
    [186] Zhang M, Yin B C, Tan W H, et al. A versatile graphene-based fluorescence“on/off” switch for multiplex detection of various targets. Biosensors andBioelectronics,2011,26(7):3260-3265
    [187] Pu Y, Zhu Z, Han D, et al. Insulin-binding aptamer-conjugated graphene oxidefor insulin detection. Analyst,2011,136(20):4138-4140
    [188] Xing X J, Liu X G, He Y, et al. Graphene oxide based fluorescent aptasensor foradenosine deaminase detection using adenosine as the substrate. Biosensors andBioelectronics,2012,37(1):61-67
    [189] Li S H, Aphale A N, Macwan I G, et al. Graphene oxide as a quencher forfluorescent assay of amino acids, peptides, and proteins. ACS Applied Materials&Interfaces,2012,4(12):7069-7075
    [190] Liu X, Aizen R, Freeman R, et al. Multiplexed aptasensors and amplified dnasensors using functionalized graphene oxide: Application for logic gateoperations. ACS Nano,2012,6(4):3553-3563
    [191] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Research,2003,31(13):3406-3415
    [192] Zhen S J, Chen L Q, Xiao S J, et al. Carbon nanotubes as a low backgroundsignal platform for a molecular aptamer beacon on the basis of long-rangeresonance energy transfer. Analytical Chemistry,2010,82(20):8432-8437
    [193] Pu W D, Zhang L, and Huang C Z. Graphene oxide as a nano-platform for ATPdetection based on aptamer chemistry. Analytical Methods,2012,4(6):1662-1666
    [194] Sitaula S, Branch S D and Ali M F. GOx signaling triggered by aptamer-basedATP detection. Chemical Communications,2012,48(74):9284-9286
    [195] Li W, Nie Z, Xu X H, et al. A sensitive, label free electrochemical aptasensor forATP detection. Talanta,2009,78(3):954-958
    [196] Zuo X L, Song S P, Zhang J, et al. A target-responsive electrochemical aptamerswitch (TREAS) for reagentless detection of nanomolar ATP. Journal of theAmerican Chemical Society,2007,129(5):1042-1043
    [197] Frundzhyan N, Ugarova N. Bioluminescent assay of total bacterialcontamination of drinking water. Luminescence,2007,22(3):241-244
    [198] Chen Y, Corriden R, Inoue Y, et al. ATP release guides neutrophil chemotaxisvia P2Y2and A3receptors. Science,2006,314(5806):1792-1795
    [199] Gourine A V, Llaudet E, Dale N, et al. ATP is a mediator of chemosensorytransduction in the central nervous system. Nature,2005,436(7047):108-111
    [200] Ashcroft F M, Gribble F M. ATP-sensitive K+channels and insulin secretion:their role in health and disease. Diabetologia,1999,42(8):903-919
    [201] Dennis P B, Jaeschke A, Saitoh M, et al. Mammalian TOR: A homeostatic ATPsensor. Science,2001,294(5544):1102-1105
    [202] Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine celldeath fate by apoptosis or necrosis. Cancer Research,1997,57(10):1835-1840
    [203] Zhou Z, Du Y and Dong S. Double-strand DNA-templated formation of coppernanoparticles as fluorescent probe for label-free aptamer sensor. AnalyticalChemistry,2011,83(13):5122-5127
    [204] Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity.Clinical Neuroscience Research,2001,1(6):407-418
    [205] Bush K T, Keller S H, Nigam S K. Genesis and reversal of the ischemicphenotype in epithelial cells. Journal of Clinical Investigation,2000,106(5):621-626
    [206] Bronstein I, McGrath P. Chemiluminescence lights up. Nature,1989,338(6216):599-600
    [207] Wang Z, Haydon P G, Yeung E S. Direct observation of calcium-independentintercellular ATP signaling in astrocytes. Analytical Chemistry,2000,72(9):2001-2007
    [208] Mitra A, Hinge V K, Mittal A, et al. A zinc-sensing glucose-based naphthylimino conjugate as a detecting agent for inorganic and organic phosphates,including DNA. Chemistry-A European Journal,2011,17(29):8044-8047
    [209] Ojida A, Miyahara Y, Wongkongkatep J, et al. Design of dual-emissionchemosensors for ratiometric detection of ATP derivatives. Chemistry-An AsianJournal,2006,1(4):555-563
    [210] Zhao M C, Wang M, Liu H J, et al. Continuous on-site label-free ATPfluorometric assay based on aggregation-induced emission of silole. Langmuir,2009,25(2):676-678
    [211] Marcotte N, Taglietti A. Transition-metal-based chemosensing ensembles: ATPsensing in physiological conditions. Supramolecular Chemistry,2003,15(8):617-625
    [212] Cruz-Aguado J A, Chen Y, Zhang Z, et al. Ultrasensitive ATP detection usingfirefly luciferase entrapped in sugar-modified sol-gel-derived silica. Journal ofthe American Chemical Society,2004,126(22):6878-6879
    [213] Yao W, Wang L, Wang H Y, et al. An aptamer-based electrochemiluminescentbiosensor for ATP detection. Biosensors and Bioelectronics,2009,24(11):3269-3274
    [214] Zipper H, Brunner H, Bernhagen J, et al. Investigations on DNA intercalationand surface binding by SYBR Green I, its structure determination andmethodological implications. Nucleic Acids Research,2004,32(12): e103
    [215] Chen Z, Li G, Zhang L, et al. A new method for the detection of ATP using aquantum-dot-tagged aptamer. Analytical and Bioanalytical Chemistry,2008,392(6):1185-1188
    [216] Liu F, Zhang J, Chen R, et al. Highly effective colorimetric and visual detectionof ATP by a DNAzyme aptamer sensor. Chemistry&Biodiversity,2011,8(2):311-316
    [217] Zhang S S, Yan Y M, and Bi S. Design of molecular beacons as signaling probesfor adenosine triphosphate detection in cancer cells based on chemiluminescenceresonance energy transfer. Analytical Chemistry,2009,81(21):8695-8701
    [218] Gite S U, Shankar V. Single-strand-specific nucleases. Critical Reviews inMicrobiology,1995,21(2):101-122
    [219] Roberts R J. Restriction enzymes and their isoschizomers. Nucleic AcidsResearch,1990,18(8):2331-2365
    [220] Marti T M, Fleck O. DNA repair nucleases. Cellular and Molecular LifeSciences,2004,61(3):336-354
    [221] Pingoud A, Jeltsch A. Structure and function of type II restriction endonucleases.Nucleic Acids Research,2001,29(18):3705-3727
    [222] Ma M, Benimetskaya L, Lebedeva I, et al. Intracellular mRNA cleavage inducedthrough activation of RNase P by nuclease-resistant external guide sequences.Nature Biotechnology,2000,18(1):58-61
    [223] Robinson C R and Sligar S G. Changes in solvation during DNA binding andcleavage are critical to altered specificity of the EcoRI endonuclease.Proceedings of the National Academy of Sciences,1998,95(5):2186-2191
    [224] Jeltsch A, Alves J, Wolfes H, et al. Substrate-assisted catalysis in the cleavage ofDNA by the EcoRI and EcoRV restriction enzymes. Proceedings of the NationalAcademy of Sciences,1993,90(18):8499-8503
    [225] Hokari S, Miura K, Koyama I K, et al. A restriction endonuclease assay forexpression of human α-amylase isozymes. Clinica Chimica Acta,2002,33(1):113-116
    [226] McLaughlin L W, Benseler F, Graeser E, et al. Effects of functional groupchanges in the EcoRI recognition site on the cleavage reaction catalyzed by theendonuclease. Biochemistry,1987,26(23):7238-7245
    [227] Alves J, Ruter T, Geiger R, et al. Changing the hydrogen-bonding potential in theDNA binding site of EcoRI by site-directed mutagenesis drastically reduces theenzymic activity, not, however, the preference of this restriction endonucleasefor cleavage within the site-GAATTC-. Biochemistry,1989,28(6):2678-2684
    [228] Fliess A, Wolfes H, Rosenthal A, et al. Role of thymidine residues in DNArecognition by the EcoRI and EcoRV restriction endonucleases. Nucleic AcidsResearch,1986,14(8):3463-3474
    [229] Jeltsch A, Fritz A, Alves J, et al. A fast and accurate enzyme-linkedimmunosorbent assay for the determination of the DNA cleavage activity ofrestriction endonucleases. Analytical Biochemistry,1993,213(2):234-240
    [230] Huang Y, Zhao S L, Liang H, et al. Multiplex detection of endonucleases byusing a multicolor gold nanobeacon. Chemistry-A European Journal,2011,17(26):7313-7319
    [231] Zhao C, Qu K G, Song Y J, et al. A universal, label-free, and sensitive opticalenzyme-sensing system for nuclease and methyltransferase activity based onlight scattering of carbon nanotubes. Advanced Functional Materials,2011,21(3):583-590
    [232] Sun C H, Zhang L L, Jiang J H, et al. Electrochemical DNA biosensor based onproximity-dependent DNA ligation assays with DNAzyme amplification ofhairpin substrate signal. Biosensors and Bioelectronics,2010,25(11):2483-2489
    [233] Sun C H, Liu X P, Feng K J, et al. An aptazyme-based electrochemical biosensorfor the detection of adenosine. Analytica Chimica Acta,2010,669(1):87-93
    [234] Song C and Zhao M P. Real-time monitoring of the activity and kinetic of T4polynucleotide kinase by a singly labeled DNA-hairpin smart probe coupled withλ exonuclease cleavage. Analytical Chemistry,2009,81(4):1383-1388
    [235] Deng J, Jin Y, Wang L, et al. Sensitive detection of endonuclease activity andinhibition using gold nanorods. Biosensors and Bioelectronics,2012,34(1):144-150
    [236] Lee J, Kim Y K, M and Min D H. A new assay for endonucleasemethyltransferase activities based on graphene oxide. Analytical Chemistry,2011,83(23):8906-8912
    [237] Deng J, Jin Y, Chen G Z, et al. Label-free fluorescent assay for real-timemonitoring site-specific DNA cleavage by EcoRI endonuclease. Analyst,2012,137(7):1713-1717

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700