用户名: 密码: 验证码:
聚合物基柔性染料敏化太阳能电池光阳极的性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(Dye-sensitized solar cell,简称DSC)是一种新型低成本的光化学太阳能电池。凭借其轻质、便携性和可折叠等优点,柔性DSC比刚性DSC拥有更加广阔的应用前景。但是由于金属基板不透明,金属基柔性DSC只能采用背射方式,光电转化效率相对较低。因而柔性DSC研究的焦点更多的集中于低温(<150oC)制备导电性良好的透明导电聚合物基柔性DSC光阳极,解决当前存在的薄膜机械强度较差、颗粒间连接性较差、DSC光电转换效率较低等问题。本论文紧密围绕以上问题,主要研究了聚合物基柔性DSC级配结构光阳极中不同尺寸纳米颗粒的分散性对薄膜内纳米颗粒的连接性、光阳极薄膜结构和柔性DSC光电性能的影响以及电子传递和复合的的影响机理,分别通过浆料改性和薄膜改性的方法,改善了级配结构薄膜表面形貌和内部颗粒的连接性,提高光电转换效率。
     浆料改性方面,系统研究了匀浆分散、硝酸改性和调节浆料溶剂比例对聚合物基级配结构光阳极纳米颗粒分散性和连接性以及光电性能的影响。研究结果表明:(1)匀浆分散处理显著改善了薄膜内三种颗粒,特别是小颗粒的分散性,改善薄膜内部纳米颗粒间的连接性,减少薄膜内的裂纹和空隙,提高了光阳极薄膜的机械强度和稳定性;(2)级配浆料中硝酸的加入能够加速电子传递和抑制电子复合,有利于改善柔性DSC的光电性能,然而过量硝酸的加入也可能会导致对ITO层的腐蚀,从而严重的影响DSC的光电性能;(3)改变溶剂中水和叔丁醇的比例,可以调节浆料在基板表面的接触角和涂覆性能,从而改变氧化钛薄膜与基板的连接性;同时混合溶剂中水和叔丁醇相对比例改变,也会造成薄膜在干燥过程内部应力分布发生改变,从而改变光阳极薄膜形貌和表面裂纹数量,直接影响光电转化效率。
     薄膜改性方面,系统研究了压制处理和UV-O3照射对聚合物基级配结构光阳极结构和内部颗粒连接以及光电性能的影响。研究结果表明:(1)压制处理导致级配结构表面裂纹被氧化钛纳米颗粒填充,使薄膜趋向于致密化,同时氧化钛纳米颗粒配位数提高,相应的增加了光生电子传递通道,降低了薄膜内的电荷传递电阻,促成了光电性能的改善;(2)UV-O3照射处理能够提高基板的亲水性,使浆料在基板表面的涂覆均匀性增强,同时有效的去除低温烧结光阳极薄膜中残余的有机物,改善薄膜的导电性及其内部纳米颗粒之间的连接,提高了光电转化效率。
Dye-sensitized solar cell (DSC) is promising regarded as a kind of novelphotochemical solar cell with low cost. Flexible DSCs have shown much more potentialapplication than rigid DSC because of their advantages such as portability, light weightand flexibility. The enhancement of energy conversion efficiency of flexible DSCs withthin metal substrate is restricted due to the opacity of nature defects, which decreasesthe adsorption efficiency of visible light, and results in poor energy conversionefficiency. Therefore, the research is focused on how to prepare flexible DSCphotoanode with transparent conductive polymer substrate such as ITO-PEN. Since theheat treatment temperature for these substrates is generally limited to a temperaturelower than150oC, the interparticle connections in the film still stays at a poor level,which slows down the transport of photo-induced electrons in the film and gives rise toelectron recombination. Graded structure composed of different sized nanoparticles is aporous structure with good mechanic performance, which is favorable for flexible DSCphotoanode. In this thesis, we investigated the dispersion effects of different sizednanoparticles in graded structured photoanode on the connectivity among TiO_2nanoparticles, the film structure and photovoltaic performance as well as the electrontransfer and recombination mechanism. The effects of paste optimization and posttreatment modification of film are studied in detail to improve the internal nanoparticleconnections, so as to optimize the preparation and enhance the photovoltaicperformance.
     In the part of paste optimization, the effects of dispersion treatment, HNO3addition,and solvent ratio optimization on the nanoparticle dispersion and photovoltaicperformance of graded structured photoanode are systematically studied. Firstly, thedispersion of three kinds of different sized nanoparticles, especially the smallnanoparticles is greatly improved by the dispersion treatment. The dispersion treatmentalso enhances the connectivity of internal nanoparticles and reduces the cracks in thegraded structured film, which gives high mechanical strength and stability ofphotoanode. Secondly, the electron transport is accelerated by means of increasing nitricacid, which increases the coordination number of TiO_2nanoparticles and provides more possible electron transfer pathways in the photoanode. This was confirmed by thecharge transport resistance in the TiO_2film (Rt). However, excessive nitric acid alsoleaded to a corrosion of the ITO substrate and impaired the photovoltaic performance ofthe flexible devices. Thirdly, the ratio between water and tertiary butanol in the pastecan control the contact angle and coating uniformity on the surface of polymer substrate,which directly affects the connectivity between film and substrate. Changing the solventratio also leads to the change of internal stress distribution during crying, thus changingthe surface morphology and cracks density in the photoanode, consequently influencingthe energy conversion efficiency.
     In the part of film modification, compression method and UV-O3illuminationtreatment on the graded structured photoanode have been applied to construct highlyefficient DSCs. The compression treatment can make the cracks filled with TiO_2nanoparticles, in order to make a denser film and increase the coordination number ofnanoparticles. As a result, more possible electron transfer pathways are provided and theRtin the photoanode decreases. Under UV-O3illumination treatment, the substratesurface hydrophily is improved greatly, leading to a more uniform coating of TiO_2pasteon the substrate. Meanwhile, the remaining impurity after drying in the film is removedeffectively with UV-O3illumination treatment, which enhances the connectivity ofinternal nanoparticles, consequently constructing highly efficient DSCs.
引文
[1] Gratzel M. Photoelectrochemical cells. Nature,2001,414:338-344.
    [2] Becquerel A E. Recherches sur les effets de la radiation chimique de la lumière solaire, aumoyendes courants électriques. Comptes Rendus de l'Académie des Sciences de Paris,1839,9:145-149.
    [3] Fritts C E. On a new form of selenium photocell. Am J Sci,1883,26:465.
    [4] Shockley W, Queisser H J. Detailed balance limit of efficiency of P-N junction solar cells. JAppl Phys,1961,32:510.
    [5] Alferov Z I, Andreev V M, Kagan M B, et al. Solar energy converters based on P-N al xga1-xas-gaas heterojunctions. Fizika I Tekhnika Poluprovodnikov,1970,4:2378-2379.
    [6] Korwin-Pawlowski M. Gallium-arsenide photoelectric receiving devices. Przeglad Elektroniki,1969,10:105-116.
    [7] Crossley P A, Gill R B, Hui W L C, et al. Progress in thin film gaas solar cells. ConferenceRecord of the Sixth Photovoltaics Specialists Conference,1967:160-178.
    [8] Rappaport P. The photovoltaic effect and its utilization. Rca Review,1959,20:373-397.
    [9] Shirland F A. The history, design, fabrication and performance of CdS thin film solar cells.Adv Energ Conver,1966,6:201-221.
    [10] Tawada Y, Tsuge K, Kondo M, et al. Properties and structure of alpha-Sic-h forhigh-efficiency alpha-si solar-cell. J Appl Phys,1982,53:5273-5281.
    [11] Yablonovitch E, Cody G D. Intensity enhancement in textured optical sheets for solar-cells.IEEE T Electron Dev,1982,29:300-305.
    [12] Staebler D L, Crandall R S, Williams R. Stability of n-i-p amorphous-silicon solar-cells. ApplPhys Lett,1981,39:733-735.
    [13] Staebler D L, Wronski C R. Optically induced conductivity changes in discharge-producedhydrogenated amorphous-silicon. J Appl Phys,1980,51:3262-3268.
    [14] Bard A J, Bocarsly A B, Fan F, et al. The concept of fermi level pinning atsemiconductor-liquid junctions-consequences for energy-conversion efficiency and selectionof useful solution redox couples in solar devices. J Am Chem Soc,1980,102:3671-3677.
    [15] Cody G D, Wronski C R, Abeles B, et al. Optical characterization of amorphous-siliconhydride films. Solar Cells,1980,2:227-243.
    [16] Ghosh A K, Fishman C, Feng T. Theory of the electrical and photo-voltaic properties ofpolycrystalline silicon. J Appl Phys,1980,51:446-454.
    [17] Fossum J G, Lindholm F A. Theory of grain-boundary and intragrain recombination currentsin polysilicon P-N-junction solar-cells. IEEE T Electron Dev,1980,27:692-700.
    [18] Ashok S, Sharma P P, Fonash S J. Spray-deposited ITO-silicon sis heterojunction solar-cells.IEEE T Electron Dev,1980,27:725-730.
    [19] Carlson D E. Recent developments in amorphous-silicon solar-cells. Solar Energy Materials,1980,3:503-518.
    [20] Rajkanan K, Singh R, Shewchun J. Absorption-coefficient of silicon for solar-cellcalculations. Solid State Electron,1979,22:793-795.
    [21] Staebler D L, Wronski C R. Reversible conductivity changes in discharge-producedamorphous Si. Appl Phys Lett,1977,31:292-294.
    [22] Zanzucchi P J, Wronski C R, Carlson D E. Optical and photoconductive properties ofdischarge-produced amorphous silicon. J Appl Phys,1977,48:5227-5236.
    [23] Carlson D E. Amorphous silicon solar-cells. IEEE T Electron Dev,1977,24:449-453.
    [24] Stokes E D, Chu T L. Diffusion lengths in solar-cells from short-circuit current measurements.Appl Phys Lett,1977,30:425-426.
    [25] Carlson D E, Wronski C R. Amorphous silicon solar-cell. Appl Phys Lett,1976,28:671-673.
    [26] Lillington D R, Townsend W G. Effects of interfacial oxide layers on performance of siliconschottky-barrier solar cells. Appl Phys Lett,1976,28:97-98.
    [27] Wilt D, Stan M. High efficiency multijunction photovoltaic development. Ind Eng Chem Res,2012,51:11931-11940.
    [28] Mirovsky Y, Cahen D. Normal-CuInSe2polysulfide photo-electrochemical solar-cells. ApplPhys Lett,1982,40:727-728.
    [29] Garcia F J, Tomar M S. A screen printed CdS/CuInSe2solar cell. Japanese Journal of AppliedPhysics, Supplement,1982:535-538.
    [30] Mickelsen R A, Chen W S. High photocurrent polycrystalline thin-film CdS-CuInSe2solar-cell. Appl Phys Lett,1980,36:371-373.
    [31] Chen W S, Mickelsen R A. Thin-film CdS/CuInSe2heterojunction solar cell. Proceedings ofthe Society of Photo-Optical Instrumentation Engineers,1980,248:62-69.
    [32] Kazmerski L L, Sheldon P. Fabrication and characterization of ITO/CuInSe2photovoltaicheterojunctions. Thirteenth IEEE Photovoltaic Specialists Conference-1978,1978:541-544.
    [33] Kazmerski L L, White F R, Morgan G K. Thin-film CuInSe2-CdS heterojunction solar-cells.Appl Phys Lett,1976,29:268-270.
    [34] Shay J L, Wagner S, Kasper H M. Efficient CuInSe2/CdS solar cells. Appl Phys Lett,1975,27:89-90.
    [35] Shay J L, Wagner S, Bachmann K, et al. Preparation and properties of inp/CdS andCuInSe2/CdS solar cells.11Th IEEE Photovoltaic Specialists Conference,1975:503-507.
    [36] Dietze W T, Ludowise M J, Gregory P E. Ga0.80In0.20As1.20eV high quantum efficiencyjunction for multijunction solar-cells. Appl Phys Lett,1982,41:984-986.
    [37] Valco G J, Kapoor V J, Evans J C. Planar multijunction high-voltage solar-cell chip. J ApplPhys,1982,53:7566-7571.
    [38] Parrott J E, Baird A M. A theoretical analysis of the optimum number of units in multigapmultijunction system under various operating conditions. Fifteenth IEEE PhotovoltaicSpecialists Conference-1981,1981:383-386.
    [39] Cape J A, Oliver J R, Miller D L, et al. Automated measurement system for solar cell opticalcharacterization studies of gaas and multijunction cascade cells. Fifteenth IEEE PhotovoltaicSpecialists Conference-1981,1981:1195-1198.
    [40] Mcpartland R J, Sabnis A G. A low-high-junction solar-cell model developed for use intandem cell analysis. Solid State Electron,1980,23:605-610.
    [41] Jr. Evans J C, Chai A T, Goradia C. Planar multijunction high voltage solar cells. FourteenthIEEE Photovoltaic Specialists Conference1980,1980:58-62.
    [42] Chappell T I. V-groove multi-junction solar-cell. IEEE T Electron Dev,1979,26:1091-1097.
    [43] Fraas L M, Knechtli R C. Design of high efficiency monolithic stacked multijunction solarcells. Thirteenth IEEE Photovoltaic Specialists Conference-1978,1978:886-891.
    [44] Soukup R J. Lensed high-voltage vertical multi-junction solar-cell. J Appl Phys,1977,48:440-441.
    [45] Soukup R J. High-voltage vertical multijunction solar cell. J Appl Phys,1976,47:555-559.
    [46] Shah P. Analysis of vertical multijunction solar cells using a distributed circuit model. SolidState Electron,1975,18:1099-1106.
    [47] Gover A, Stella P. Vertical multijunction solar-cell one-dimensional analysis. IEEE TElectron Dev,1974,21:351-356.
    [48] Arango A C, Johnson L R, Bliznyuk V N, et al. Efficient titanium oxide/conjugated polymerphotovoltaics for solar energy conversion. Adv Mater,2000,12:1689.
    [49] Jenekhe S A, Yi S J. Efficient photovoltaic cells from semiconducting polymerheterojunctions. Appl Phys Lett,2000,77:2635-2637.
    [50] Neugebauer H, Brabec C, Hummelen J C, et al. Stability and photodegradation mechanismsof conjugated polymer/fullerene plastic solar cells. Sol Energ Mat Sol C,2000,61:35-42.
    [51] Dittmer J J, Lazzaroni R, Leclere P, et al. Crystal network formation in organic solar cells. SolEnerg Mat Sol C,2000,61:53-61.
    [52] Chen L C, Godovsky D, Inganas O, et al. Polymer photovoltaic devices from stratifiedmultilayers of donor-acceptor blends. Adv Mater,2000,12:1367-1370.
    [53] Brabec C J, Padinger F, Hummelen J C, et al. Realization of large area flexible fullerene-conjugated polymer photocells: a route to plastic solar cells. Synthetic Met,1999,102:861-864.
    [54] Sariciftci N S, Braun D, Zhang C, et al. Semiconducting polymer-buckminsterfullereneheterojunctions-diodes, photodiodes, and photovoltaic cells. Appl Phys Lett,1993,62:585-587.
    [55] Oregan B, Gratzel M. A low-cost, high efficiency solar cell based on dye-sensitized colloidalTiO2films. Nature,1991,353:737-740.
    [56] Park N G, van de Lagemaat J, Frank A J. Comparison of dye-sensitized rutile-andanatase-based TiO2solar cells. J Phys Chem B,2000,104:8989-8994.
    [57] Haque S A, Tachibana Y, Willis R L, et al. Parameters influencing charge recombinationkinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B,2000,104:538-547.
    [58] Hara K, Horiguchi T, Kinoshita T, et al. Highly efficient photon-to-electron conversion withmercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol Energ Mat Sol C,2000,64:115-134.
    [59] Fisher A C, Peter L M, Ponomarev E A, et al. Intensity dependence of the back reaction andtransport of electrons in dye-sensitized nanacrystalline TiO2solar cells. J Phys Chem B,2000,104:949-958.
    [60] Cahen D, Hodes G, Gratzel M, et al. Nature of photovoltaic action in dye-sensitized solarcells. J Phys Chem B,2000,104:2053-2059.
    [61] O'Regan B, Schwartz D T, Zakeeruddin S M, et al. Electrodeposited nanocomposite N-Pheterojunctions for solid-state dye-sensitized photovoltaics. Adv Mater,2000,12:1263.
    [62] Heimer T A, Heilweil E J, Bignozzi C A, et al. Electron injection, recombination, and halideoxidation dynamics at dye-sensitized metal oxide interfaces. J Phys Chem A,2000,104:4256-4262.
    [63] Yoshida T, Terada K, Schlettwein D, et al. Electrochemical self-assembly of nanoporousZnO/eosin y thin films and their sensitized photoelectrochemical performance. Adv Mater,2000,12:1214-1217.
    [64] Duffy N W, Peter L M, Rajapakse R, et al. A novel charge extraction method for the study ofelectron transport and interfacial transfer in dye sensitised nanocrystalline solar cells.Electrochem Commun,2000,2:658-662.
    [65] Park N G, Schlichthorl G, van de Lagemaat J, et al. Dye-sensitized TiO2solar cells: structuraland photoelectrochemical characterization of nanocrystalline electrodes formed from thehydrolysis of TiCl4. J Phys Chem B,1999,103:3308-3314.
    [66] Schlichthorl G, Park N G, Frank A J. Evaluation of the charge-collection efficiency ofdye-sensitized nanocrystalline TiO2solar cells. J Phys Chem B,1999,103:782-791.
    [67] Tennakone K, Kumara G, Kottegoda I, et al. An efficient dye-sensitized photoelectrochemicalsolar cell made from oxides of tin and zinc. Chem Commun,1999:15-16.
    [68] Franco G, Gehring J, Peter L M, et al. Frequency-resolved optical detection of photoinjectedelectrons in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B,1999,103:692-698.
    [69] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2solar cells withhigh photon-to-electron conversion efficiencies. Nature,1998,395:583-585.
    [70] Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitizedsolar cells. Sol Energ Mat Sol C,1998,54:265-275.
    [71] Liu Y, Hagfeldt A, Xiao X R, et al. Investigation of influence of redox species on theinterfacial energetics of a dye-sensitized nanoporous TiO2solar cell. Sol Energ Mat Sol C,1998,55:267-281.
    [72] Huang S Y, Schlichthorl G, Nozik A J, et al. Charge recombination in dye-sensitizednanocrystalline TiO2solar cells. J Phys Chem B,1997,101:2576-2582.
    [73] Schlichthorl G, Huang S Y, Sprague J, et al. Band edge movement and recombination kineticsin dye-sensitized nanocrystalline TiO2solar cells: a study by intensity modulatedphotovoltage spectroscopy. J Phys Chem B,1997,101:8141-8155.
    [74] Dloczik L, Ileperuma O, Lauermann I, et al. Dynamic response of dye-sensitizednanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy.J Phys Chem B,1997,101:10281-10289.
    [75] Zakeeruddin S M, Nazeeruddin M K, Pechy P, et al. Molecular engineering ofphotosensitizers for nanocrystalline solar cells: synthesis and characterization of Ru dyesbased on phosphonated terpyridines. Inorg Chem,1997,36:5937-5946.
    [76] Tachibana Y, Moser J E, Gratzel M, et al. Subpicosecond interfacial charge separation indye-sensitized nanocrystalline titanium dioxide films. J Phys Chem,1996,100:20056-20062.
    [77] Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystallinetitanium dioxide and carbon powder. Sol Energ Mat Sol C,1996,44:99-117.
    [78] Kavan L, Yum J H, Gratzel M. Optically transparent cathode for dye-sensitized solar cellsbased on graphene nanoplatelets. ACS Nano,2010,5:165-172.
    [79] Xiong Y, Zhaosheng X, Bin L. Electrophoretic deposition of Pt nanoparticles on plasticsubstrates as counter electrode for flexible dye-sensitized solar cells. J Power Sources,2011:2422-2426.
    [80] Yoriya S, Grimes C A. Self-assembled anodic TiO2nanotube arrays: electrolyte propertiesand their effect on resulting morphologies. J Mater Chem,2011,21:102-108.
    [81] Fan K, Peng T Y, Chai B, et al. Fabrication and photoelectrochemical properties of TiO2filmson Ti substrate for flexible dye-sensitized solar cells. Electrochim Acta,2010,55:5239-5244.
    [82] Xianwei H, Ping S, Bin Z, et al. Stainless steel mesh-based flexible quasi-solid dye-sensitizedsolar cells. Sol Energ Mat Sol C,2010:1005-1010.
    [83] Hsin-Wei C, Chia-Yu L, Yi-Hsuan L, et al. Electrophoretic deposition of ZnO film and itscompression for a plastic based flexible dye-sensitized solar cell. J Power Sources,2011:4859-4864.
    [84] Chen H, Liao Y, Chen J, et al. Fabrication and characterization of plastic-based flexibledye-sensitized solar cells consisting of crystalline mesoporous titania nanoparticles asphotoanodes. J Mater Chem,2011,21:17511-17518.
    [85] Huang F, Chen D, Cao L, et al. Flexible dye-sensitized solar cells containing multiple dyes indiscrete layers. Energy Environ Sci,2011,4:2803-2806.
    [86] Durr M, Schmid A, Obermaier M, et al. Low-temperature fabrication of dye-sensitized solarcells by transfer of composite porous layers. Nat Mater,2005,4:607-611.
    [87] Peng Y, Liu J Z, Wang K, et al. Influence of parameters of cold isostatic pressing on TiO2films for flexible dye-sensitized solar cells. Int J Photoenergy,2011:10352.
    [88] Gerischer H. Electrochemical photo and solar cells principles and some experiments. JElectroanal Chem,1975,58:263-274.
    [89] Xu J, Wu H, Jia X, et al. A dendron modified ruthenium complex: enhanced open circuitvoltage in dye-sensitized solar cells. Chem Commun,2012,48:7793-7795.
    [90] Chandrasekharam M, Reddy M A, Singh S P, et al. One bipyridine and triple advantages:tailoring ancillary ligands in ruthenium complexes for efficient sensitization in dye solar cells.J Mater Chem,2012,22:18757-18760.
    [91] Anthonysamy A, Lee Y, Karunagaran B, et al. Molecular design and synthesis ofRuthenium(ii) sensitizers for highly efficient dye-sensitized solar cells. J Mater Chem,2011,21:12389-12397.
    [92] Lee K M, Wu S J, Chen C Y, et al. Efficient and stable plastic dye-sensitized solar cells basedon a high light-harvesting ruthenium sensitizer. J Mater Chem,2009,19:5009-5015.
    [93] Durr M, Schmid A, Obermaier M, et al. Diffusion properties of dye molecules in nanoporousTiO2networks. J Phys Chem A,2005,109:3967-3970.
    [94] Yin J, Chen J, Lin J, et al. Enhanced light-harvesting capability by phenothiazine inruthenium sensitizers with superior photovoltaic performance. J Mater Chem,2012,22:130-139.
    [95] Griffith M J, Sunahara K, Wagner P, et al. Porphyrins for dye-sensitised solar cells: newinsights into efficiency-determining electron transfer steps. Chem Commun,2012,48:4145-4162.
    [96] Wu C, Pan T, Hong S, et al. A fluorene-modified porphyrin for efficient dye-sensitized solarcells. Chem Commun,2012,48:4329-4331.
    [97] Ripolles-Sanchis T, Guo B, Wu H, et al. Design and characterization of alkoxy-wrappedpush-pull porphyrins for dye-sensitized solar cells. Chem Commun,2012,48:4368-4370.
    [98] Parussulo A L A, Iglesias B A, Toma H E, et al. Sevenfold enhancement on porphyrin dyeefficiency by coordination of ruthenium polypyridine complexes. Chem Commun,2012,48:6939-6941.
    [99] Lyons D M, Ono R J, Bielawski C W, et al. Porphyrin-oligothiophene conjugates as additivesfor P3HT/PCBM solar cells. J Mater Chem,2012,22:18956-18960.
    [100] Huang K, Hsiao Y, Huang J, et al. Controlling vertical alignment of phthalocyaninenanofibers on transparent graphene-coated ITO electrodes for organic field emitters. J MaterChem,2012,22:7837-7844.
    [101] Giribabu L, Sudhakar K, Velkannan V. Phthalocyanines: potential alternative sensitizers toRu(ii) polypyridyl complexes for dye-sensitized solar cells. Curr Sci India,2012,102:991-1000.
    [102] Spanig F, Lopez-Duarte I, Fischer M, et al. Charge and energy transfer processes inruthenium(ii) phthalocyanine based electron donor-acceptor materials-implications for solarcell performance. J Mater Chem,2011,21:1395-1403.
    [103] Melis C, Raiteri P, Colombo L, et al. Self-assembling of zinc phthalocyanines on ZnO (1010)surface through multiple time scales. ACS Nano,2011,5:9639-9647.
    [104] Liu Y Z, Lin H, Li X, et al. Photoinduced electron transfer in panchromatic zincphthalocyanine-azobenzene dyad. Inorg Chem Commun,2010,13:187-190.
    [105] Yang C, Chang Y J, Watanabe M, et al. Phenothiazine derivatives as organic sensitizers forhighly efficient dye-sensitized solar cells. J Mater Chem,2012,22
    [106] Liu B, Liu Q, You D, et al. Molecular engineering of indoline based organic sensitizers forhighly efficient dye-sensitized solar cells. J Mater Chem,2012,22:13348-13356.
    [107] Shi J, Chen J, Chai Z, et al. High performance organic sensitizers based on11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. J Mater Chem,2012,22:18830-18838.
    [108] Kozma E, Concina I, Braga A, et al. Metal-free organic sensitizers with a sterically hinderedthiophene unit for efficient dye-sensitized solar cells. J Mater Chem,2011,21:13785-13788.
    [109] Yang J, Guo F, Hua J, et al. Efficient and stable organic DSSC sensitizers bearingquinacridone and furan moieties as a planar [small pi]-spacer. J Mater Chem,2012,22:24356-24365.
    [110] Holliman P J, Mohsen M, Connell A, et al. Ultra-fast co-sensitization and tri-sensitization ofdye-sensitized solar cells with N719, sq1and triarylamine dyes. J Mater Chem,2012,22:13318-13327.
    [111] Kun-Mu L, Ying-Chan H, Ikegami M, et al. Co-sensitization promoted light harvesting forplastic dye-sensitized solar cells. J Power Sources,2011:2416-2421.
    [112] Lan C, Wu H, Pan T, et al. Enhanced photovoltaic performance with co-sensitization ofporphyrin and an organic dye in dye-sensitized solar cells. Energy Environ Sci,2012,5:6460-6464.
    [113] Saxena V, Veerender P, Chauhan A K, et al. Efficiency enhancement in dye sensitized solarcells through co-sensitization of TiO2nanocrystalline electrodes. Appl Phys Lett,2012,100
    [114] Zheng X, Zhang J, Peng L, et al. The effects of electronic structure of non-metallic dopedTiO2anode and co-sensitization on the performance of dye-sensitized solar cells. J Mater Sci,2011,46:5071-5078.
    [115] Watson D F, Meyer G J. Electron injection at dye-sensitized semiconductor electrodes. AnnuRev Phys Chem,2004,56:119-156.
    [116] Anderson N A, Lian T. Ultrafast electron transfer at the molecule-semiconductor nanoparticleinterface. Annu Rev Phys Chem,2004,56:491-519.
    [117] Ra M. On the theory of oxidation-reduction reactions involving electron transfer. J ChemPhys,1956,24:966-978.
    [118] Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev,1995,95:49-68.
    [119] Peter L M. Dye-sensitized nanocrystalline solar cells. Phys Chem Chem Phys,2007,9:2630-2642.
    [120] Tirosh S, Dittrich T, Ofir A, et al. Influence of ordering in porous TiO2layers on electrondiffusion. J Phys Chem B,2006,110:16165-16168.
    [121] Duffy N W, Peter L M, Wijayantha K G U. Characterisation of electron transport and backreaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation.Electrochem Commun,2000,2:262-266.
    [122] Fisher A C, Peter L M, Ponomarev E A, et al. Intensity dependence of the back reaction andtransport of electrons in dye-sensitized nanocrystalline TiO2solar cells. J Phys Chem B,2000,104:949-958.
    [123] Peter L M. Characterization and modeling of dye-sensitized solar cells. J Phys Chem C,2007,111:6601-6612.
    [124] Krüger J, Plass R, Gr tzel M, et al. Charge transport and back reaction in solid-statedye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrentspectroscopy. J Phys Chem B,2003,107:7536-7539.
    [125] Bisquert J, Vikhrenko V S. Interpretation of the time constants measured by kinetictechniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. J PhysChem B,2004,108:2313-2322.
    [126] Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solarcell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater,2003,2:402-407.
    [127] Nazeeruddin M K, De Angelis F, Fantacci S, et al. Combined experimental and dft-tddftcomputational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc,2005,127:16835-16847.
    [128] Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2filmwith high molar extinction coefficient ruthenium sensitizers for high performancedye-sensitized solar cells. J Am Chem Soc,2008,130:10720-10728.
    [129] Hao F, Lin H, Zhang J, et al. Balance between the physical diffusion and the exchangereaction on binary ionic liquid electrolyte for dye-sensitized solar cells. J Power Sources,2011,196:1645-1650.
    [130] Hao F, Lin H, Liu Y, et al. Evidence for enhancing charge collection efficiency with analternative cost-effective binary ionic liquids electrolyte based dye-sensitized solar cells.Electrochim Acta,2011,56:5605-5610.
    [131] Hao F, Lin H, Liu Y, et al. Anionic structure-dependent photoelectrochemical responses ofdye-sensitized solar cells based on a binary ionic liquid electrolyte. Phys Chem Chem Phys,2011,13:6416-6422.
    [132] Bai Y, Cao Y, Zhang J, et al. High-performance dye-sensitized solar cells based onsolvent-free electrolytes produced from eutectic melts. Nat Mater,2008,7:626-630.
    [133] Fan K, Peng T, Chen J, et al. Low-cost, quasi-solid-state and TCO-free highly bendabledye-sensitized cells on paper substrate. J Mater Chem,2012,22:16121-16126.
    [134] Chen X, Zhao J, Zhang J, et al. Bis-imidazolium based poly(ionic liquid) electrolytes forquasi-solid-state dye-sensitized solar cells. J Mater Chem,2012,22:18018-18024.
    [135] Zhao J, Shen X, Yan F, et al. Solvent-free ionic liquid/poly(ionic liquid) electrolytes forquasi-solid-state dye-sensitized solar cells. J Mater Chem,2011,21:7326-7330.
    [136] Lee R H, Cheng T F, Chang J W, et al. Enhanced photovoltaic performance ofquasi-solid-state dye-sensitized solar cells via incorporating quaternized ammoniumiodide-containing conjugated polymer into peo gel electrolytes. Colloid Polym Sci,2011,289:817-829.
    [137] Huang K, Chang Y, Chen C, et al. Improved exchange reaction in an ionic liquid electrolyteof a quasi-solid-state dye-sensitized solar cell by using15-crown-5-functionalized MWCNT.J Mater Chem,2011,21:18467-18474.
    [138] Li Q H, Wu J H, Tang Z Y, et al. Application of poly(acrylic acid-g-gelatin)/polypyrrole gelelectrolyte in flexible quasi-solid-state dye-sensitized solar cell. Electrochim Acta,2010,55:2777-2781.
    [139] Yang Y, Zhou C, Xu S, et al. Improved stability of quasi-solid-state dye-sensitized solar cellbased on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolytes. J PowerSources,2008,185:1492-1498.
    [140] Lee C, Yeh M, Vittal R, et al. Solid-state dye-sensitized solar cell with a charge transfer layercomprising two ionic liquids and a carbon material. J Mater Chem,2011,21:15471-15478.
    [141] Docampo P, Guldin S, Stefik M, et al. Control of solid-state dye-sensitized solar cellperformance by block-copolymer-directed TiO2synthesis. Adv Funct Mater,2010,20:1787-1796.
    [142] Wang M K, Gratzel C, Moon S J, et al. Surface design in solid-state dye sensitized solar cells:effects of zwitterionic co-adsorbents on photovoltaic performance. Adv Funct Mater,2009,19:2163-2172.
    [143] Gayet F, Viau L, Leroux F, et al. Polymer nanocomposite ionogels, high-performanceelectrolyte membranes. J Mater Chem,2010,20:9456-9462.
    [144] Mathews K L, Budgin A M, Beeram S, et al. Solid polymer electrolytes which containtricoordinate boron for enhanced conductivity and transference numbers. J Mater Chem A,2013,1:1108-1116.
    [145] Nagarajan S, Sudhagar P, Raman V, et al. A pedot-reinforced exfoliated graphite compositeas a pt-and TCO-free flexible counter electrode for polymer electrolyte dye-sensitized solarcells. J Mater Chem A,2013,1:1048-1054.
    [146] Lin H, Hao F, Lin C F, et al. Highly catalytic active nanostructured Pt electrodes fordye-sensitized solar cells prepared by low temperature electrodeposition. Funct Mater Lett,2011,4:7-11.
    [147] Tjoa V, Chua J, Pramana S S, et al. Facile photochemical synthesis of graphene-Ptnanoparticle composite for counter electrode in dye sensitized solar cell. ACS Appl MaterInter,2012,4:3447-3452.
    [148] Cherng S J, Chen C M, Dow W P, et al. Chemical deposition of Ni/Pt bi-layer on polyimidefilm as flexible counterelectrodes for dye-sensitized solar cells. Electrochem Solid St,2011,14:P13-P15.
    [149] Deng M H, Zhang Q X, Huang S Q, et al. Low-cost flexible nano-sulfide/carbon compositecounter electrode for quantum-dot-sensitized solar cell. Nano Res L,2010,5:986-990.
    [150] Sun H C, Luo Y H, Zhang Y D, et al. In situ preparation of a flexible polyaniline/carboncomposite counter electrode and its application in dye-sensitized solar cells. J Phys Chem C,2010,114:11673-11679.
    [151] Acharya K P, Khatri H, Marsillac S, et al. Pulsed laser deposition of graphite counterelectrodes for dye-sensitized solar cells. Appl Phys Lett,2010,97
    [152] Lee K M, Hu C W, Chen H W, et al. Incorporating carbon nanotube in a low-temperaturefabrication process for dye-sensitized TiO2solar cells. Sol Energ Mat Sol C,2008,92:1628-1633.
    [153] Lee K S, Lee Y, Lee J Y, et al. Flexible and platinum-free dye-sensitized solar cells withconducting-polymer-coated graphene counter electrodes. Chemsuschem,2012,5:379-382.
    [154] Zheng H, Neo C Y, Mei X, et al. Reduced graphene oxide films fabricated by gel coating andtheir application as platinum-free counter electrodes of highly efficient iodide/triiodidedye-sensitized solar cells. J Mater Chem,2012,22:14465-14474.
    [155] Liu C, Huang K, Chung P, et al. Graphene-modified polyaniline as the catalyst material forthe counter electrode of a dye-sensitized solar cell. J Power Sources,2012,217:152-157.
    [156] Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cellsprepared by electrophoretic deposition. J Mater Chem,2011,21:7548-7551.
    [157] Zhu G, Pan L, Lu T, et al. Electrophoretic deposition of reduced graphene-carbon nanotubescomposite films as counter electrodes of dye-sensitized solar cells. J Mater Chem,2011,21:14869-14875.
    [158] Noureldine D, Shoker T, Musameh M, et al. Investigation of carbon nanotube webs as counterelectrodes in a new organic electrolyte based dye sensitized solar cell. J Mater Chem,2012,22:862-869.
    [159] Sun W, Sun X, Peng T, et al. A low cost mesoporous Carbon/SnO2/TiO2nanocompositecounter electrode for dye-sensitized solar cells. J Power Sources,2012,201:402-407.
    [160] Lin J, Lien C, Chou S. Multi-wall carbon nanotube counter electrodes for dye-sensitized solarcells prepared by electrophoretic deposition. J Solid State Electr,2012,16:1415-1421.
    [161] Veerappan G, Woosung K, Shi-Woo R. Carbon-nanofiber counter electrodes for quasi-solidstate dye-sensitized solar cells. J Power Sources,2011,196
    [162] Dong P, Pint C L, Hainey M, et al. Vertically aligned single-walled carbon nanotubes aslow-cost and high electrocatalytic counter electrode for dye-sensitized solar cells. ACS ApplMater Inter,2011,3:3157-3161.
    [163] Toivola M, Ahlskog F, Lund P. Industrial sheet metals for nanocrystalline dye-sensitizedsolar cell structures. Sol Energ Mat Sol C,2006,90:2881-2893.
    [164] Park J H, Jun Y, Yun H G, et al. Fabrication of an efficient dye-sensitized solar cell withstainless steel substrate. J Electrochem Soc,2008,155:F145-F149.
    [165] Jun Y, Kim J, Kang M G. A study of stainless steel-based dye-sensitized solar cells andmodules. Sol Energ Mat Sol C,2007,91:779-784.
    [166] Kang M G, Park N G, Ryu K S, et al. A4.2%efficient flexible dye-sensitized TiO2solar cellsusing stainless steel substrate. Sol Energ Mat Sol C,2006,90:574-581.
    [167] Miettunen K, Halme J, Toivola M, et al. Initial performance of dye solar cells on stainlesssteel substrates. J Phys Chem C,2008,112:4011-4017.
    [168] Ito S, Ha N, Rothenberger G, et al. High-efficiency (7.2%) flexible dye-sensitized solar cellswith ti-metal substrate for nanocrystalline-TiO2photoanode. Chem Commun,2006,42:4004-4006.
    [169] Onoda K, Ngamsinlapasathian S, Fujieda T, et al. The superiority of ti plate as the substrate ofdye-sensitized solar cells. Sol Energ Mat Sol C,2007,91:1176-1181.
    [170] Kuang D, Brillet J, Chen P, et al. Application of highly ordered TiO2nanotube arrays inflexible dye-sensitized solar cells. ACS Nano,2008,2:1113-1116.
    [171] Liu Z Y, Subramania V, Misra M. Vertically oriented TiO2nanotube arrays grown on Timeshes for flexible dye-sensitized solar cells. J Phys Chem C,2009,113:14028-14033.
    [172] Lv Z B, Fu Y P, Hou S C, et al. Large size, high efficiency fiber-shaped dye-sensitized solarcells. Phys Chem Chem Phys,2011,13:10076-10083.
    [173] Zhang S, Ji C, Bian Z, et al. Single-wire dye-sensitized solar cells wrapped by carbonnanotube film electrodes. Nano Lett,2011,11:3383-3387.
    [174] Zou D C, Wang D, Chu Z Z, et al. Fiber-shaped flexible solar cells. Coordin Chem Rev,2010,254:1169-1178.
    [175] Huang X W, Shen P, Zhao B, et al. Stainless steel mesh-based flexible quasi-soliddye-sensitized solar cells. Sol Energ Mat Sol C,2010,94:1005-1010.
    [176] Toivola M, Ferenets M, Lund P, et al. Photovoltaic fiber. Thin Solid Films,2009,517:2799-2802.
    [177] Ramier J, Plummer C, Leterrier Y, et al. Mechanical integrity of dye-sensitized photovoltaicfibers. Renew Energ,2008,33:314-319.
    [178] Ramier J, Da Costa N, Plummer C, et al. Cohesion and adhesion of nanoporous TiO2coatingson titanium wires for photovoltaic applications. Thin Solid Films,2008,516:1913-1919.
    [179] Fan X, Wang F Z, Chu Z Z, et al. Conductive mesh based flexible dye-sensitized solar cells.Appl Phys Lett,2007,90:73501-73503.
    [180] Weintraub B, Wei Y G, Wang Z L. Optical fiber/nanowire hybrid structures for efficientthree-dimensional dye-sensitized solar cells. Angew Chem Int Edit,2009,48:8981-8985.
    [181] Fan X, Chu Z Z, Wang F Z, et al. Wire-shaped flexible dye-sensitized solar cells. Adv Mater,2008,20:592.
    [182] Fan X, Chu Z Z, Chen L, et al. Fibrous flexible solid-type dye-sensitized solar cells withouttransparent conducting oxide. Appl Phys Lett,2008,92
    [183] Kim H, Kim D. Effect of surface roughness of top cover layer on the efficiency ofdye-sensitized solar cell. Sol Energy,2012,86:2049-2055.
    [184] Lindstrom H, Holmberg A, Magnusson E, et al. A new method for manufacturingnanostructured electrodes on plastic substrates. Nano Lett,2001,1:97-100.
    [185] Yamaguchi T, Tobe N, Matsumoto D, et al. Highly efficient plastic-substrate dye-sensitizedsolar cells with validated conversion efficiency of7.6%. Sol Energ Mat Sol C,2010:812-816.
    [186] Yamaguchi T, Tobe N, Matsumoto D, et al. Highly efficient plastic substrate dye-sensitizedsolar cells using a compression method for preparation of TiO2photoelectrodes. ChemCommun,2007:4767-4769.
    [187] Wessels K, Feldhoff A, Wark M, et al. Low-temperature preparation of crystallinenanoporous TiO2films by surfactant-assisted anodic electrodeposition. Electrochem Solid St,2006,9:C93-C96.
    [188] Zhang D S, Yoshida T, Oekermann T, et al. Room-temperature synthesis of porousnanoparticulate TiO2films for flexible dye-sensitized solar cells. Adv Funct Mater,2006,16:1228-1234.
    [189] Zhang D S, Downing J A, Knorr F J, et al. Room-temperature preparation of nanocrystallineTiO2films and the influence of surface properties on dye-sensitized solar energy conversion. JPhys Chem B,2006,110:21890-21898.
    [190] Miyasaka T, Kijitori Y. Low-temperature fabrication of dye-sensitized plastic electrodes byelectrophoretic preparation of mesoporous TiO2layers. J Electrochem Soc,2004,151:A1767-A1773.
    [191] Miyasaka T, Ikegami M, Kijitori Y. Photovoltaic performance of plastic dye-sensitizedelectrodes prepared by low-temperature binder-free coating of mesoscopic titania. JElectrochem Soc,2007,154:A455-A461.
    [192] Li X, Lin H, Li J B, et al. Chemical sintering of graded TiO2film at low-temperature forflexible dye-sensitized solar cells. J Photoch Photobio A,2008,195:247-253.
    [193] Li X, Lin H, Li J B, et al. A numerical simulation and impedance study of the electrontransport and recombination in binder-free TiO2film for flexible dye-sensitized solar cells. JPhys Chem C,2008,112:13744-13753.
    [194] Persson P, Lunell S. Binding of bi-isonicotinic acid to anatase TiO2(101). Sol Energ Mat SolC,2000,63:139-148.
    [195] Hao S C, Wu J H, Fan L Q, et al. The influence of acid treatment of TiO2porous filmelectrode on photoelectric performance of dye-sensitized solar cell. Sol Energy,2004,76:745-750.
    [196] Weerasinghe H C, Sirimanne P M, Franks G V, et al. Low temperature chemically sinterednano-crystalline TiO2electrodes for flexible dye-sensitized solar cells. J Photoch Photobio A,2010,213:30-36.
    [197] Parayil S K, Lee Y M, Yoon M. Photoelectrochemical solar cell properties ofheteropolytungstic acid-incorporated TiO2nanodisc thin films. Electrochem Commun,2009,11:1211-1216.
    [198] Kim K, Lee G W, Yoo K, et al. Improvement of electron transport by low-temperaturechemically assisted sintering in dye-sensitized solar cell. J Photoch Photobio A,2009,204:144-147.
    [199] Jung H S, Lee J K, Lee S, et al. Acid adsorption on TiO2nanoparticles-an electrochemicalproperties study. J Phys Chem C,2008,112:8476-8480.
    [200] Park D W, Park K H, Lee J W, et al. Hydrochloric acid treatment of TiO2electrode forquasi-solid-state dye-sensitized solar cells. J Nanosci Nanotechno,2007,7:3722-3726.
    [201] Koyama Y, Xiao-Feng W, Fujii R, et al. Dye-sensitized solar cells using retinoic acid andcarotenoic acids: dependence of performance on the conjugation length and the dyeconcentration. Chem Phys Lett,2005, vol.416, no.1-3:1-6.
    [202] Nilsing M, Lunell S, Persson P, et al. Phosphonic acid adsorption at the TiO2anatase (101)surface investigated by periodic hybrid hf-dft computations. Surf Sci,2005,582:49-60.
    [203] Weerasinghe H C, Franks G V, Plessis J D, et al. Anomalous rheological behavior inchemically modified TiO2colloidal pastes prepared for flexible dye-sensitized solar cells. JMater Chem,2010,20:9954-9961.
    [204] Pan H, Ko S H, Misra N, et al. Laser annealed composite titanium dioxide electrodes fordye-sensitized solar cells on glass and plastics. Appl Phys Lett,2009:71113-71117.
    [205] Lewis L N, Spivack J L, Gasaway S, et al. A novel UV-mediated low-temperature sintering ofTiO2for dye-sensitized solar cells. Sol Energ Mat Sol C,2006,90:1041-1051.
    [206] Hart J N, Menzies D, Cheng Y B, et al. Microwave processing of TiO2blocking layers fordye-sensitized solar cells. J Sol-Gel Sci Techn,2006,40:45-54.
    [207] Uchida S, Timiha M, Takizawa H, et al. Flexible dye-sensitized solar cells by28Ghzmicrowave irradiation. J Photoch Photobio A,2004,164:93-96.
    [208] Uchida S, Tomiha M, Masaki N, et al. Preparation of TiO2nanocrystalline electrode fordye-sensitized solar cells by28Ghz microwave irradiation. Sol Energ Mat Sol C,2004,81:135-139.
    [209] Lee H, Hwang D, Jo S M, et al. Low-temperature fabrication of TiO2electrodes for flexibledye-sensitized solar cells using an electrospray process. ACS Appl Mater Inter,2012,4:3308-3315.
    [210] Yahav S, Rühle S, Greenwald S, et al. Strong efficiency enhancement of dye-sensitized solarcells using a la-modified TiCl4treatment of mesoporous TiO2electrodes. J Phys Chem C,2011,115:21481-21486.
    [211] Liu X, Wang L, Xue Z, et al. Efficient flexible dye-sensitized solar cells fabricated bytransferring photoanode with a buffer layer. RSC Adv,2012,2:6393-6396.
    [212] Yang L, Wu L Q, Wu M X, et al. High-efficiency flexible dye-sensitized solar cells fabricatedby a novel friction-transfer technique. Electrochem Commun,2010,12:1000-1003.
    [213] Kern R, Sastrawan R, Ferber J, et al. Modeling and interpretation of electrical impedancespectra of dye solar cells operated under open-circuit conditions. Electrochim Acta,2002,47:4213-4225.
    [214] Wang Z S, Kawauchi H, Kashima T, et al. Significant influence of TiO2photoelectrodemorphology on the energy conversion efficiency of N719dye-sensitized solar cell. CoordinChem Rev,2004,248:1381-1389.
    [215] Adachi M, Sakamoto M, Jiu J T, et al. Determination of parameters of electron transport indye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B,2006,110:13872-13880.
    [216] Zhang Y, Yoneyama Y, Tsubaki N. Simultaneous introduction of chemical and spatial effectsvia a new bimodal catalyst support preparation method. Chem Commun,2002:1216-1217.
    [217] Wang X C, Yu J C, Ho C M, et al. Photocatalytic activity of a hierarchicallymacro/mesoporous titania. Langmuir,2005,21:2552-2559.
    [218] Bundy F P, Hall H T, Strong H M, et al. Man-made diamonds. Nature,1955,176:51-55.
    [219] Zerr A, Miehe G, Serghiou G, et al. Synthesis of cubic silicon nitride. Nature,1999,400:340-342.
    [220] Zerr A, Riedel R, Sekine T, et al. Recent advances in new hard high-pressure nitrides. AdvMater,2006,18:2933-2948.
    [221] Monaco G, Falconi S, Crichton W A, et al. Nature of the first-order phase transition in fluidphosphorus at high temperature and pressure. Phys Rev Lett,2003,90:255701.
    [222] Gregoryanz E, Goncharov A F, Hemley R J, et al. High-pressure amorphous nitrogen. PhysRev B,2001,64:52103.
    [223] Weerasinghe H C, Sirimanne P M, Simon G P, et al. Cold isostatic pressing technique forproducing highly efficient flexible dye-sensitised solar cells on plastic substrates. ProgPhotovoltaics,2012,20:321-332.
    [224] Hsu C P, Lee K M, Huang J, et al. Eis analysis on low temperature fabrication of TiO2porousfilms for dye-sensitized solar cells. Electrochim Acta,2008,53:7514-7522.
    [225] Lv Z, Fu Y, Hou S, et al. Large size, high efficiency fiber-shaped dye-sensitized solar cells.Phys Chem Chem Phys,2011,13:10076-10083.
    [226] Jang S H, Kim Y J, Kim H J, et al. Low-temperature formation of efficient dye-sensitizedelectrodes employing nanoporous TiO2spheres. Electrochem Commun,2010,12:1283-1286.
    [227] Du Pasquier A, Stewart M, Spitler T, et al. Aqueous coating of efficient flexible TiO2dyesolar cell photoanodes. Sol Energ Mat Sol C,2009,93:528-535.
    [228] Kim K, Lee G W, Yoo K, et al. Improvement of electron transport by low-temperaturechemically assisted sintering in dye-sensitized solar cell. J Photoch Photobio A,2009,204:144-147.
    [229] Kijitori Y, Ikegami M, Miyasaka T. Highly efficient plastic dye-sensitized photoelectrodesprepared by low-temperature binder-free coating of mesoscopic titania pastes. Chem Lett,2007,36:190-191.
    [230] Miyasaka T, Ikegami M, Kijitori Y. Photovoltaic performance of plastic dye-sensitizedelectrodes prepared by low-temperature binder-free coating of mesoscopic titania. JElectrochem Soc,2007,154:A455-A461.
    [231] Weerasinghe H C, Sirimanne P M, Franks G V, et al. Low temperature chemically sinterednano-crystalline TiO2electrodes for flexible dye-sensitized solar cells. J Photoch Photobio A,2010,213:30-36.
    [232] Weerasinghe H C, Franks G V, Plessis J D, et al. Anomalous rheological behavior inchemically modified TiO2colloidal pastes prepared for flexible dye-sensitized solar cells. JMater Chem,2010,20:9954-9961.
    [233] Gileadi E, Kirowa-Eisner E. Electrolytic conductivity-the hopping mechanism of the protonand beyond. Electrochim Acta,2006,51:6003-6011.
    [234] Concari S B, Buitrago R H. Hopping mechanism of electric transport in intrinsic and p-dopednanocrystalline silicon thin films. J Non-Cryst Solids,2004,338-340:331-335.
    [235] Komura T, Ito Y, Yamaguti T, et al. Charge-transport processes at poly-o-aminophenol filmelectrodes: electron hopping accompanied by proton exchange. Electrochim Acta,1998,43:723-731.
    [236] Benkstein K D, Kopidakis N, van de Lagemaat J, et al. Influence of the percolation networkgeometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B,2003,107:7759-7767.
    [237] van de Lagemaat J, Benkstein K D, Frank A J. Relation between particle coordination numberand porosity in nanoparticle films: implications to dye-sensitized solar cells. J Phys Chem B,2001,105:12433-12436.
    [238] Hunter R J. Foundations of colloids science. Oxford: Oxford University Press,2001.
    [239] J I. Intermolecular and surface forces. London: AcademicPress,1992.
    [240] Barnes H A, Hutton J F, Walters K. An introduction to rheology. Amsterdam: ElsevierScience,1989.
    [241] Benkstein K D, Kopidakis N, van de Lagemaat J, et al. Influence of the percolation networkgeometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B,2003,107:7759-7767.
    [242] Fabregat-Santiago F, Bisquert J, Palomares E, et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids.J Phys Chem C,2007,111:6550-6560.
    [243] Bisquert J. Chemical capacitance of nanostructured semiconductors: its origin andsignificance for nanocomposite solar cells. Phys Chem Chem Phys,2003,5:5360-5364.
    [244] Du Pasquier A, Stewart M, Spitler T, et al. Aqueous coating of efficient flexible TiO2dyesolar cell photoanodes. Sol Energ Mat Sol C,2009,93:528-535.
    [245] Oh Y, Lee S, Kim H, et al. UV-assisted chemical sintering of inkjet-printed TiO2photoelectrodes for low-temperature flexible dye-sensitized solar cells. J Electrochem Soc,2012,159:H777-H781.
    [246] Barbe C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes forphotovoltaic applications. J Am Ceram Soc,1997,80:3157-3171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700