用户名: 密码: 验证码:
富锂层状材料Li-Ni-Mn-O的合成和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在富锂材料xLi_2MnO_3.(1-x) LiMO(2M=Ni、Mn、Co、Ni_(1/2)Mn_(1/2)、Ni_(1/3)Mn_(1/3)Co_(1/3),0≤x≤1)的合成过程中,前躯体对终产物的电化学性质有很大影响,因此合成过渡金属元素分散均匀的前躯体是很有必要的。富锂材料的首次充电电压高于4.5V(vs Li~+/Li)时,Li~+从锂层和过渡金属层共同脱出,同时锂层两侧的氧也一起脱出,相当于脱出了Li2O,而在放电过程中,脱出的Li~+不能全部嵌入富锂材料的晶格中,导致首次的不可逆容量损失。本论文选取富锂材料中的Li-Ni-Mn-O体系为研究对象,探索了新的合成方法,并通过表面包覆或植入尖晶石相提高了富锂材料首圈的库伦效率,吸收了首次充电时Li_2MnO_3相释放的O2。
     采用以尿素为沉淀剂的均匀沉淀法合成了Ni_xMn_(1-x)CO_3(0     采用以尿素为沉淀剂的均匀沉淀法制备了富锂材料Li[Ni_xLi_((1-2x)/3)Mn_((2-x)/3])O_2(其中x=0.1、0.25、0.3和0.4)。分析了不同Ni含量(x值)对前躯体和富锂材料结构和形貌的影响,并研究了材料在2.0-4.8V充放电区间内的电化学性能。当x=0.25(Ni含量)时,材料首次放电比容量为254mAh g~(-1),从第2圈开始容量保持在263mAh g~(-1)左右,表现出了良好的循环稳定性。
     通过降低合成过程中锂盐的用量,在富锂材料Li_(1.17)Ni_(0.25)Mn_(0.583)O_2(或0.4Li_2MnO_3.0.6LiNi_(0.5)Mn_(0.5)O_2)中形成了尖晶石相,使得材料的首次库伦效率接近了100%。当放电至2.8V时,尖晶石相LiM_2O_4(M=Mn或Ni0.5Mn1.5)可以嵌入第二个Li~+,形成Li2M2O4相,致使部分无法嵌入富锂材料的Li~+可以嵌入尖晶石结构中,有效提高了首圈的库伦效率。生成尖晶石相后材料在0.1C时的放电比容量保持在275mAh g~(-1)左右,表现出了良好的循环稳定性。
     通过水热还原法在Li_(1.17)Ni_(0.25)Mn_(0.583)O_2颗粒表面包覆不同比例的VO_2。当VO_2包覆量为10at%时,首圈的库伦效率为96.5%,远远高于未包覆的样品。在首次充电过程中,VO_2吸收了Li_2MnO_3相释放的氧原子,被氧化为V2O5;在放电过程中,V2O5可以嵌入Li~+,形成Li_xV_2O_5,致使部分无法嵌入富锂材料的Li~+可以嵌入V2O5中。因此表面包覆VO_2在提高富锂材料首圈库伦效率的同时,吸收了首次充电过程中释放的氧元素。
In the preparation of xLi_2MnO_3.(1-x) LiMO2(M=Ni、Mn、Co、Ni_(1/2)Mn_(1/2)、Ni_(1/3)Mn_(1/3)Co_(1/3),0≤x≤1), precursors play important roles on electrochemicalperformances of the final products. So it is necessary to prepare precursors withconstant contents of the transition metal elements. During the initial charge, lithiumextracts from the Li_2MnO_3component (Li2O·MnO2) with a simultaneous release ofoxygen above4.5V,which results in a net loss of Li2O to yield MnO2. But only one Li~+per MnO2unit embeds into the lattice during first discharge. So these materials undergoa huge irreversible capacity loss in the first cycle. In this dissertation, we selectedLi-Ni-Mn-O system as the objective and explored new method to prepare materials.Meanwhile, with aim to eliminate the huge irreversible capacity loss, the lithiumcontent was decreased to yield integrated layered-spinel structures, and VO_2was coatedon the surface by hydrothermal reduction to absorb the released oxygen.
     We successfully developed a urea-based homogeneous precipitation method forpreparation spherical carbonate precursors of Ni_xMn_(1-x)CO_3(0≤x≤1). Thedecomposition of urea releases precipitating anions (mainly OH-and CO_3~(2-)) slowly andhomogeneously into the reaction systems at elevated temperature, and thus results in thehomogeneous precipitation of the precursor particles even without stirring. Theconditions that influence the morphology of carbonate precursors and theelectrochemical performance of the final material were also investigated.
     Li[Li(1-2x)/3NixMn(2-x)/3]O2(x=0.1,0.25,0.3and0.4) were synthesized by aurea-based homogeneous precipitation method, and the structures, morphologies andelectrochemical behaviors (between2.0V and4.8V) of samples with different Nicontents (x) were studied. When x=0.25, the sample delivered a discharge capacity of254mAh g~(-1)in the initial cycle, and it also showed a stable discharge capacity of267mAh g~(-1)after20cycles.
     We report a method to eliminate the irreversible capacity by decreasing lithiumcontent of0.4Li_2MnO_3.0.6LiNi_(0.5)Mn_(0.5)O_2(Li_(1.17)Ni_(0.25)Mn_(0.583)O_2) to yield integratedlayered-spinel structures. When discharged to about2.8V, the spinel phase of LiM_2O_4(M=Ni, Mn) can transform to rock-salt phase of Li2M2O4(M=Ni, Mn) during which the tetravalent manganese ions are reduced to an oxidation state of3.0. So the spinelphase can act as a host to insert back the extracted lithium ions (from the layered matrix)that could not embed back into the layered lattice to eliminate the irreversible capacityloss and increase the discharge capacity. Their electrochemical properties at roomtemperature showed a high capacity (about275mAh g~(-1)at0.1C) and exhibited goodcycling performance.
     VO_2was coated on the surface of Li_(1.17)Ni_(0.25)Mn_(0.583)O_2,by hydrothermal reduction.When10at%VO_2were used, the initial columbic efficiency is96.5%, which is muchhigher than that for the bare material. During the initial charge, the Li~+was extractedfrom the Li_2MnO_3component; at the same time, oxygen ions are immediatelyincorporated into VO_2to form V2O5-like phase. In the subsequent discharge process,V2O5-like phase host allows the reversible Li ions intercalation to form Li_xV_2O_5-likephase. So the VO_2coating layer improves the initial coulombic efficiency as well asabsorbing the released oxygen from Li_2MnO_3.
引文
[1]李国欣,新型化学电源导论,上海,上海复旦大学出版社,1992.
    [2] Nagaura T, Tozawak K, Lithium ion rechargeable battery, Prog. Batts. Sol. Cell,1990,9:209-210.
    [3]赖春艳,锂离子电池正极材料LiFePO4的制备与改性研究,上海,中科院研究生院博士论文,2006.
    [4]吴宇平,万春荣,姜长印等,锂离子二次电池,北京,化学工业出版社,2002,2-5.
    [5]顾登平,童汝亭,化学电源,北京,高等教育出版社,1993,1-3.
    [6] Eichinger G. Safe aspects in primary high-rate lithium cells. J. Power Sources,1993,43-44(1):259-266.
    [7] Goldenfeld N. Dynamics of dendritic growth. J. Power Sources,1989,26(1-2):121-126.
    [8] Takohara Z I, Kanamura K. Historical development of rechargeable lithium batteries in Japan.Electrochim. Acta.,1993,38(9):1169-1177.
    [9] Guyomard D, Tarascon J M. The carbon/Li1+xMn2O4solid system. Solid State Ionics,1994,69(3-4):222-237.
    [10] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium battery. Nat.,2001,414:359-367.
    [11]任学佑,锂离子电池及其发展前景,电池,1996,26(1):38-40.
    [12] Nagaura T, Tozawa K. Lithium ion rechargeable battery. Pro. Batts. Sol. Cell, JEC Press,Cleaveland, Ohio,1990:66
    [13] Scrosati B. Challenge of protable power. Nature,1995,373:557-558.
    [14] Armsrong A R, Bruce P G. Synthesis of layered LiMnO2as an electrode for rechargeable lithiumbatteries. Nature,1996,381:499-500.
    [15] Wakihara M. Recent developments in lithium ion batteries. Mater. Sci. Eng.,2001,33:109-134.
    [16] Mitaushima K, Jones P C, Wiseman P J, Goodenough J B. LixCoO2(0≤x≤1): a new cathodematerial for batteries of high energy density. Mat. Res. Bull.,1980,15:783-789.
    [17] Paulsen J M, Muller-Nehaus J R, Dahn J R. Layered LiCoO2with a different oxygen stackingas a cathode material for rechargeable lithium batteries. J. Electrochem. Soc.,2000,147(2):508-516.
    [18] Yao C Y, Kao T H, Cheng C H. Studies of electrochemical properties of lithium cobalt oxide. J.Power Sources,1995,54:491-493.
    [19] Huang D. Solid solution: new cathodes for next generation lithium-ion batreries. Adv. Batt.Tech.,1998,11:23-27.
    [20] Jeong E D, Won M S, Shim Y B. Cathodic properties of a lithium ion secondary battery usingLiCoO2prepared by a complex formation reaction. J. Power Sources,2003,119-121:70-77.
    [21] kang G S, Kang S Y, Ryu K S. Electrochemical and structural properties of HT-LiCoO2and LT-LiCoO2prepared by the citrate sol-gel method. Solid State Ionics,1999,120,155-161.
    [22] Burukhin A, Brylev O, Hany P. Hydrothermal synthesis of LiCoO2for lithium rechargeablebatteries. Solid State Ionics,2002,151(1-4):259-263.
    [23] Lala S M, Montoro L A, Rosolen J M. LiCoO2sub-microns particles obtained frommicro-precipitation in molten stearic acid. J. Power Sources,2003,124(1):118-123.
    [24] Wu Q, Liand W R, Cheng Y. Homogenous LiCoO2nanoparticles prepared using surfactantP123as template and its application to manufacturing ultra-thin-film electrode. Mater. Chem.Phy.,2005,91:463-467.
    [25] Castro C S, Senaris M A, Castro-couceiro A. Influence of the synthesis and doping on themorphologic, structural and electrochemical properties of LiCo1-xMxO2(M=Ni, Al, Mg) oxides.Boletin De La Sociedad Espanola De Ceramics Y Cidrio,2004,43(4):780-786.
    [26] H. Huang, G.V.S. Rao, B.V.R. CHowdari, LiA1xCo1-xO2as4V cathodes for lithium ionbatteries”, J. Power Sources,1999,81-82:690-695.
    [27] X. Yang, J.F. Ni, Y.Y. Huang, Effect of Ti-doping on different morphologic LiCoO2, ActsPhysico-Chimica Sinica,2006,22(2):183-188.
    [28] V.L. Mclarcn, A.R. West, M. Tabuchi, Study of the capacity fading mechanism forFe-substituted LiCoO2positive electrode, J. Electrochem. Soc.,2004,151(5): A672-A681.
    [29] Hong W, Chen M C. Modification of LiCoO2by surface coating with MgO/TiO2/SiO2forhigh-performance lithium-ion battery. Electrochem. Solid-State Lett.,2006,9(2): A82-A85.
    [30] Miyashiro H, Yamanaka A, Tabuchi M. Improvement of degradation at elevated temperatureand at high state-of-charge storage by ZrO2coating on LiCoO2. J. Electrochem. Soc.,2006,153(2): A348-A353.
    [31] Ohzuku T, Veda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2(R3m)for4V secondary lithium cells. J. Electrochem. Soc.,1996,140(7):1862-1869.
    [32] Markovsky B, Rodkin A, Cohen Y S, Palchik O, Levi E, Aurbach D, Kim H J, Schmidt M. Thestudy of capacity fading process of Li-ion batteries: major factors that play a role. J. PowerSources,2003,119-121:504-510.
    [33] Broussely M, Biensan P, Simon B. Lithium insertion into best materials: the key to success forLi ion batteries. Electrochimica Acta,1999,45:7-12.
    [34] Li W, Currie C. Morphology effect on the electrochemical performance of LiNi1-yCoyO2. J.Electrochem. Soc.,1997,144:2773-2779.
    [35] Caurant D. Synthesis by a soft chemistry route and characterization of LiNi1-yCoyO2(0    [36]廖小珍,锂离子电池LiFePO4/C复合正极材料制备及其电化学性能研究,上海,上海交通大学博士论文,2005.
    [37] Liu W, Farrington G C, Chaput F, Dunn B. Synthesis and electrochemical studies of spinelphase LiMn2O4cathode materials prepared by the Pechini process. J. Electrochem. Soc.,1996,143(3):879-884.
    [38] Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of4V Li/LiMn2O4cells. J. Electrochem.Soc.,1997,144(8):2593-2600.
    [39] Luis S, Firado L. Synthesis and electrochemical characterization of a new Li-Co-Mn-O spinelphase for rechargeable lithium batteries. J. Electrochem. Soc.,1997,144(6):1939-1943.
    [40] Dedock A, Ferg E, Gummow R J. The effect of multi-valent cation dopants on lithiummanganese spinal cathodes. J. Power Sources,1998,70(2):247-252.
    [41] Padhi A K, Nanjundawamy K S, Masquelier C, Okada S, Goodenough J B. Effect of structureon the Fe3+/Fe2+redox couple in iron phosphate, J. Electrochem. Soc.,1997,144(5):1609-1613.
    [42] Islam M S, Driscoll D J, Fisher C A, Slater P R, Atomin-scale investigation of defects, dopantsand lithium transport in the LiFePO4olivine-type battery material. Chem. Mater.,2005,17(20):5085-5092.
    [43] Uchina T, Marikaua Y, Ikuta H, Wakihara M, Suzuki K. Chemical diffusion coefficient oflithium in carbon fiber. J. Electrochem. Soc.,1996,143(8):2606-2610.
    [44] Andriiko A A, Rudenok P V, Nyrkova L I. Diffusion coefficient of Li+in solid-staterechargeable battery materials. J. power sources,1998,72(2):146-149.
    [45] Yamada A M, Hosoya, S C, Chung Y, Kudo K, Hinokuma K Y, Liu Y. Nishi, Olivine-typecathodes Achievements and problems. J. Power Sources,2003,119-121(1-2):232-238.
    [46] Yang S F, Song Y N, Ngala K, Zavalij P Y, Whittingham M S. Performance of LiFePO4aslithium battery cathode and comparison with manganese and vanadium oxides. J. Powersources.2003,119-121(1-2):239-246.
    [47] Chunga H T, Jang S K, Ryu H W, Shim K B. Effects of nano-carbon webs on theelectrochemical properties in LiFeP04/C composite. Solid State Commun.,2004,131(8):549-554.
    [48] Spong A D, Vitins G, Owen J R. A solution-precursor synthesis of carbon-coated LiFePO4forLi-ion cells. J. Electrochem. Soc.,2005,152(12): A2376-A2382.
    [49] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phosphor olivines as lithiumstorage electrodes. Nat. mater.,2002,1(2):123-128.
    [50] Wang D Y, Li H, Shi S Q, Chen L Q. The Li intercalation potential of LiMP04and LiMSiO4olivines with M=Fe, Mn, Co, Ni. Electriochem. Acta,2005,50:2955-2958.
    [51] Wang Y G, Wang Y R, Hosono E J, Wang K X, Zhou H S. The design of a LiFePO4/carbonnanocomposite with a core–shell structure and its synthesis by an in situ polymerizationrestriction method. Angew. Chem. Int. Ed.,2008,47:7461–7465.
    [52] Dominko R, Bele M, Goupil J M, Gaberscek M, Hanzel D, Arcon I, Jamnik J, Wired porouscathode materials: a novel concept for synthesis of LiFePO4. Chem. Mater.,2007,19:2960-2969.
    [53] Ghany A, Zaghib K, Gendron F. Structural magnetic and electrochemical properties ofLiNi0.5Mn0.5O2as positive electrode for Li-ion batteries. J. Electrochim Acta,2007,52(12):4092-4100.
    [54] Ohzuku T, Makinura Y. Layered lithium insertion material of LiNi0.5Mn0.5O2: A possiblealternative to LiCoO2for advanced lithium-ion batteries. Chem. Lett.,2001,30(8):744-746.
    [55] Lu Z, Beaulieu L Y, Donaberger R, et al. Synthesis structure and electrochemical behavior ofLi[NixLi1/3-2x/3Mn2/3-x/3]O2. J. Electrochem. Soc.,2002,149(6): A778-A791.
    [56] Zhang B, Chen G, Xu P, et al. Effect of ultrasonic irradiation on the structure andelectrochemical properties of cathode material LiNi0.5Mn0.5O2for lithium batteries. Solid StateIonics,2007,178(19-20):1230-1236.
    [57] Zhang B, Chen G, Xu P, et al. Effect of equivalent and non-equivalent Al substitutions on thestructure and electrovhemical properties of LiNi0.5Mn0.5O2. J. Power Sources,2008,176(1):325-331.
    [58] Myung S T, Komaba S, Hirosaki N, et al. Improvement of structural integrity and batteryperformance of LiNi0.5Mn0.5O2by Al and Ti doping. J. Power Sources,2005,146(1-2):645-649.
    [59] Kang s H, Amine K. comparative study of Li(Ni0.5-xMn0.5-xM2x)O2(M=Mg, Al, Co, Ni, Ti; x=0,0.025) cathode materials for rechargeable lithium batteries. J. Power Sources,2003,119-121:150-155.
    [60] Kim J H, Myung S T, Yoon C S, et al. Comparative study of LiNi0.5Mn1.5O4-xandLiNi0.5Mn1.5O4cathodes having two crystallographic structure: Fd-3m and P4332. Chem Mater,2004,16,906-914.
    [61] Choi W C. Understanding the capacity fade mechanisms of spinel manganese oxide cathodesand improving their performance in lithium ion batteries. USA: The University of Texas atAustin,2007.
    [62] Arunkumar A, Manthiram A. Influence of chromium doping on the electrochemicalperformance of the5V spinel cathode LiNi0.5Mn1.5O4. Electrocheim Acta,2005,50(28):5568-5572.
    [63] Oh S W, Park S H, Kim J H, et al. Improvement of electrochemical properties of LiNi0.5Mn1.5O4spinel material by fluorine substitution. J. Power Source,2006,157(1):464-470.
    [64] Xu X X, Yang J, Wang Y Q, et al. LiNi0.5Mn1.5O3.975F0.05as novel5V cathode material. J PowerSources,2007,174(2):1113-1118.
    [65] Sun Y K, Yoon C S, Oh I H. Surface structural change of ZnO-coated LiNi0.5Mn1.5O4spinel as5V cathode materials at elevated temperatures. Electrochim Acta,2005,48(5):503-510.
    [66] Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization of layeredLiCo1/3Mn1/3Ni1/3O2cathode material by ultrasonic spray pyrolysis method. Electrochim Acta,2004,49(4):557-563.
    [67] Chen Y, Wang G X, Konstantimov K, et al. Synthesis and characterization ofLiCoxMnyNi1-x-yO2as a cathode material for secondary lithium batteries. J. Power Sources,2003,119-121:184-190.
    [68] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Mn1/3Ni1/3O2for lithiumion batteries. Chem Lett.,2001,30(7):642-646.
    [69] Kim G H, Kim J H, Myung S T, et al. Improvement of high voltage cycling behavior of surfacemodified LiCo1/3Mn1/3Ni1/3O2cathodes by fluorine substitution for Li-ion batteries. J.Electrochem. Soc.,2005,152(9): A1707-A1713.
    [70] Kim G H, Myung S T, Bang H J. Synthesis and electrochemical properties ofLiCo1/3Ni1/3Mn1/3-xMgxO2-yFyvia coprecipitation. Electrochem. Solid-State Lett.,2004,7(12):A477-A481.
    [71] Park S H, Oh S W, Sun Y K. Synthesis and structural characterization of layeredLi[Co1/3Ni1/3Mn1/3-xMox]O2cathode materials by ultrasonic spray pyrolysis. J. Power Sources,2005,146(1-2):622-627.
    [72] Jang S B, Kang S H, Amine K, et al. Synthesis and improved electrochemical performance ofAl(OH)3coated LiCo1/3Ni1/3Mn1/3O2cathode materials at elevated temperature. Electrochim,Acta,2005,50(2):4168-4175.
    [73] Wu F, Wang M, Su Y F, et al. Surface modification of LiCo1/3Mn1/3Ni1/3O2with Y2O3forlithium ion battery. J. Power Sources,2009,181(1):743-751.
    [74] Wu F, Wang M, Su Y F, et al. Surface of LiCo1/3Ni1/3Mn1/3-xMgxO2modified by CeO2coating.Electrochim, Acta,2009,54(27):6803-6811.
    [75] Wu F, Wang M, Su Y F, et al. Effect of TiO2coating on the electrochemical performances ofLiCo1/3Mn1/3Ni1/3O2. J. Power Sources,2009,191(2):628-634.
    [76] Lu Z, Beaulieu L Y, Donaberger R A. Synthesis, structure, and electrochemical behavior ofLi[NiLiMn]O. J. Electrochem. Soc.,2002,149(6): A778A791.
    [77] Johnson C S, Li N, Lefief C, John T V, Thackeray M M. Synthesis, Characterization andelectrochemistry of lithium battery electrodes: xLi2MnO3·(1x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7). Chem. Mater.,2008,20:6095-6106.
    [78] Jarvis K A, Deng Z Q, Allard L F, Manthiram A, Ferreira P J. Atomic structure of a Lithium-richlayered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater.,2011,23:3614–3621.
    [79] Lu Z H, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi1/3-2x/3Mn2/3-x/3]O2cellsusing in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc.,2002,149(7):A815A822.
    [80]王绥军,赵煜娟,赵春松等.锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2(x=1/5,1/4,1/3)的合成及电化学性能.高等学校化学学报,2010,30(12):23582362.
    [81] Lee D K, Park S H, Amineb K, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2cathode materials via acarbonate co-precipitation method. J. Power Sources,2006,162(2):13461350.
    [82] Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior ofLi[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2cathode materials. Solid State Ionics,2003,164(1):4349.
    [83] Kim J M, Tsuruta S, Kumagai N. Electrochemcial properties of Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2(0≤x≤1) solid solutions prepared by poly-vinyl alcohol(PVA) method. Electrochem. Commun.,2007,9(1):103108.
    [84] Tang A, Huang K. Structure and electrochemical properties of Li1+yNi0.5AlxMn0.5-xO2synthesized by a new Sol-Gel method. Materials Chemistry and Physics,2005,93(1):69.
    [85] Huang X K, Zhang Q S, Chang H T, et al. Hydrothermal synthesis of nanosizedLiMnO2-Li2MnO3compounds and their electrochemical performances. J. Electrochem. Soc.,2009,156(3): A162A168.
    [86] Lee Y J, Kim M G, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2nanowires for fast and highcapacity Li-ion storage material. Nano Lett.,2008,8(3):957961.
    [87] Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2nanowiresfor high performance lithium battery cathode. Chem. Commun.,2009(2):218-220.
    [88] Sun Y C, Xia Y G, Noguchi H, et al. Preparation and electrochemical performance of solidsolutions LiCoO2-Li2MnO3as cathode materials for lithium ion batteries. J. Power Sources,2006,159(2):13531359.
    [89] Kim Y J, Hong Y S, Kim M G, et al. Li0.93[Li0.21Co0.28Mn0.51]O2nano-particles for lithiumbattery cathode material made by cationic ex-change from K-birnessite. Electrochem. Commun.,2007,9(5):10411046.
    [90]赵春松.锂离子电池富锂正极材料xLi2MnO3·(1x)LiMO2(M=Co, Ni0.5Mn0.5).北京:北京工业大学硕士论文,2010.
    [91] Johnson C S, Li N, Thackerray M M, et al. Anomalous capacity and cycling stability ofxLi2MnO3·(1x)LiMO2electrodes (M=Mn, Ni, Co) in lithium batteries at50℃. Electrochem.Commun.,2007,9(4):787795.
    [92] Pan C, Lee Y J, Ammundsen B, et al. Li MAS NMR studies of the local structure andelectrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathodematerials for lithium ion batteries. Chem. Mater.,2002,14(5):2289-2299.
    [93] Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associatedstructural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc.,2006,128(26):86948698.
    [94] Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes(1z)Li[Li1/3Mn2/3]O2·zLi[Mn0.5-yNi0.5-yCo2y]O2. Solid State Ionics,2009,180(1):5056.
    [95]王力臻,刘勇标,王先友,等.化学电源设计.北京:化学工业出版社,2007:1213.
    [96] Cho J, Kim Y, Kim M G. Synthesis and characterization of Li[Ni0.41Li0.08Mn0.51]O2nanoplatesfor Li battery cathode material. J. Phys. Chem. C,2007,111(7):31923196.
    [97] Yu L Y, Qiu W H, Lian F, et al. Comparative study of layered0.65Li[Li1/3Mn2/3]O2·0.35LiMO2(M=Co, Ni1/2Mn1/2and Ni1/3Co1/3Mn1/3) cathode materials. Mater. Letters,2008,62(17/18):30103013.
    [98] Kang K, Meng Y S, Breger J, et al. Electrodes with high power and high capacity forrechargeable lithium batteries. Science,2006,311(17):977980.
    [99] Park Y J, Hong Y S, Wu X L, et al. Synthesis and electrochemical characteristics ofLi[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2compounds. J. Electrochem. Soc.,2004,151(5): A720A727.
    [100] Robertson A D, Bruce P G. Mechanism of electrochemical activity in Li2MnO3. Chem. Mater.,2003,15(10):19841992.
    [101] Tabuchi M, Nabeshima Y, Takeuchi T, et al. Fe content effects on electrochemical properties ofFe-substituted Li2MnO3positive electrode material. J. Power Sources,2010,195(3):834844.
    [102] Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemicalproperties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]Ox(x=0,0.02,0.04,0.06,0.08) as cathode materialsfor lithium secondary batteries. J. Power Sources,2007,167(1):178184.
    [103] Park S H, Sun Y K. Synthesis and electrochemical properties of layeredLi[Li0.25Ni(0.275x/2)AlxMn(0.575x/2)]O2materials prepared by Sol-Gel method. J. Power Sources,2003,119-121:161165.
    [104] Myung S T, Izumi K, Komaba S, et al. Functionality of oxide coating forLi[Li0.05Ni0.4Co0.15Mn0.4]O2as positive electrode materials for lithium-ion secondary batteries.J. Phys. Chem. C,2007,111(10):40614067
    [105] Myung S T, Izumi K, Komaba S, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles aspositive electrode material for lithiumion batteries. Chem. Mater.,2005,17(14):36953704.
    [106] Kang Y J, Kim J H, Lee S W, et al. The effect of Al(OH)3coating on the Li[Li0.2Ni0.2Mn0.6]O2cathode material for lithium secondary battery. Electrochimica Acta,2005,50(24):47844791.
    [107] Tan K S, Reddy M V, Rao GVS, et al. Effect of AlPO4-coating on cathodic behaviour ofLi(Ni0.8Co0.2) O2. J. Power Sources,2005,141(1):129142.
    [108] Zheng J M, Li J, Zhang Z R, et al. The effects of TiO2coating on the electrochemicalperformance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathode material for lithium-ion battery. SolidState Ionics,2008,179(27-32):17941799.
    [109] Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3component in‘composite’ xLi2MnO3-(1x)LiMn0.5Ni0.5O2electrodes. Electrochem. Commun.,2004,6(10):10851091.
    [110] Johnson C S, Li N, Vaughey J T, et al. Lithium–manganese oxide electrodes withlayered–spinel composite structures xLi2MnO3-(1x) Li1+yMn2-yO4(0    [111] Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithiumbattery electrodes: xLi2MnO3-(1x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7). Chem. Mater.,2008,20(19):60956106.
    [112] Kang S H, Johnson C S,Vaughey J T, et al. The effects of acid treatment on the electrochemicalproperties of0.5Li2MnO3-0.5LiNi0.44Co0.25Mn0.31O2electrodes in lithium cells. J.Electrochem. Soc.,2006,153(6): A1186A1192.
    [113] Kang S H, Thackeray M M. Enhancing the rate capability of high capacityxLi2MnO3·(1x)LiMO2(M=Mn, Ni, Co) electrodes by Li-Ni-PO4treatment. Electrochem.Commun.,2009,11(4):748751.
    [114] Wang Q Y, Liu J, Murugan A V, et al. High capacity double-layer surface modifiedLi[Li0.2Mn0.54Ni0.13Co0.13]O2cathode with improved rate capability. J. Mater. Chem.,2009,19(28):49654972.
    [115] Abouimrane A, Compton O C, Deng H, et al. Improvement rate capability in a high capacitylayered cathode material via thermal reduction. Electrochem. Solid State Lett.,2011,14(9):A126-A129.
    [116] Zheng J, Deng S N, Shi Z C, Xu H J, Xu H, Deng Y. Zhang Z, Chen G. The effects ofpersulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2cathodematerial. J. Power Sources,2013,221:108-113.
    [117] Gao J, Kim J, Manthiram A, et al. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5compositecathodes with low irreversible capacity loss for lithium ion batteries. Electrochem.Commun.,2009,11(1):8486.
    [118] Lee E S, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2–VO2(B) compositecathodes with controlled irreversible capacity loss for lithium-ion batteries. J. Electrochem.Soc.,2008,155: A47-A50.
    [119] Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layeredLi[Li0.2Mn0.54Ni0.13Co0.13]O2cathode by blending with other lithium insertion hosts. J. PowerSources,2009,191:644-647.
    [120]刘景,温兆银,吴梅梅等. LiCoO2正极材料的络合法合成及其电化学性能研究.无机材料学报,2002,39(6):1721.
    [121] Yu L H, Yang H X, Ai X P, et al. Structural and electrochemical characterization ofnano-crystalline Li[Li0.12Ni0.32Mn0.56]O2synthesized by a polymer-pyrolysis route. J. Phys.Chem B,2005,109(3):11481154.
    [122] Wei G Z, Lu Xia, Ke F S, et al. Crystal habit-tuned nanoplate material ofLi[Li1/3–2x/3NixMn2/3-x/3]O2for high rate performance lithiumion batteries. Adv. Mater.,2010,22(39):43644367.
    [123] Chen H L, Grey C P. Molten salt synthesis and high rate performance of the ‘Desert-Rose’form of LiCoO2. Adv. Mater.,2008,20(11):22062210.
    [124] Tucker M C, Doeff M M, Richardson T J, Finones R, Cairns E J, Reimer J A, Hyperfine fieldsat the Li site in LiFePO4type olivine materials for lithium rechargeable batteries: A Li MASNMF and SQUID study. J. Am. Chem. Soc.,2002,124:3832-3833.
    [125] Wang D P, Belharouak I, et al. Growth mechanism of Ni0.3Mn0.7CO3precursor for highcapacity Li-ion battery cathodes. J. Mater. Chem.,2011,21:9290-9295.
    [126] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hachney SA. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater.Chem.,2007,17:3112-3125.
    [127] Thackeray M M, Johnson C S, Vaughey J T, Li N, Hachney S A. Li2MnO3-stabilized LiMO2(M=Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem.,2007,17:2069-2077.
    [128] Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. Advances in manganeseoxide 'composite' electrodes for lithium-ion batteries. J. Mater. Chem.,2005,15:2257-2267.
    [129] Abouimrane A, Compton O C, Deng H X, Belharouak I, Dikin D A, Neguyen S T, Amine K.Improved rate capability in a high-capacity layered cathode material via thermal reduction.Electrochem. Solid-State Lett.,2011,14(9): A126-A129.
    [130] Kim M G, Jo M, Hong Y S, Cho J. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2nanowires for high performance lithium battery cathode. Chem. Commun.,2009,218-220.
    [131] Croguennec L, Bains J, Ménétrier M, Flambard A, Bekaert E, Jordy C, Biensan P, Delmas C.Synthesis of “Li1.1(Ni0.425Mn0.425Co0.15)0.9O1.8F0.2” materials by different routes: is therefluorine substitution for oxygen? J. Electochem. Soc.,2009,156(5): A349-A355.
    [132] Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5compositecathodes with low irreversible capacity loss for lithium ion batteries. Electrochem. Commun.2009,11:84-86.
    [133] Lee K, Myung S, Moon J, Sun Y. Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4(M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode. Electrochim.Acta2008,53:5201-5206.
    [134] Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3component in‘composite’ xLi2MnO3-(1x)LiMn0.5Ni0.5O2electrodes. Electrochem. Commun.,2004,6(10):10851091.
    [135] Johnson C S, Li N, Vaughey J T, et al. Lithium–manganese oxide electrodes withlayered–spinel composite structures xLi2MnO3-(1x)Li1+yMn2-yO4(0    [136] Johnson C S, Li N, Lefief C, et al. Synthesis, characterization and electrochemistry of lithiumbattery electrodes: xLi2MnO3-(1x)LiMn0.333Ni0.333Co0.333O2(0≤x≤0.7). Chem. Mater.,2008,20:6095–6106.
    [137] Jun Zheng, Shengnan Deng, Zhicong Shi, Hongjie Xu, Hui Xu, Yuanfu Deng, Zachary Zhang,Guohua Chen, The effects of persulfate treatment on the electrochemical properties ofLi[Li0.2Mn0.54Ni0.13Co0.13]O2cathode material. J. Power Sources,2013,221:108-113.
    [138] Wu Y, Murugan A V, Manthiram A. High capacity, surface-modified layeredLi[Li(1x)/3Mn(2x)/3Nix/3Cox/3]O2cathodes with low irreversible capacity loss. J. Electrochem.Soc.2008,155: A635-A641.
    [139] Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layeredLi[Li0.2Mn0.54Ni0.13Co0.13]O2cathode by blending with other lithium insertion hosts J. PowerSources2009,191:644-647.
    [142] Yu H J, Kim H, Wang Y R, He P, Asakura D, Makamura Y, Zhou H S., High-energy'composite' layered manganese-rich cathode materials via controlling Li2MnO3phaseactivation for lithium-ion batteries. Phys. Chem. Chem. Phys.,2012,14:6584-6595.
    [141] Armstrong A R, Hoizapfel M, Novak P, Hohnson C S, Kang S H, Thackeray M M, Bruce P G.Demonstratin oxygen loss and associated structural reorganization in the lithium batterycathode Li[Li0.2Ni0.2Mn0.6]O2. J. Am. Chem. Soc.,2006,128:8694-8698.
    [142] Yabuuchi N, Yoshii K, Myung S T, Nakai I, Komaba S. Detailed studies of a high capacityelectrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem.Soc.,2011,133:4404-4419.
    [143] Chen W, Peng J F, Mai L Q, Yu HH,Qi Y. Synthesis and characterization of novel vanadiumdioxide nanorods. Solid-State Commun.,2004,132:513-517
    [144] Subba R C V, Edwin H. Walker J, Wicker S A, Quinton L, Rajamohan R. Synthesis of VO2(B)nanorods for Li battery application, Current Applied Physics,2009,9:1195–1198.
    [145] Liu L, Cao F, Yao T, Xu Y, Zhou M, Qu B Y, Pan B C, Wu C Z, Wei S Q, Xie Y. New-phaseVO2micro/nanostructures: investigation of phase transformation and magnetic property. New.J. Chem.,2012,36:619-625.
    [146] Hryha E, Rutqbist E, Nyborg L. Stoichiometric vanadium oxides studied by XPS. Surf.Interface Anal.,2012,44:1022-1025.
    [147] Bareno J, Balasubramanian M, Kang S H, Wen J G, Lei C H, Pol S V, Peter L, Abraham D P.Long range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2. Chem. Mater.,2011,23:2039-2050.
    [148] Barker J, Saidi M Y, Swoyer J L. Electrochemical insertion properties of the novel lithiumvanadium fluorophosphates---LiVPO4F. J. Electrochem. Soc.,2003,150(10): A1394-A1398.
    [149] Zhou F, Zhao X M, Dahn J R. Reactivity of charged LiVPO4F with1M LiPF6EC: DMCelectrolyte at high temperature as studied by accelerating rate. Electrochem. Commun.,2009,11:589-591.
    [150] Wadsley A D. Crystal chemistry of non-stoichiometric pentavalent vanadium oxides: crystalstructure of Li1+xV3O8. Acta Crystal.,1957,10:261-267.
    [151] Kawakita J,Miura T,Kishi T. Lithium insertion and extraction kinetics of Li1+xV3O8. J. PowerSources,1999,83:79-83.
    [152]查全性,电极过程动力学导论,武汉大学,科技出版社,2002年6月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700