用户名: 密码: 验证码:
转录因子Nrf2对大鼠心肌微血管内皮细胞在血管生成中作用的影响及其机制的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     冠状动脉粥样硬化性心脏病(coronary atherosclerotic heart disease, CAD)是当今世界严重危害人类健康的常见心脏病之一,是主要的致残和致死性疾病。如何有效地预防及治疗冠心病已成为目前心血管疾病研究的重要领域。尽管药物治疗、经皮冠状动脉介入(percutaneous coronary interventions, PCI)治疗和冠状动脉旁路移植术(coronary artery bypass grafting, CABG)发展迅速,仍有10%~37%的冠心病患者因冠状动脉病变特殊性及其解剖因素的限制,不适合任何一种冠脉干预措施,或者仅接受了不完全的血运重建治疗,发生严重心肌缺血,心功能随之减退,导致此类患者致残和致死率极高。治疗性血管生成即通过基因、蛋白和细胞水平的技术诱导新生血管形成、侧枝血管的生长,形成有血供的侧枝循环。目前,治疗性血管生成已成为那些不能经常规血运重建措施(例如PCI或CABG)达到血运重建或完全血运重建的严重/晚期冠心病患者可供选择的治疗方式之一,治疗性血管生成可通过增加缺血心肌的血供改善冠心病患者的症状、心脏功能和预后。众所周知,心肌微血管内皮细胞(cardiacmicro-vascular endothelial cells, CMECs)是来源于冠状循环微血管的一种特殊细胞类型,在血管生成过程中发挥着关键作用。
     核因子转录因子2(NF-E2p45-related Factor2, Nrf2)是一种亮氨酸拉链结构(basicleucine zipper, bZip)转录因子,在机体抗氧化应激中发挥重要作用,其激活可导致下游多种抗氧化基因的表达,如血红素加氧酶-1(Heme oxygenase-1, HO-1)等。目前,已有国外研究证实Nrf2可促进深层毛细血管数量的增加及促进血管内皮细胞的出芽生长,在心血管保护方面亦有研究,如抑制心肌肥厚、保护心肌细胞避免缺血再灌注损伤及延缓动脉粥样硬化发生等。但Nrf2在冠心病梗死/缺血心肌血管生成中的作用及具体机制仍不甚清楚。同时,在缺血/梗死心肌区域,Nrf2的自身激活是有限的。而血管生成效应呈时间依赖现象,对促血管生成基因表达的高低也有相应要求。因此,各种促进心肌Nrf2高表达的干预因素,可通过增加治疗性血管生成最终促进心肌修复。
     本课题以CMECs为研究对象,采用Nrf2基因转染的方法,探讨Nrf2是否促进细胞体外血管生成,并进一步阐明Nrf2是否通过调节HO-1的表达来实现其促血管生成作用。
     研究方法
     第一部分大鼠心肌微血管内皮细胞(CMECs)的分离、培养及鉴定与低氧和常氧条件下Nrf2及HO-1转录和蛋白水平表达的变化。
     取健康成年SD雄性大鼠,经手术取其心脏,采用组织贴块法培养CMECs,第2代细胞行Ⅷ因子免疫组织化学鉴定为CMECs,实验采用第3-4代细胞。将CMECs分为正常对照组和短时间缺氧组:①缺氧(1h)组,②缺氧(2h)组,③缺氧(4h)组,④缺氧(12h)组,⑤缺氧(24h)组;经缺氧孵箱培养不同时间后取出,以real-timeRT-PCR及Western blot法检测细胞中Nrf2mRNA及蛋白表达变化。同时,将CMECs分为正常对照组和长时间缺氧组:①缺氧(12h)组,②缺氧(24h)组,③缺氧(48h)组,④缺氧(72h)组;缺氧孵箱培养不同时间后取出,以real-time RT-PCR及Westernblot法分别检测细胞中Nrf2及HO-1mRNA及蛋白表达变化。上述实验确定缺氧能否激活Nrf2及导致HO-1水平的相应变化。
     第二部分转录因子Nrf2对缺氧条件下CMECs迁移及成血管能力的影响及下游靶基因HO-1的调控。
     将购买的Nrf2短发夹RNA慢病毒(Nrf2shRNA Lentiviral Particles, shRNA-Nrf2)及空载短发夹RNA慢病毒(control shRNA Lentiviral Particles-A, shRNA-control)分别转染CMECs,以RT-PCR及Western blot法检测Nrf2的mRNA及蛋白表达,确定干扰是否成功。将CMECs分为:①单纯CMECs对照组,②shRNA-control转染CMECs组,③shRNA-Nrf2转染CMECs组。采用Transwell小室法及Matrigel assay法分别检测细胞迁移能力及成血管能力。以RT-PCR法检测HO-1及血管内皮生长因子(Vascular endothelial growth factor, VEGF)mRNA水平变化,以Western blot法及ELISA法分别检测细胞中HO-1及VEGF的蛋白表达变化。
     第三部分转录因子Nrf2促缺氧条件下CMECs迁移及成血管能力的作用及其机制研究
     构建Nrf2高表达的慢病毒及空载体,分别转染CMECs,以real-time RT-PCR及Western blot法检测Nrf2的mRNA及蛋白表达,确定过表达是否成功。将CMECs分为:①单纯CMECs对照组,②空载慢病毒转染CMECs组,③Nrf2高表达慢病毒转染CMECs组。采用real-time RT-PCR及Western blot法检测HO-1的mRNA及蛋白表达变化。
     然后采用HO-1的活性抑制剂锌原卟啉(Zinc protoporphyrin, Znpp)进一步检测及证实HO-1在Nrf2缺氧条件下促细胞迁移及成血管能力这一机制。将CMECs分为:①单纯CMECs对照组,②空载慢病毒转染CMECs组,③Nrf2高表达慢病毒转染CMECs组,④Nrf2高表达慢病毒转染CMECs+Znpp组。分别采用Transwell小室法及Matrigel assay法检测细胞迁移能力及成血管能力的变化。
     研究结果
     (1)组织贴块法培养的典型原代CMECs呈“铺路石”样形态,细胞采用免疫组织化学法予以鉴定,95%左右的细胞显示Ⅷ因子阳性反应。
     (2)CMECs短时间缺氧(1、2、4、12及24h)状态下,与正常氧浓度状态下比较,Nrf2mRNA表达(由0.99±0.01上升至2.29±0.06)及蛋白表达(由0.28±0.03上升至0.42±0.02)水平于4小时开始显著上调(P<0.01),在24小时内呈时间依赖性递增现象。CMECs在长时间缺氧(12、24、48及72h)条件下,与正常氧浓度比较,Nrf2mRNA及蛋白表达水平暂时性上调,至缺氧48小时表达最强(mRNA表达:0h为0.98±0.02,48h达5.55±0.05;蛋白表达:0h为0.27±0.02,48h达1.20±0.08。P<0.01),随之其表达则开始下降。HO-1mRNA及蛋白表达的变化与Nrf2一致。
     (3)CMECs瞬时转染shRNA-control和shRNA-Nrf2后,与shRNA-control组比较,干扰Nrf2显著降低了Nrf2mRNA及细胞核蛋白的表达水平(mRNA表达:由0.64±0.08降低至0.23±0.04,蛋白表达:由0.73±0.02降低至0.36±0.01,P<0.01),同时显著抑制了缺氧12hCMECs迁移及成血管能力,细胞迁移数目及脉管形成长度分别由61.4±2.9和(5.50±0.10)mm减少至38.8±3.7和(2.87±0.21)mm,(P<0.01)。
     (4)与shRNA-control组比较,干扰Nrf2显著下调了缺氧12hCMECs中HO-1的mRNA及蛋白表达水平,分别由0.61±0.03和0.70±0.04降低至0.21±0.04和0.47±0.07,(P<0.01)。VEGF mRNA及蛋白表达水平亦显著下降(P<0.01)。
     (5)当MOI=20时,慢病毒对CMECs的转染效率可达91.9±1.3%(n=5),CMECs的活性及形态不受明显影响。CMECs瞬时转染Len-control和Len-Nrf2后,与Len-control组比较,Len-Nrf2组过表达Nrf2后显著增加Nrf2mRNA及细胞核蛋白表达水平(mRNA表达:由0.96±0.01上升至4.40±0.05,蛋白表达:由0.33±0.03上升至0.77±0.03,P<0.01)。
     (6)Nrf2过表达显著增加了缺氧12h CMECs中HO-1mRNA及蛋白表达水平,HO-1mRNA表达由0.95±0.01上升至4.50±0.08(P<0.01),HO-1蛋白表达则由0.42±0.02上升至1.03±0.03(P<0.01)。同时显著增强了缺氧12h的CMECs迁移(细胞迁移数目:80.0±3.8)及成血管能力(脉管形成长度:(62.8±3.5)mm, P<0.01)。与转染Len-Nrf2组比较,ZnPP(HO-1活性抑制剂)显著抑制了Nrf2过表达后增加的细胞迁移及成血管能力(细胞迁移数目由80.0±3.8减少至55.4±4.0,脉管形成长度由(62.8±3.5)mm缩短为(49.6±2.7)mm, P<0.01)。
     结论
     (1)缺氧暂时上调了大鼠CMECs中Nrf2mRNA及蛋白表达的水平,伴HO-1mRNA及蛋白表达水平的相应增加。
     (2)转染shRNA-Nrf2至CMECs,干扰Nrf2后,显著抑制了缺氧条件下CMECs迁移及成血管能力。提示Nrf2在CMECs血管生成中发挥重要作用。
     (3)Nrf2干扰显著下调了缺氧条件下CMECs中HO-1及促血管生成源性因子VEGF mRNA及蛋白表达的水平。
     (4)Nrf2过表达显著增强了缺氧条件下CMECs迁移及成血管能力。
     (5)HO-1涉及Nrf2过表达促缺氧条件下CMECs迁移及成血管能力过程。
     (6)转录因子Nrf2可能通过上调HO-1表达来介导缺氧条件下CMECs迁移及成血管能力。
Background:
     Coronary atherosclerotic heart disease (CAD) is one of the most common heartdiseases that are serious damage to human health world wide now, which remains a leadingcause of morbidity and mortality. Therefore, how to effectively prevent and treat coronaryheart disease has become an important territory aim to cardiovascular disease researchpresently. Despite rapid development in pharmaco-therapy, percutaneous coronaryinterventions(PCI) treatment and coronary artery bypass grafting (CABG), there areapproximately10%~37%of CAD patients who are not available to any type of coronaryinterventions because of some special lesions of coronary artery and the limit of anatomicalfactors. Further more, some patients merely accept the incomplete revascularizationtreatment. Thus leading to severe myocardial ischemia accompany with decrease of cardiacfunction. The disabling and fatality rate of patients are extremely high. However,therapeutic angiogenesis may induce collateral growth according to the gene, protein, andcellular level technology. Finally, angiogenesis leading to the formation of collateral vesselswith blood supply. Currently, therapeutic angiogenesis has become a therapy option forpatients with advanced CAD with unable to revascularization for example PCI or CABG.Therapeutic angiogenesis may improve the symptoms of CAD through increasing the bloodsupply of ischemic myocardium. As is known to all, cardiac micro-vascular endothelialcells (CMECs) is an especially cell type derive to coronary micro-vascular, which play akey role in the process of angiogenesis.
     NF-e2p45-related factor2(Nrf2) belongs to the Cap'n'collar (CNC) family of basic leucine zipper (bZip) transcription factor, which plays an important role in the process ofresistance to oxidative stress. The activation of Nrf2can lead to much downstreamantioxidant gene expression for example heme oxygenase-1(HO-1). Presently, foreignstudy has been confirmed that Nrf2may promote the increases of deep capillary numberand the sprouting of vascular endothelial cell. Nrf2also plays important role incardio-protection, such as fighting against pathological cardiac remodeling, protectionmyocardium from ischemia/reperfusion injury, delay atherosclerotic lesions and so on.However, the effects of Nrf2on CAD infarction/ischemia myocardial angiogenesis andunderlying mechanisms are not fully understood. At the same time, research found thatendogenous activation of Nrf2is limited in infarction/ischemia myocardial region. Theangiogenesis effect not only present a time-dependent phenomenon, but also the expressionlevels of promote angiogenesis gene have corresponding requirements. Therefore, all kindsof interference factors for promote myocardial Nrf2high expression can promotemyocardial repair by increase the therapeutic angiogenesis.
     In conclusion, using primary rat cardiac micro-vascular endothelial cells as the objectof study, we examined whether Nrf2promotes cell angiogenesis in vitro induced byhypoxia with the method of Nrf2gene transfection. At the same time, we discussed whetherthe effect of Nrf2promotes cell angiogenesis in vitro through regulation of HO-1expression.
     Methods:
     Part I. Isolation, culture and identification of CMECs Effects of hypoxia ornormoxia on the Nrf2and HO-1transcriptional and protein expressions in CMECs.
     Rat cardiac micro-vascular endothelial cells were obtained from the myocardial tissueof adult healthy male Sprague-Dawley (SD) rats using tissue block method. IsolatedCMECs were cultured in Dulbecco's modified eagle's medium (DMEM) at37°C in ahumidified atmosphere. The identity of CMECs was verified by the immunocytochemistrystaining with Factor VIII. Cells from passages3-4were used in all experiments. CMECswere divided into two groups: control group and various short period time of hypoxiagroups, various short period time of hypoxia groups including①1hr hypoxiagroup,②2hr hypoxia group,③4hr hypoxiagroup,④12hr hypoxiagroup, and⑤24hr hypoxia group. After cells were incubated at37°C in1%O2,5%CO2,94%N2for indicated time,real-time Reverse trans-cription-polymerase chain reaction (RT-PCR) and western blotwere used for detecting the Nrf2and HO-1transcriptional and protein expressions inCMECs. Meanwhile, CMECs were divided into control group and various long period timeof hypoxia groups, various long period time of hypoxia groups including①12hr hypoxiagroup,②24hr hypoxiagroup,③48hr hypoxiagroup, and④72hr hypoxiagroup. Aftercells were incubated at37°C in1%O2,5%CO2,94%N2for indicated time, real-timeRT-PCR and western blot analysis were used for detecting the Nrf2and HO-1transcriptional and protein expressions in CMECs. Through above experiment, wedetermined whether hypoxia actived Nrf2accompany by corresponding changes of HO-1level.
     Part II. The effects of transcription factor Nrf2on the migration and tube formation inCMECs under hypoxia conditions and regulation of downstream target genes HO-1.
     After purchase of shRNA-Nrf2or shRNA-control was transfected into the CMECsrespectively, RT-PCR and western blot were used for detecting the Nrf2mRNA and proteinexpressions in CMECs aimed to assure whether successfully interference. And then CMECswere divided into:①c ontrol group,②t ransfection with shRNA-control group, and③transfection with shRNA-Nrf2group. After cells were incubated for12h, the migration andtube formation of CMECs were determined by transwell chamber assay and Matrigel assayrespectively. RT-PCR was used for detecting the HO-1and VEGF mRNA expression levelsin CMECs. Western blot analysis and ELISA were used for detecting the HO-1and VEGFprotein expressions in CMECs respectively.
     Part III. The role of transcription factor Nrf2promote the migration and tube formationin CMECs under hypoxia conditions and related mechanism.
     After Len-Nrf2or Len-control was transfected into the CMECs respectively, Real-timeRT-PCR and western blot were used for detecting the Nrf2mRNA and protein expressionsin CMECs aimed to assure whether successfully interference. And then CMECs weredivided into:①control group,②transfection with Len-control group, and③transfectionwith Len-Nrf2group. Real-time RT-PCR and western blot analysis were used for detectingthe HO-1mRNA and protein expressions levels in CMECs.
     In the next experiments, the further research was used HO-1inhibitor Znpp todeterming the role of HO-1in Nrf2promote the migration and tube formation in CMECsunder hypoxia conditions. CMECs were divided into:①control group,②transfection withLen-control group,③transfection with Len-Nrf2group, and④transfection withLen-Nrf2+Znpp group. After cells were incubated for12h, the migration and tubeformation of CMECs were determined by transwell chamber assay and Matrigel assayrespectively.
     Results
     (1) Typical isolated CMECs using tissue block method exhibited “cobblestone”morphology. For further characterization, after culture for7days, cells were distinguishedby immunohistochemistry. The majority (﹥95%) of cells showed VIII factor positivereactions.
     (2) After short-term exposure to hypoxia (1h,2h,4h,12h, and24h), the Nrf2mRNAand protein expression levels were significantly upregulated beginning at4h compared tonormoxia-control. Compared to normoxia-control, the Nrf2mRNA expression levelincreased from0.99±0.01to2.29±0.06at4h (P<0.01), the Nrf2protein expression levelupregulated from0.28±0.03to0.42±0.02at4h (P<0.01). Nrf2gradually increased withinhypoxia24h in a time-dependent manner. Nrf2mRNA and protein expression levels weretemporarily upregulated compared to normoxia-control in long-term exposure to hypoxia(12h,24h,48h, and72h), the maximum expression of Nrf2was observed after48h(mRNA expression:0h:0.98±0.02,48h:5.55±0.05, protein expression:0h:0.27±0.02,48h:1.20±0.08, P<0.01), and then decreased thereafter. The same result was shown by themRNA and protein expressions of HO-1.
     (3) CMECs were transiently transfected with either shRNA-control or shRNA-Nrf2,Nrf2shRNA significantly inhibited Nrf2mRNA and nucleus protein expressions comparedto the shRNA-control (mRNA expression: from0.64±0.08to0.23±0.04, protein expression:from0.73±0.02to0.36±0.01, P<0.01). And transfection with shRNA-Nrf2significantlyinhibited migration and tube formation of CMECs to hypoxia12h at48h post-infectioncompared with the shRNA-control, the cell migration number and the tube formation lengthdecreased from61.4±2.9and (5.50±0.10)mm to38.8±3.7and (2.87±0.21) mm respectively (P<0.01).
     (4) Knockdown of Nrf2by shRNA markedly decreased HO-1mRNA and proteinexpression in CMECs to hypoxia12h at48h post-infection compared with theshRNA-control. The HO-1mRNA and protein expression decreased from0.61±0.03and0.70±0.04to0.21±0.04and0.47±0.07respectively (P<0.01). The same result was shownby the mRNA and protein expressions of VEGF(P<0.01).
     (5) At a MOI of20, the transfection efficiencies of CMECs were91.9±1.3%(n=5),while CMECs activity and morphology were unaffected. CMECs were transientlytransfected with either Len-control or Len-Nrf2, Nrf2overexpression significantlyincreased Nrf2mRNA and nucleus protein expression levels compared with the Len-controlafter48h of transfection (mRNA expression: from0.96±0.01to4.40±0.05, proteinexpression: from0.33±0.03to0.77±0.03, P<0.01).
     (6) Nrf2overexpression markedly increased HO-1mRNA and protein expressions inCMECs to hypoxia12h at48h post-infection compared with the Len-control. Compared toLen-control, the HO-1mRNA expression increased from0.95±0.01to4.50±0.08at4h(P<0.01), the HO-1protein expression upregulated from0.42±0.02to1.03±0.03(P<0.01).Transfection with Len-Nrf2markedly increased migration and tube formation of CMECs inresponse to hypoxia12h compared with the Len–control (the cell migration number:80.0±3.8, the tube formation length:(62.8±3.5) mm, P<0.01). HO-1inhibitor Zincprotoporphyrin (Znpp) markedly inhibited the effects of increased migration and tubeformation by Nrf2overexpression compared with the Len-Nrf2(the cell migration number:from80.0±3.8to55.4±4.0, the tube formation length: from (62.8±3.5) mm to (49.6±2.7)mm, P<0.01).
     Conclusion
     (1) Hypoxia temporarily upregulated the mRNA and protein expression levels of Nrf2,accompanied by temporarily enhanced the mRNA and protein expression levels of HO-1inrat CMECS.
     (2) Knockdown of Nrf2by Lentiviral delivery of shRNA significantly inhibits themigration and tube formation in CMECs to hypoxia. Indicate Nrf2plays an important rolein the process of CMECs angiogenesis.
     (3) Nrf2knockdown sequentially downregulated HO-1and proangiogenic factorVEGF expression in CMECs to hypoxia.
     (4) Nrf2over-expressing may promote the migration and tube formation in CMECsunder hypoxic conditions.
     (5) HO-1is involved in Nrf2over-expressing promotes the migration and tubeformation in CMECs to hypoxia.
     (6) Nrf2may mediate angiogenesis of CMECs under hypoxic condition throughupregulating HO-1expressions.
引文
1Roger VL, Go AS, Lloyd-Jones DM, et al. Executive Summary: Heart Disease and Stroke Statistics-2011Update: AReport from the American Heart Association. Circulation,2011;123(4):459-463.
    Roger VL, Go AS, Lloyd-Jones DM,et al. Heart disease and stroke statistics–2012update: a report from the AmericanHeart Association. Circulation,2012;125:e2–e220.
    3Lloyd-Jones DM, Hong Y, Labarthe D, et al. American Heart Association Strategic Planning Task Force and StatisticsCommittee. Defining and setting national goals for cardiovascular health promotion and disease reduction: the AmericanHeart Association’s strategic Impact Goal through2020and beyond. Circulation,2010;121(4):586-613.
    4卫生部心血管疾病防治研究中心编.心血管病防治研究.中国心血管病报告2012. P7~8.北京:中国大百科全书出版社,2013;8.
    5Bonetti PO, Holmes DR Jr, Lerman A,et al. Enhanced external counterpulsation for ischemic heart disease: what’sbehind the curtain? J Am Coll Cardiol,2003;41(11):1918–1925.
    6Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymph angiogenesis. Nat Rev Mol Cell Biol,2007;8:464–478.
    1Elsman P, van‘t Hof AW, de Boer MJ, et al. Role of collateral circulation in the acute phase of ST-segment-elevationmyocardial infarction treated with primary coronary intervention. Eur Heart J,2004;25(10):854–858.
    2Mitsos S, Katsanos K, Koletsis E, et al. Therapeutic angiogenesis for myocardial ischemia revisited: basic biologicalconcepts and focus qn latest clinical trials. Angiogenesis,2012;15(1):1-12.
    34Bachetti T, Morbidelli L. Endothelial cells in culture: a model for studying vascular functions. Pharmacol Res,2000;42(1):9.Balligand JL, Kelly RA, Smith TW, et al. Cardiac endothelium and tissue growth. Prog Cardiovasc Dis,1997;39:351.
    5Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factors2(Nrf2), a NF-E2-like basic leucine zippertranscriptional activator that binds to the tandem NF-E2/AP1repeat of the h-globin locus control regions. ProcmurineAcad Sci USA,1994;91(21):9926-9930.
    6Maher J, Yamamoto M.The rise of antioxidant signaling-the evolution and hormetic actions of Nrf2. Toxicol ApplPharmacol,2010;244:4-15.
    7Klaassen CD, Reisman SA. Nrf2the resue: effects of the antioxidative/eletrophi-lic response on the liver. Toxicol ApplPharmacol,2010;244:57-65.
    Dreger H, Westphal K, Weller A, et al. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway forproteasome inhibitor-mediated cardioprotection. Cardiovasc Res,2009;83:354-61.
    1Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiac responses to hemodynamic stress.Arterioscler Thromb Vasc Biol,2009;29:1843-50.
    2Dai G, Vaughn S, Zhang Y, et al. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelialredox balance via phosphoinositol3-kinase/Akt-dependent activation of Nrf2. Circ Res,2007;101:723-33.
    3Uno K, Prow TW, Bhutto IA, et al. Role of Nrf2in retinal vascular development and the vaso-obliterative phase ofoxygen-induced retin-opathy. Exp Eye Res,2010;90:493-500.
    4Afonyushkin T, Oskolkova OV, Philippova M, et al. Oxidized phospholipids regulate expression of ATF4and VEGF inendothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded proteinstress pathways. Arterioscler Thromb Vasc Biol,2010;30(5):1007-1013.
    5Loboda A, Jazwa A, Grochot-Przeczek A, et al. Heme oxygenase-1and the vascular bed: from molecular mechanismsto therapeutic opportunities. Antioxid Redox Signal,2008;10(10):1767-1812.
    6Tongers J, Knapp JW, Korf M, et al. Haeme oxygenase promotes progenitor cell mobilization, neovascularization, andfunctional recovery after critical hindlimb ischaemia in mice. Cardiovasc Res,2008;78:294-300.
    7alec V, Gottschald OR, Li S, et al. HIF-1alpha signaling is augmented during intermittent hypoxia by induction ofthe Nrf2pathway in NOX1-expressing adenocarcinoma A549cells. Free Radic Biol Med,2010;48(12):1626-1635.
    1宁艳霞,王新红,金惠铭,等.大鼠心肌微血管内皮细胞的培养及基因芯片分析的研究.中国病理生理杂志,2005;21(12):2295.
    2Nishida M, CarleyWW, GerritsenME, et al. Isolationand characterisationof human and rat cardiac microvascularendothelial cells. AmJ Physiol,1993;264(2):H639.
    3李娜,潘明症,张宏.大鼠心肌微血管内皮细胞的体外原代培养.基础医学与临床,2010;30(6):640-643.
    1Malec V, Gottschald OR, Li S, et al. HIF-1alpha signaling is augmented during intermittent hypoxia by induction ofthe Nrf2pathway in NOX1-expressing adenocarcinoma A549cells. Free Radic Biol Med,2010;48(12):1626-1635.
    Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiac responses to hemodynamic stress.Arterioscler Thromb Vasc Biol,2009;29:1843-50.
    1理查德J.辛普森主编,何大澄主译.蛋白质与蛋白质组学试验指南.北京:化学工业出版社,2006;35-100.
    2Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem,1985;150:76–85.
    1孟华,朱妙章,黄晨.大鼠心肌微血管内皮细胞的培养及其生物学特性.解放军医学杂志,2008;33(9):1153-1154.
    2He ZH, King GL. Microvascular complications of diabetes. Endocrino Metab Clin North Am,2004;33(1):215-238.
    3Ando H, KubinT, Schaper W, et al. Cardiac microvascular endothelial cells express a-smooth muscle actin and show lowNOS III activity. Am J Physiol,1999;276(5Pt2): H1755.
    4Balligand JL, Kelly RA, Smith TW. Cardiac endothelium and tissue growth.Prog Cardiovasc Dis,1997;39(4):351.
    5宁艳霞,王新红,金惠铭,等.大鼠心肌微血管内皮细胞的培养及基因芯片分析的研究.中国病理生理杂志,2005;21(12):2295.
    6Nishida M, CarleyWW, GerritsenME, et al. Isolationand characterisationof human and rat cardiac microvascularendothelial cells. AmJ Physiol,1993;264(2):H639.
    7李娜,潘明症,张宏.大鼠心肌微血管内皮细胞的体外原代培养.基础医学与临床,2010;30(6):640-643.
    1Toffoli S, Roegiers A, Feron O, et al. Intermittent hypoxia is an angiogenic inducer for endothelial cells: role of HIF-1.Angiogenesis,2009;12:47-67.
    Maher J, Yamamoto M.The rise of antioxidant signaling-the evolution and hormetic actions of Nrf2.Toxicol ApplPharmacol,2010;244:4-15.
    3Polotsky VY, Savransky V, Bevans-Fonti S, et al. Intermittent and sustained hypoxia induce a similar gene expressionprofile in human aortic endothelial cells. Physiol Genomics,2010;41:306-314.
    4Sethy NK, Singh M, Kumar R, et al. Upregulation of transcription factor NRF2-mediated oxidative stress responseathway in rat brain under short-term chronic hypobaric hypoxia. Funct Integr Genomics,2011;11:119-137.
    5i J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiac responses to hemodynamic stress.Arterioscler Thromb Vasc Biol,2009;29:1843-50.
    Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factor Nrf2, HO-1expression and protects rat brainsagainst focal ischemia. Brain Res,2009;1282:133-141.
    1Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factors2(Nrf2), a NF-E2-like basic leucine zippertranscriptional activator that binds to the tandem NF-E2/AP1repeat of the h-globin locus control regions. ProcmurineAcad Sci USA,1994;91(21):9926-9930.
    2Dai G, Vaughn S, Zhang Y, et al. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelialredox balance via phosphoinositol3-kinase/Akt-dependent activation of Nrf2. Circ Res,2007;101:723-33.
    3Uno K, Prow TW, Bhutto IA, et al. Role of Nrf2in retinal vascular development and the vaso-obliterative phase ofoxygen-induced retinopathy. ExpEye Res,2010;90:493-500.
    4Bussolino F, Mantovani A, Persico G, et al. Molecular mechanisms of blood vessel formation.Trends Biochem Sci,1997;22:251-256.
    5Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med,2000;6(4):389.
    12Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med,2000;6(4):389Carmeliet P. Angiogenesis in health and disease. Nat Med,2003;9:653-660.
    3Isner JM, Losordo DW. Therapeutic angiogenesis for heart failure.Nat Med,1999;5:491-492.
    1Sholley MM, Ferguson GP, Seibel HR, et al. Mechanisms of neovascularization. Vascular sprouting can occur withoutproliferation of endothelial cells. Lab Invest,1984;51:624-634.
    2Ashino T, Yamamoto M, Yoshida T, et al. Redox-sensitive transcription factor Nrf2regulates vascular smooth muscle cellmigration and neointimal hyperplasia. Arterioscler Thromb Vasc Biol,2013;33:760-768.
    3Balligand JL, Kelly RA, Smith TW, et al. Cardiac endothelium and tissue growth. Prog Cardiovasc Dis,1997;39:351.
    4alcarcel-Ares MN, Gautam T, Warrington JP, et al. Disruption of Nrf2signaling impairs angiogenic capacity ofendothelial cells: implications for microvascular aging.J Gerontol A Biol Sci Med Sci,2012;67:821-829.
    5Pendyala S, Moitra J, Kalari S, et al. Nrf2regulates hyperoxia-induced Nox4expression in human lung endothelium:Identification of func-tional antioxidant response elements on the Nox4promoter. Free Radic Biol Med,2011;50:1749-1759.
    6no K, Prow TW, Bhutto IA, et al. Role of Nrf2in retinal vascular development and the vaso-obliterative phase ofoxygen-induced retinopathy. ExpEye Res,2010;90:493-500.
    1Kim JY, Cho HJ, Sir JJ, et al. Sulfasalazine induces haem oxygenase-1via ROS-dependent Nrf2signalling, leading tocontrol of neointimal hyperplasia. Cardiovasc Res,2009;82(3):550-560.
    2shii T, Itoh K, Takahashi S, et al. Transcription factor Nrf2coordinately regulates a group of oxidative stress-induciblegenes in macrophages. J Biol Chem,2000;275(21):16023-16029.
    3Jazwa A, Rojo AI, Innamorato NG, et al. Pharmacological targeting of the transcription factor Nrf2at the basal gangliaprovides disease modifying therapy for experimental Parkinsonism. Antioxid Redox Signal,2011;14(12):2347-2360.
    4Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev,2004;25:581-611.
    5im TH, Hur EG, Kang SJ, et al. NRF2blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-inducedactivation of HIF-1a. Cancer Res,2011;71:2260-2275.
    6Afonyushkin T, Oskolkova OV, Philippova M, et al. Oxidized phospho-lipids regulate expression of ATF4and VEGF inendothelial cells via NRF2-dependent mechanism novel point of convergence between elec-trophilic and unfolded proteinstress pathways. Arterioscler Thromb Vasc Biol,2010;30:1007-1013.
    1Elsman P, van‘t Hof AW, de Boer MJ, et al. Role of collateral circulation in the acute phase of ST-segment-elevationmyocardial infarction treated with primary coronary intervention.Eur Heart J,2004;25:854-858.
    1Carmeliet P. Angiogenesis in health and disease. Nat Med,2003;9:653-660.
    2Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov,2007;6:273-286.
    3Dinkova-Kostova AT. Chemoprotection against Cancer by Isothiocyanates: A Focus on the Animal Models and theProtective Mechanisms. Top Curr Chem,2012;329:179-201.
    4Juge N, Mithen RF and Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. CellMol Life Sci,2007;64:1105-1127.
    1Zhang P, Liu ZT, He GX, et al. Low-Voltage Direct-Current Stimulation is Safe and Promotes Angiogenesis in Rabbitswith Myocardial Infarction. Cell Biochem Biophys,2011;59:19–27.
    2Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factors2(Nrf2), a NF-E2-like basic leucine zippertranscriptional activator that binds to the tandem NF-E2/AP1repeat of the h-globin locus control regions. ProcmurineAcad Sci USA,1994;91(21):9926-9930.
    3Dreger H, Westphal K, Weller A, et al. Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway forproteasome inhibitor-mediated cardioprotection. Cardiovasc Res,2009;83:354-61.
    4Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiac responses to hemodynamic stress.Arterioscler Thromb Vasc Biol,2009;29:1843-50.
    5Dai G, Vaughn S, Zhang Y, et al. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelialredox balance via phosphoinositol3-kinase/Akt-dependent activation of Nrf2. Circ Res,2007;101:723-33.
    Kim TH, Hur EG, Kang SJ, et al. NRF2blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-inducedactivation of HIF-1a. Cancer Res,2011;71:2260-2275.
    7Ma XD, Zhang JF, Liu SJ, et al. Nrf2knockdown by shRNA inhibits tumor growth and increases efficacy ofchemotherapy in cervical cancer. Cancer Chemoth Pharm,2012;69(2):485-494.
    8Shibuya A, Onda K, Kawahara H, et al. Sofalcone, a gastric mucosa protective agent, increases vascular endothelialgrowth factor via the Nrf2-heme-oxygenase-1dependent pathway in gastric epithelial cells.Biochem Biophys ResCommun,2010;398:581–584.
    9Pendyala S, Moitra J, Kalari S, et al. Nrf2regulates hyperoxia-induced Nox4expression in human lung endothelium:Identification of func-tional antioxidant response elements on the Nox4promoter. Free Radic Biol Med,2011;50:1749-1759.
    1Afonyushkin T, Oskolkova OV, Philippova M, et al. Oxidized phospho-lipids regulate expression of ATF4and VEGF inendothelial cells via NRF2-dependent mechanism novel point of convergence between elec-trophilic and unfolded protein
    2stress pathways. Arterioscler Thromb Vasc Biol,2010;30:1007-1013.Abraham NG, Nelson JC, Ahmed T, et al. Erythropoietin controls heme metabolic enzymes in normal human bone marrowculture.Exp Hematol,1989;17:908–913.
    1Ryter SW, Alam J, Choi AM. Heme oxygena se-1/carbon monoxide: from basic science to thera peutic applications.Physiol Rev,2006;86:583–650.
    23Stocker R, Perrella MA. Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation,2006;114:2178.
    Tongers J, Fiedler B, Konig D, et al. Heme oxygenase-1inhibit ion of MAP kinases, calcineurin/NFAT signaling, andhypertrophy in cardiac myocytes.Cardiovasc Res,2004;63:545–552.
    LiVolti G, Sacerdoti D, Sangra s B, et al. Carbon monoxide signaling in promoting ang iogenesis in human microvesselendothelial cells.Antioxid Redox Signal,2005;7:704–710.
    Nishida M, CarleyWW, GerritsenME, et al. Isolationand characterisationof human and rat cardiac microvascularendothelial cells. AmJ Physiol,1993;264(2):H639.
    Tongers J, Knapp JW, Korf M, et al. Haeme oxygenase promotes progenitor cell mobilization, neovascularization, and
    7functional recovery after critical hindlimb ischaemia in mice. Cardiovasc Res,2008;78:294-300.Meng D, Wang X, Chang Q, et al. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependentmechanism. Toxicol Appl Pharmacol,2010;244(3):291-299.
    1Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012update: a report from the AmericanHeart Association.Circulation,2012;125: e2–e220.
    2Park JG and Oh GT. The role of peroxidases in the pathogenesis of atherosclerosis. BMB Rep,2011;44(8):497–505.
    3Sawyer DB. Oxidative stress in heart failure: what are we missing? Am J Med Sci,2011;342(2):120–124.
    4Pires PW, Dams Ramos CM, Matin N, et al. The effects of hypertension on the cerebral circulation. Am J PhysiolRegul Integr Comp Physiol,2013;305(2):R95–97.
    5Gillespie S, Gavins FN. Phytochemicals: countering risk factors and pathological responses associated with ischaemiareperfusion injury. Pharmacol Ther,2013;138(1):38-45
    6Fearon IM and Faux SP, Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol CellCard,2009;47(3):372–381.
    7Janssen YM, Van Houten B, Borm PJ, et al. Cell and tissue responses to oxidative damage. Lab Invest,1993;69(3):261–274.
    8Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factors2(Nrf2), a NF-E2-like basic leucine zippertranscriptional activator that binds to the tandem NF-E2/AP1repeat of the h-globin locus control regions. ProcmurineAcad Sci USA,1994;91(21):9926-9930.
    1Motohashi H, O’Connor T, Katsuoka F, et al. Integration and diversity of the regulatory network composed of Maf andCNC families of transcription factors. Gene,2002;294:1-12.
    2Itoh K, Wakabayashi N, Katoh Y, et al. Keap1represses nuclear activation of antioxidant responsive elements by Nrf2through binding to the amino-terminal Neh2domain. Genes Dev,1999;13:76–86.
    3Katsuoka F, Motohashi H, Ishii T, et al. Genetic evidence that small Maf proteins are essential for the activation ofantioxidant response element-dependent genes. Mol Cell Biol,2005;25:8044–8051.
    4Nioi P, Nguyen T, Sherratt PJ, et al. The carboxy-terminal Neh3domain of Nrf2is required for transcriptionalactivation. Mol Cell Biol,2005;25:10895–10906.
    5Katoh Y, Itoh K, Yoshida E, et al. Two domains of Nrf2cooperatively bind CBP, a CREB binding protein, andsynergistically activate transcription. Genes Cells,2001;6:857–868.
    6McMahon M, Thomas N, Itoh K, et al. Redox-regulated turnover of Nrf2is determined by at least two separate proteindomains, the redox-sensitive Neh2degron and the redox-insensitive Neh6degron. J Biol Chem,2004;279:31556–31567.
    7Dinkova-Kostova AT, Holtzclaw WD, Cloe RN, et al. Direct evidence that sulfhydryl groups of Keap1are the sensorsregulating induction of phase2enzymes that protect against carcinogens and oxidants. Proc Acad Sci USA,2002;99(18):111908-11913.
    1Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds.Antioxid Redox Sign,2006;8:99–106.
    2Madamanchi NR, Vendrov A, and Runge MS. Oxidativestress and vascular disease. Arterioscl Throm Vas,2005;25(1):29–38.
    3Libby P. Inflammation in atherosclerosis. Nature,2002;420:868–874.
    Asakura T and Karino T. Flow patterns and spatial distributions of atherosclerotic lesions in human coronary arteries.Circ Res,1990;66(4):1045-1066.
    5Ku DN, Giddens DP, Zarins CK, et al. Pulsatile low and atherosclerosis in the human carotid bifurcation.Positivecorrelation between plaque location and low and oscillating shear stress. Arteriosclerosis,1985;5(3):293–302.
    6Mudau M, Genis A, Lochner A, et al. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr,2012;23(4):222–231.
    7Harrison DG, Widder J, Grumbach I, et al. Endothelial mechanotransduction, nitric oxide and vascular inlammation. JIntern Med,2006;259(4)351–363.
    Hosoya T, Maruyama A, Kang MI, et al. Diferential responses of the Nrf2-Keap1system to laminar and oscillatoryshear stresses in endothelial cells. J Biol Chem,2005;280(29):27244–27250.
    1Chesley A, Lundberg MS, Asai T, et al. The β2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes throughG(i)-dependent coupling to phosphatidylinositol3-kinase. Circ Res,2000;87(12):1172–1179.
    2Lu Z, Xu X, Hu X, et al. Extracellular superoxide dismutase deiciency exacerbates pressure overload-induced letventricular hypertrophy and dysfunction. Hypertension,2008;51(1):19–25.
    3Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiac responses to hemodynamic stress.Arterioscl throm Vas,2009;29(11):1843–1850.
    4Brewer AC, Murray TV, Arnoetal M, et al. Nox4regulates Nrf2and glutathione redox in cardiomyocytes in vivo. FreeRadical Bio Med,2011;51(1):205–215.
    5Kuroda J, Ago T, Matsushima S, et al. NADPH oxidase4(Nox4) is a major source of oxidative stress in the failingheart. Proc Natl Acad Sci USA,2010;107(35):15565–15570..
    6Ashraian H, Czibik G, Bellahceneetal M, et al. Fumarateis cardioprotective via activation of the Nrf2antioxidantpathway. Cell Metab,2012;15(3):361–371.
    7Ichikawa T, Li J, Meyer CJ, et al. Dihydro-CDDO-triluoroethyl amide (dh404), a novel Nrf2activator, suppressesoxidative stress in cardiomyocytes.Plos one,2009;4(12): e8391.
    8Calvert JW, Jha S, Gundewar S, et al. Hydrogen sulide mediates cardioprotection through Nrf2signaling. Circ Res,2009;105(4):365–374.
    9Rajasekaran NS, Connell P, Christiansetal ES,et al.Human B-crystallin mutation causes oxido-reductive stress andprotein aggregation cardiomyopathy in mice. Cell,2007;130(3):427–439.
    10Rajasekaran NS, Varadharaj S, Khanderao GD, et al. Sustained activation of nuclear erythroid2-related factor2/antiox-idant response element signaling promotes reductive stress in the human mutant protein aggregationcardio-myopathy in mice. Antioxid Redox Sign,2011;14(6):957–971.
    1Tan Y, Ichikawa T, Li J, et al. Diabetic down regulation of Nrf2ctivity via ERK contributes to oxidative stress-induced
    2insulin esistance in cardiac cells in vitro and in vivo. Diabetes,2010;60(2):625–633.Papaiahgari S, Kleeberger SR, Cho HY, et al. NADPH oxidase and ERK signaling regulates hyperoxia-inducedNrf2-ARE transcriptional response in pulmonary epithelial cells. J Biol Chem,2004;279(40):42302–42312
    3Peus D and Pittelkow MR. Reactive oxygen species as mediators of UVB-induced mitogen-activated protein kinaseactivation in keratinocytes. Curr Probl Dermatol,2001;29:114–127
    4Zhang X, Shan P, Sasidhar M, et al. Reactive oxygen species and extracellular signal-regulated kinase1/2mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium.Am J Respir Cell Mol Biol,2003;28(3):305–315.
    5Murphy LO and Blenis J. MAPK signal speciicity: the right place at the right time. Trends Biochem Sci,2006;31(5):268–275.
    6Cagnol S and Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death-apoptosis, autophagy andsenescence. FEBS J,2010;277(1):2–21
    7de Champlain J, Wu R, Girouard H, et al. Oxidative stress in hypertension. Clin Exp Hypertens,2004;26(7):593–601.
    8Delles C, Miller H and Dominiczak AF.Targeting reactive oxygen species in hypertension. Antioxid Redox Sign,2008;10(6):1061–1077.
    9Matsuno K, Yamada H, Iwata K, et al. Nox1is involved in angiotensin II-mediated hypertension. Circulation,2005;11012(17):2677–2685.
    Malec V, Gottschald OR, Li S, et al. HIF-1signaling is augmented during intermittent hypoxia by induction of theNrf2pathway in NOX1-expressing adenocarcinoma A549cells. Free Radical Bio Med,2010;48(12):1626–1635.
    1Murdoch CE, Alom-Ruiz SP, Wang M, et al. Role of endothelial Nox2NADPH oxidase in angiotensin II-inducedhypertension and vasomotor dysfunction. Basic Res Cardiol,2011;106(4):527–538.
    2Chen TM, Li J, Liu L, et al. Efects of heme oxygenase-1upregulation on blood pressure and cardiac function in ananimal model of hypertensive myocardial infarction. Int J Mol Sci,2013;14(2):2684–2706.
    3Ryter SW, Otterbein LE, Morse D, et al. Heme oxygenase/carbon monoxide signaling pathways: regulation andfunctional signiicance.Mol Cell Biochem,2002;234(1):249–263.
    4Morita T and Kourembanas S. Endothelial cell expression of vasoconstrictors and growth factors is regulated bysmooth muscle cell-derived carbon monoxide. J Clin Invest,1995;96(6):2676–2682.
    5Ndisang JF, Zhao W, and Wang R.Selective regulation of blood pressure by heme oxygenase-1inhypertension.Hypertension,2002;40(3):315–321.
    6Chen YH, Yet SF, and Perrella MA. Role of heme oxygenase-1in the regulation of blood pressure and cardiac function.Exp Biol Med,2003;228(5):447–453.
    7Li J, Zhang C, Xing Y, et al. Up-regulation of p27kip1contributes to Nrf2-mediated Protection against angiotensinII-induced cardiac hypertrophy. Cardiovasc Res,2011;90(2):315–324.
    8Gomez-Guzman M, Jimenez R, Sanchez M, et al.Epicate-chin lowers blood pressure, restores endothelial function, anddecreases oxidative stress and endothelin-1and NADPH oxidase activity in DOCA-salt hypertension. Free Radical BioMed,2012;52(1):70–79.
    1de Groot H and Rauen U. Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc,2007;39(2):481–484.
    2Cao Z, Zhu H, Zhang L, et al. Antioxidants and phase2enzymes in cardiomyocytes: chemical inducibility and
    3chemoprotection against oxidant and simulated ischemia-reperfusion injury. Exp Biol Med,2006;231(8):1353–1364.Parekh AK and Barton MB. The challenge of multiple comorbidity for the US health care system. JAMA,2010;303(13):1303–1304.
    1Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2012update:a report from the American Heart Association.Circulation,2012;125:e2-e220.
    2Lloyd-Jones DM, Hong Y, Labarthe D, et al. American Heart Association Strategic Planning Task Force and Statistics Committee. Defining and setting national goals for cardiovascular health promotion and disease reduction:the American Heart Association's strategic Impact Goal through2020and beyond.Circulation,2010;121(4):586-613.
    3Williams B, Menon M, Satran D,et al. Patients with coronary artery disease not amenable to traditional revascularization:prevalence and3-year mortality. Catheter Cardiovasc Interv,2010;75(3):886-891.
    4Kim MC, Kini A, Sharma SK. Refractory angina pectoris:mechanism and therapeutic options. J Am Coll Cardiol,2002;39(6):923-34.
    5Pleger ST, Brinks H, Ritterhoff J, et al. Heart failure gene therapy:the path to clinical practice. Circ Res,2013;113(6):792-809
    6Mitsos S, Katsanos K, Koletsis E,et al.Therapeutic angiogenesis for myocardial ischemia revisited:basic biological concepts and focus on latest clinical trials. Angiogenesis,2012;15(1):1-12.
    1Laham RJ, Rezaee M, Post M, et al. Intrapericardial delivery of fibroblast growth factor-2induces neovascularizationina porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther,2000;292(2):795–802.
    2Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res,2009;104:576–588.
    3Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol,2007;8:464–478.
    4Jain RK. Molecular regulation of vessel maturation. Nat Med,2003;9:685–693.
    5Rakusan K. Coronary angiogenesis. From morphometry to molecular biology and back. Ann N Y Acad Sci,1995;752:257-266.
    1Carmeliet P. Angiogenesis in health and disease.Nat Med,2003;9:653-660.
    2Folkman J. Angiogenesis:an organizing principle for drug discovery? Nat Rev Drug Discov,2007;6:273-286.
    3Kones R. Recent advances in the management of chronic stable angina I:approach to the patient, diagnosis, pathophysiology, risk stratification, and gender disparities. Vase Health Risk Manag,2010;6:635-656.
    4Armstrong EJ, Bischoff J. Heart valve development:endothelial cell signaling and differentiation. Circ Res,2004;95(5):459-470.
    5Habeck M. Wielding more power over angiogenesis. Mol Med Today,2000;6(4):138-139.
    6Morabito CJ, Dettman RW, Kattan J,et al. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol,2001;234(1):204-215
    7Smart N, Dube KN, Riley PR. Coronary vessel development and insight towards neovascular therapy. Int J Exp Pathol,2009;90(3):262-283.
    8Meier P, Gloekler S, Zbinden R, et al. Beneficial effect of recruitable collaterals:a10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation,2007;116(9):975-983.
    9Said SS, Pickering JG, Mequanint K. Advances in growth factor delivery for therapeutic angiogenesis. J Vase Res,2013;50(1):35-51.
    1王冬,叶星沈.缺血性疾病与治疗性血管再生.基础医学与临床.2004;24(3):245-251.
    2Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I:angiogenic cytokines. Circulation,2004;109(21):2487-2491.
    3Lazarous DF, Shou M, Stiber JA, et al. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs:effect on myocardial angiogenesis. Cardiovasc Res,1999;44(2):294-302.
    4Khan TA, Sellke FW, Laham RJ, et al. Gene therapy progress and prospects:therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther,2003;10(4):285-291.
    5Lavu M, Gundewar S, Lefer DJ, et al. Gene therapy for ischemic heart disease. J Mol Cell Cardiol,2011;50(5):742-750
    6Kastrup J, Jorgensen E, Ruck A, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study:the Euroinject One trial. J Am Coll Cardiol,2005;45(7):982-988.
    7Kulkarni M, Greiser U, O'Brien T, et al. Liposomal gene delivery mediated by tissue-engineered scaffolds.Trends Biotechnol.2010;28(1):28-36.
    8Deiner C, Schwimmbeck PL, Koehler IS, et al. Adventitial VEGF165gene transfer prevents lumen loss through induction of positive arterial remodeling after PTCA in porcine coronary arteries.Atherosclerosis,2006;189(1):123-132.
    1Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia:Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation,2003;107(21):2677-2683.
    2Stewart DJ, Hilton JD, Arnold JM, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease:a Phase2randomized, controlled trial of AdVEGF(121)(AdVEGF121) versus maximum medical treatment. Gene Ther,2006;13(21):1503-1511.
    5Baum C. Insertional mutagenesis in gene therapy and stem cell biology. Curr Opin Hematol,2007;14(4):337-342.
    4Pleger ST, Most P, Boucher M, et al. Stable myocardial-specific AAV6-S100A1gene therapy results in chronic functional heart failure rescue. Circulation.2007:115(19):2506-2515.
    5Su H, Takagawa J, Huang Y, et al. Additive effect of AAV-mediated angiopoietin-1and VEGF expression on the therapy of infarcted heart. Int J Cardiol,2009:133(2):191-197.
    6Gaffney MM, Hynes SO, Barry F, et al. Cardiovascular gene therapy:current status and therapeutic potential. Br J Pharmacol,2007;152(2):175-188.
    7Baker AH.Designing gene delivery vectors for cardiovascular gene therapy. Prog Biophys Mol Biol,2004;84(2-3):279-299.
    8Collet G, Lamerant-Fayel N, Tertil M, et al. Hypoxia-regulated over expression of soluble VEGFR2controls angiogenesis and inhibits tumor growth. Mol Cancer Ther,2013Oct29.[Epub ahead of print]
    9Murohara T, Horowitz JR, Silver M, et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation,1998;97(1):99-107.
    1Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science,1989;246(4935):1306-1309.
    2Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science,1989;246(4935):1306-1309.
    3Lopez JJ, Laham RJ, Stamler A, et al. VEGF administration in chronic myo-cardial ischemia in pigs. Cardiovasc Res,1998-40(2):272-281.
    4Henry TD, Annex BH, McKendall GR, et al. The VIVA trial:Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis.Circulation,2003;107(10):1359-1365.
    5Ruel M, Beanlands RS, Lortie M, et al. Concomitant treatment with oral L-arginine improves the efficacy of surgical angiogenesis in patients with severe diffuse coronary artery disease:the Endothelial Modulation in Angiogenic Therapy randomized controlled trial. J Thorac Cardiovasc Surg,2008;135(4):762-770.
    6Kalil RAK, Salles FB, Giusti II, et al. Terapia genica com VEGF para angiogenese na angina refrataria:ensaio clinico fase Ⅰ/Ⅱ. Rev Bras Cir Cardiovasc,2010;25(3):311-321.
    7Stewart DJ, Kutryk MJ, Fitchett D, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease:results of the NORTHERN trial. Mol Ther,2009;17(6):1109-1115.
    8Bae J, Cho M. Gene therapy for heart failure. Korean Circ J,2005;35(5):345-352.
    9Gupta R, Tongers J, Losordo W. Human studies of angiogenic gene therapy. Circ Res,2009;105(8):724-736
    10Hao X, Mansson-Broberg A, Grinnemo KH, et al. Myocardial angiogenesis after plasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model. Cardiovasc Res.2007;73(3):481-487.
    1Voisine P, Bianchi C, Ruel M, et al. Inhibition of the cardiac angiogenic response to exogenous vascular endothelial growth factor. Surg,2004;136(2):407-415.
    2Boodhwani M, Voisine P, Ruel M, et al. Comparison of vascular endothelial growth factor and fibroblast growth factor-2in a swine model of endothelial dysfunction. Eur J Cardiothorac Surg,2008;33(4):645-650
    3Boodhwani M, Sodha NR, Mieno S, et al. Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia diabetes. Circulation,2007;116(Suppl.11):131-137.
    4Robich MP, Osipov RM, Nezafat R, et al. Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation,2010;122(Suppl.11):S142-S149.
    5Boodhwani M, Sellke FW. Therapeutic angiogenesis in diabetes and hyper-cholesterolemia:influence of oxidative stress. Antioxid Redox Signal,2009;11(8):1945-1959.
    6Sodha NR, Clements RT, Boodhwani M, et al. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol Heart Circ Physiol,2009;296(2):H428-H434.
    7Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration:the Rubik's cube of cell therapy for heart disease. Dis Model Mech.2009;2(7-8):344-358
    8Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res,2008;103(11):1204-1219.
    1Zhang Z, Deb A, Pachori A,et al. Secreted frizzled related protein2protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol,2009;46(3):370-377.
    2Chen CW, Corselli M, Peault B, et al. Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol.2012;2012:597439.
    3Salomon C, Ryan J, Sobrevia L, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis.Plos one,2013;8(7):e68451.
    4Chen SY, Wang F, Yan XY,et al.Autologous transplantation of EPCs encoding FGF1gene promotes neovascularization in a porcine model of chronic myocardial ischemia. Int J Cardiol,2009;135(2):223-232.
    5Singla DK, Hacker TA, Ma L, et al. Transplantation of embryonic stem cells into the infarcted mouse heart:formation of multiple cell types. J Mol Cell Cardiol,2006;40(1):195-200.
    6Behfar A, Perez-Terzic C, Faustino RS, et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med,2007;204(2):405-420.
    1Hirsch A, Nijveldt R, van der Vleuten PA, et al.Intracoronary infusion of autologous mononuclear bone marrow cells in patients with acute myocardial infarction treated with primary PCI:pilot study of the multicenter HEBE trial. Catheter Cardiovasc Interv,2008;71(3):273-281.
    2Beitnes JO, Hopp E, Lunde K,et al.Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction:the ASTAMI randomised, controlled study. Heart,2009;95(24):1983-1989.
    3Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease:promise, uncertainties, and challenges. Eur. Heart J,2011;32(10):1197-1206.
    4Cohen DE, Melton D. Turning straw into gold:directing cell fate for regenerative medicine. Nat Rev Genet,2011;12(4):243-252.
    5Kiskinis E, Eggan K. Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest,2010;120(1):51-59.
    6Menasche P. Stem cell therapy for heart failure:are arrhythmias a real safety concern? Circulation,2009;119(20):2735-2740.
    7Bhang SH, Cho SW, La WG, et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adiposederived stromal cells. Biomaterials,2011;32(11):2734-2747.
    1Tang C, Drukker M. Potential barriers to therapeutics utilizing pluripotent cell derivatives:intrinsic immunogenicity of in vitromaintained andmatured populations. Semin Immunopathol,2011;33(6):563-572.
    2Lu H, Xu X, Zhang M, et al.Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc Natl Acad Sci USA,2007;104(29):12140-12145.
    3Tang J, Wang J, Zheng F, et al.Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem,2011;339(1-2):107-118.
    1. Roger VL, Go AS, Lloyd-Jones DM, et al. Executive Summary: Heart Disease andStroke Statistics-2011Update: A Report from the American Heart Association.Circulation,2011;123(4):459-463.
    2. Roger VL, Go AS, Lloyd-Jones DM,et al. Heart disease and stroke statistics–2012update: a report from the American Heart Association. Circulation,2012;125:e2–e220.
    3. Lloyd-Jones DM, Hong Y, Labarthe D, et al. American Heart Association StrategicPlanning Task Force and Statistics Committee. Defining and setting national goals forcardiovascular health promotion and disease reduction: the American HeartAssociation’s strategic Impact Goal through2020and beyond. Circulation,2010;121(4):586-613.
    4.卫生部心血管疾病防治研究中心编.心血管病防治研究.中国心血管病报告2012.P7-8.北京:中国大百科全书出版社,2013;8.
    5. Bonetti PO, Holmes DR Jr, Lerman A,et al. Enhanced external counterpulsation forischemic heart disease: what’s behind the curtain? J Am Coll Cardiol,2003;41(11):1918–1925.
    6. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymph angiogenesis.Nat Rev Mol Cell Biol,2007;8:464–478.
    7. Elsman P, van‘t Hof AW, de Boer MJ, et al. Role of collateral circulation in the acutephase of ST-segment-elevation myocardial infarction treated with primary coronaryintervention. Eur Heart J,2004;25(10):854–858.
    8. Mitsos S, Katsanos K, Koletsis E,et al.Therapeutic angiogenesis for myocardialischemia revisited: basic biological concepts and focus on latest clinical trials.Angiogenesis,2012;15(1):1–12.
    9. Bachetti T, Morbidelli L. Endothelial cells in culture: a model for studying vascularfunctions. Pharmacol Res,2000;42(1):9.
    10. Balligand JL, Kelly RA, Smith TW, et al. Cardiac endothelium and tissue growth. ProgCardiovasc Dis,1997;39:351.
    11. Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factors2(Nrf2), a NF-E2-likebasic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1repeat of the h-globin locus control regions. Procmurine Acad Sci USA,1994;91(21):9926-9930.
    12. Maher J, Yamamoto M.The rise of antioxidant signaling-the evolution and hormeticactions of Nrf2.Toxicol Appl Pharmacol,2010;244:4-15.
    13. Klaassen CD, Reisman SA. Nrf2the resue: effects of the antioxidative/eletrophi-licresponse on the liver. Toxicol Appl Pharmacol,2010;244:57-65.
    14. Dreger H, Westphal K, Weller A, et al. Nrf2-dependent upregulation of antioxidativeenzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection.Cardiovasc Res,2009;83:354-61.
    15. Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiacresponses to hemodynamic stress. Arterioscler Thromb Vasc Biol,2009;29:1843-50.
    16. Li J, Ichikawa T, Jin Y, et al. An essential role of Nrf2in American ginseng-mediatedantioxidative actions in cardiomyocytes. J Ethn-opharmacol,2010;130:222-30.
    17. Dai G, Vaughn S, Zhang Y, et al. Biomechanical forces in atherosclerosis-resistantvascular regions regulate endothelial redox balance via phosphoinositol3-kinase/Akt-dependent activation of Nrf2. Circ Res,2007;101:723-33.
    18. Uno K, Prow TW, Bhutto IA, et al. Role of Nrf2in retinal vascular development andthe vaso-obliterative phase of oxygen-induced retin-opathy. Exp Eye Res,2010;90:493-500.
    19. Afonyushkin T, Oskolkova OV, Philippova M, et al. Oxidized phospholipids regulateexpression of ATF4and VEGF in endothelial cells via NRF2-dependent mechanism:novel point of convergence between electrophilic and unfolded protein stress pathways.Arterioscler Thromb Vasc Biol,2010;30(5):1007-1013.
    20. Loboda A, Jazwa A, Grochot-Przeczek A, et al. Heme oxygenase-1and the vascularbed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal,2008;10(10):1767-1812
    21. Tongers J, Knapp JW, Korf M, et al. Haeme oxygenase promotes progenitor cellmobilization, neovascularization, and functional recovery after critical hindlimbischaemia in mice. Cardiovasc Res,2008;78:294-300.
    22. Malec V, Gottschald OR, Li S, et al. HIF-1alpha signaling is augmented duringintermittent hypoxia by induction of the Nrf2pathway in NOX1-expressingadenocarcinoma A549cells. Free Radic Biol Med,2010;48(12):1626-1635
    23.宁艳霞,王新红,金惠铭,等.大鼠心肌微血管内皮细胞的培养及基因芯片分析的研究.中国病理生理杂志,2005;21(12):2295.
    24. Nishida M, CarleyWW, GerritsenME, et al. Isolationand characterisationof human andrat cardiac microvascular endothelial cells. AmJ Physiol,1993;264(2):H639
    25.李娜,潘明症,张宏.大鼠心肌微血管内皮细胞的体外原代培养.基础医学与临床,2010;30(6):640-643.
    26. J.S.博尼费斯农, M.达索,等主编,章静波等译.精编细胞生物学试验指南.北京:科学出版社,2007;2-5,246-290.
    27.理查德J.辛普森主编,何大澄主译.蛋白质与蛋白质组学试验指南.北京:化学工业出版社,2006;35-100.
    28. Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein usingbicinchoninic acid. Anal Biochem,1985;150:76–85.
    29.孟华,朱妙章,黄晨.大鼠心肌微血管内皮细胞的培养及其生物学特性.解放军医学杂志,2008;33(9):1153-1154.
    30. He ZH, King GL. Microvascular complications of diabetes. Endocrino Metab ClinNorth Am,2004;33(1):215-238.
    31. Ando H, KubinT, Schaper W, et al. Cardiac microvascular endothelial cells expressa-smooth muscle actin and show low NOS III activity. Am J Physiol,1999;276(5Pt2):H1755.
    32. Balligand JL, Kelly RA, Smith TW. Cardiac endothelium and tissue growth.ProgCardiovasc Dis,1997;39(4):351.
    33. Toffoli S, Roegiers A, Feron O, et al. Intermittent hypoxia is an angiogenic inducer forendothelial cells: role of HIF-1. Angiogenesis,2009;12:47-67.
    34. Polotsky VY, Savransky V, Bevans-Fonti S, et al. Intermittent and sustained hypoxiainduce a similar gene expression profile in human aortic endothelial cells. PhysiolGenomics,2010;41:306-314.
    35. Sethy NK, Singh M, Kumar R, et al. Upregulation of transcription factorNRF2-mediated oxidative stress response pathway in rat brain under short-term chronichypobaric hypoxia. Funct Integr Genomics,2011;11:119-137.
    36. Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factor Nrf2, HO-1expression and protects rat brains against focal ischemia. Brain Res,2009;1282:133-141.
    37. Uno K, Prow TW, Bhutto IA, et al. Role of Nrf2in retinal vascular development andthe vaso-obliterative phase of oxygen-induced retinopathy. ExpEye Res,2010;90:493-500.
    38. Bussolino F, Mantovani A, Persico G, et al. Molecular mechanisms of blood vesselformation.Trends Biochem Sci,1997;22:251-256.
    39. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med,2000;6(4):389
    40. Carmeliet P. Angiogenesis in health and disease. Nat Med,2003;9:653-660.
    41. Isner JM, Losordo DW. Therapeutic angiogenesis for heart failure.Nat Med,1999;5:491-492.
    42. Sholley MM, Ferguson GP, Seibel HR, et al. Mechanisms of neovascularization.Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest,1984;51:624-634.
    43. Ashino T, Yamamoto M, Yoshida T, et al. Redox-sensitive transcription factor Nrf2regulates vascular smooth muscle cell migration and neointimal hyperplasia.Arterioscler Thromb Vasc Biol,2013;33:760-768.
    44. Valcarcel-Ares MN, Gautam T, Warrington JP, et al. Disruption of Nrf2signalingimpairs angiogenic capacity of endothelial cells: implications for microvascular aging.JGerontol A Biol Sci Med Sci,2012;67:821-829.
    45. Pendyala S, Moitra J, Kalari S, et al. Nrf2regulates hyperoxia-induced Nox4expression in human lung endothelium: Identification of func-tional antioxidantresponse elements on the Nox4promoter. Free Radic Biol Med,2011;50:1749-1759.
    46. Kim JY, Cho HJ, Sir JJ, et al. Sulfasalazine induces haem oxygenase-1via ROS-dependent Nrf2signalling, leading to control of neointimal hyperplasia. CardiovascRes,2009;82(3):550-560.
    47. Ishii T, Itoh K, Takahashi S, et al. Transcription factor Nrf2coordinately regulates agroup of oxidative stress-inducible genes in macrophages. J Biol Chem,2000;275(21):16023-16029.
    48. Jazwa A, Rojo AI, Innamorato NG, et al. Pharmacological targeting of the transcriptionfactor Nrf2at the basal ganglia provides disease modifying therapy for experimentalParkinsonism. Antioxid Redox Signal,2011;14(12):2347-2360.
    49. Ferrara, N. Vascular endothelial growth factor: basic science and clinical progress.Endocr Rev,2004;25:581-611.
    50. Kim TH, Hur EG, Kang SJ, et al. NRF2blockade suppresses colon tumor angiogenesisby inhibiting hypoxia-induced activation of HIF-1a. Cancer Res,2011;71:2260-2275.
    51. Afonyushkin T, Oskolkova OV, Philippova M, et al. Oxidized phospho-lipids regulateexpression of ATF4and VEGF in endothelial cells via NRF2-dependent mechanismnovel point of convergence between elec-trophilic and unfolded protein stress pathways.Arterioscler Thromb Vasc Biol,2010;30:1007-1013.
    52. Elsman P, van‘t Hof AW, de Boer MJ, et al. Role of collateral circulation in the acutephase of ST-segment-elevation myocardial infarction treated with primary coronaryintervention.Eur Heart J,2004;25:854-858.
    53. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev DrugDiscov,2007;6:273–286.
    54. Dinkova-Kostova AT. Chemoprotection against Cancer by Isothiocyanates: A Focus onthe Animal Models and the Protective Mechanisms. Top Curr Chem,2012;329:179-201.
    55. Juge N, Mithen RF and Traka M. Molecular basis for chemoprevention by sulforaphane:a comprehensive review. Cell Mol Life Sci,2007;64:1105-1127.
    56. Zhang P, Liu ZT, He GX, et al. Low-Voltage Direct-Current Stimulation is Safe andPromotes Angiogenesis in Rabbits with Myocardial Infarction. Cell Biochem Biophys,2011;59:19-27.
    57. Ma XD, Zhang JF, Liu SJ, et al. Nrf2knockdown by shRNA inhibits tumor growth andincreases efficacy of chemotherapy in cervical cancer. Cancer Chemoth Pharm,2012;69(2):485-494.
    58. Shibuya A, Onda K, Kawahara H, et al. Sofalcone, a gastric mucosa protective agent,increases vascular endothelial growth factor via the Nrf2-heme-oxygenase-1dependentpathway in gastric epithelial cells.Biochem Biophys Res Commun,2010;398:581–584.
    59. Abraham NG, Nelson JC, Ahmed T, et al. Erythropoietin controls heme metabolicenzymes in normal human bone marrow culture.Exp Hematol,1989;17:908-913.
    60. Ryter SW, Alam J, Choi AM. Heme oxygena se-1/carbon monoxide: from basic scienceto thera peutic applications. Physiol Rev,2006;86:583-650.
    61. Stocker R, Perrella MA. Heme oxygenase-1: a novel drug target for atheroscleroticdiseases? Circulation,2006;114:2178.
    62. Tongers J, Fiedler B, Konig D, et al. Heme oxygenase-1inhibit ion of MAP kinases,calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes.Cardiovasc Res,2004;63:545-552.
    63. Hu CM, Chen YH, Chiang MT, et al. Heme oxygenase-1inhibit s angiotensinII-induced cardiac hyper trophy in vitro and in vivo.Circulation,2004;110:309–316.
    64. LiVolti G, Sacerdoti D, Sangra s B, et al. Carbon monoxide signaling in promoting angiogenesis in human microvessel endothelial cells.Antioxid Redox Signal,2005;7:704-710.
    65. Pae HO, Oh GS, Choi BM, et al. A molecular cascade showing nitricoxide-hemeoxygenase-1-vascular endothelial growth factor-interleukin-8sequence in humanendothelial cells. Endocrinology,2005;146:2229-2238.
    66. Meng D, Wang X, Chang Q, et al. Arsenic promotes angiogenesis in vitro via a hemeoxygenase-1-dependent mechanism. Toxicol Appl Pharmacol,2010;244(3):291-299.
    1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012update: a report from the American Heart Association.Circulation,2012;125: e2–e220.
    2. Park JG and Oh GT. The role of peroxidases in the pathogenesis of atherosclerosis.BMB Rep,2011;44(8):497–505.
    3. Sawyer DB. Oxidative stress in heart failure: what are we missing? Am J Med Sci,2011;342(2):120–124.
    4. Pires PW, Dams Ramos CM, Matin N, et al. The effects of hypertension on the cerebralcirculation. Am J Physiol Regul Integr Comp Physiol,2013;305(2):R95–97.
    5. Gillespie S, Gavins FN. Phytochemicals: countering risk factors and pathologicalresponses associated with ischaemia reperfusion injury. Pharmacol Ther,2013;138(1):38-45.
    6. Fearon IM and Faux SP, Oxidative stress and cardiovascular disease: novel tools give(free) radical insight. J Mol Cell Card,2009;47(3):372–381.
    7. Janssen YM, Van Houten B, Borm PJ, et al. Cell and tissue responses to oxidativedamage. Lab Invest,1993;69(3):261–274.
    8. Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factors2(Nrf2), a NF-E2-likebasic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1repeatof the h-globin locus control regions. Procmurine Acad Sci USA,1994;91(21):9926-9930.
    9. Motohashi H, O’Connor T, Katsuoka F, et al. Integration and diversity of the regulatorynetwork composed of Maf and CNC families of transcription factors. Gene,2002;294:1-12.
    10. Itoh K, Wakabayashi N, Katoh Y, et al. Keap1represses nuclear activation ofantioxidant responsive elements by Nrf2through binding to the amino-terminal Neh2domain. Genes Dev,1999;13:76–86.
    11. Katsuoka F, Motohashi H, Ishii T, et al. Genetic evidence that small Maf proteins areessential for the activation of antioxidant response element-dependent genes. Mol CellBiol,2005;25:8044–8051.
    12. Nioi P, Nguyen T, Sherratt PJ, et al. The carboxy-terminal Neh3domain of Nrf2isrequired for transcriptional activation. Mol Cell Biol,2005;25:10895–10906.
    13. Katoh Y, Itoh K, Yoshida E, et al. Two domains of Nrf2cooperatively bind CBP, aCREB binding protein, and synergistically activate transcription. Genes Cells,2001;6:857–868.
    14. McMahon M, Thomas N, Itoh K, et al. Redox-regulated turnover of Nrf2is determinedby at least two separate protein domains, the redox-sensitive Neh2degron and theredox-insensitive Neh6degron. J Biol Chem,2004;279:31556–31567.
    15. Dinkova-Kostova AT, Holtzclaw WD, Cloe RN, et al. Direct evidence that sulfhydrylgroups of Keap1are the sensors regulating induction of phase2enzymes that protectagainst carcinogens and oxidants. Proc Acad Sci USA,2002;99(18):111908-11913.
    16. Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancerchemoprevention by natural compounds. Antioxid Redox Sign,2006;8:99–106.
    17. Maher J, Yamamoto M.The rise of antioxidant signaling-the evolution and hormeticactions of Nrf2.Toxicol Appl Pharmacol,2010;244:4-15.
    18. Klaassen CD, Reisman SA. Nrf2the resue: effects of the antioxidative/eletrophilicresponse on the liver. Toxicol Appl Pharmacol,2010;244:57-65.
    19. Madamanchi NR, Vendrov A, and Runge MS. Oxidativestress and vascular disease.Arterioscl Throm Vas,2005;25(1):29–38.
    20. Libby P. Inflammation in atherosclerosis. Nature,2002;420:868–874.
    21. Asakura T and Karino T. Flow patterns and spatial distributions of atheroscleroticlesions in human coronary arteries. Circ Res,1990;66(4):1045-1066.
    22. Gibson CM, Diaz L, Kandarpa K, et al. Relation of vesselwall shear stress toatherosclerosis progression in human coronary arteries. Arterioscl Throm Vas,1993;13(2):310–315.
    23. Ku DN, Giddens DP, Zarins CK, et al. Pulsatile low and atherosclerosis in the humancarotid bifurcation.Positive correlation between plaque location and low and oscillatingshear stress. Arteriosclerosis,1985;5(3):293–302.
    24. Mudau M, Genis A,Lochner A, et al. Endothelial dysfunction: the early predictor ofatherosclerosis. Cardiovasc J Afr,2012;23(4):222–231.
    25. Harrison DG, Widder J, Grumbach I, et al. Endothelial mechanotransduction, nitricoxide and vascular inlammation. J Intern Med,2006;259(4)351–363.
    26. Hosoya T, Maruyama A, Kang MI, et al. Diferential responses of the Nrf2-Keap1system to laminar and oscillatory shear stresses in endothelial cells. J Biol Chem,2005;280(29):27244–27250.
    27. Nigro P, Abe JI, and Berk BC. Flow shear stress and atherosclerosis: a matter of sitespeciicity. Antioxid Redox Sign,2011;15(5):1405–1414.
    28. Chesley A, Lundberg MS, Asai T, et al. The β2-adrenergic receptor delivers anantiapoptotic signal to cardiac myocytes through G(i)-dependent coupling tophosphatidylinositol3-kinase. Circ Res,2000;87(12):1172–1179.
    29. Lu Z, Xu X, Hu X, et al. Extracellular superoxide dismutase deiciency exacerbatespressure overload-induced let ventricular hypertrophy and dysfunction. Hypertension,2008;51(1):19–25.
    30. Li J, Ichikawa T, Villacorta L, et al. Nrf2protects against maladaptive cardiac responsesto hemodynamic stress. Arterioscl throm Vas,2009;29(11):1843–1850.
    31. Brewer AC, Murray TV, Arnoetal M, et al. Nox4regulates Nrf2and glutathione redoxin cardiomyocytes in vivo. Free Radical Bio Med,2011;51(1):205–215.
    32. Kuroda J, Ago T, Matsushima S, et al. NADPH oxidase4(Nox4) is a major source ofoxidative stress in the failing heart. Proc Natl Acad Sci USA,2010;107(35):15565–15570.
    33. Ashraian H, Czibik G, Bellahceneetal M, et al. Fumarateis cardioprotective viaactivation of the Nrf2antioxidant pathway. Cell Metab,2012;15(3):361–371.
    34. Ichikawa T, Li J, Meyer CJ, et al. Dihydro-CDDO-triluoroethyl amide (dh404), a novelNrf2activator, suppresses oxidative stress in cardiomyocytes.Plos one,2009;4(12):e8391.
    35. Xing Y, Niu T, Wang W, et al.Triterpenoid dihydro-CDDO-triluoroethyl amide protectsagainst maladaptive cardiac remodeling and dysfunction inmice: a critical role ofNrf2.Plos one,2012;7(9): e44899.
    36. Calvert JW, Jha S, Gundewar S, et al. Hydrogen sulide mediates cardioprotectionthrough Nrf2signaling. Circ Res,2009;105(4):365–374.
    37. Zhang Y, Sano M, Shinmura K, et al.4-hydroxy-2-nonenal protects against cardiacischemia-reperfusion injury via the Nrf2-dependent pathway. J Mol Cell Cardiol,2010;49(4):576–586.
    38. Rajasekaran NS, Connell P, Christiansetal ES,et al.Human B-crystallin mutation causesoxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell,2007;130(3):427–439.
    39. Rajasekaran NS, Varadharaj S, Khanderao GD, et al. Sustained activation of nuclearerythroid2-related factor2/antiox-idant response element signaling promotes reductivestress in the human mutant protein aggregation cardio-myopathy in mice. AntioxidRedox Sign,2011;14(6):957–971.
    40. Tan Y, Ichikawa T, Li J, et al. Diabetic down regulation of Nrf2ctivity via ERKcontributes to oxidative stress-induced insulin esistance in cardiac cells in vitro and invivo. Diabetes,2010;60(2):625–633.
    41. Papaiahgari S, Kleeberger SR, Cho HY, et al. NADPH oxidase and ERK signalingregulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelialcells. J Biol Chem,2004;279(40):42302–42312.
    42. Peus D and Pittelkow MR. Reactive oxygen species as mediators of UVB-inducedmitogen-activated protein kinase activation in keratinocytes. Curr Probl Dermatol,2001;29:114–127.
    43. Ikeyama S, Kokkonen G, Shack S, et al. Loss in oxidative stress tolerance with aginglinked to reduced extracellular signal-regulated kinase and Akt kinase activities. FASEBJ,2002;16(1):114–116.
    44. Zhang X, Shan P, Sasidhar M, et al. Reactive oxygen species and extracellularsignal-regulated kinase1/2mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium.Am J Respir Cell Mol Biol,2003;28(3):305–315.
    45. Murphy LO and Blenis J. MAPK signal speciicity: the right place at the right time.Trends Biochem Sci,2006;31(5):268–275.
    46. Cagnol S and Chambard JC. ERK and cell death: mechanisms of ERK-induced celldeath-apoptosis, autophagy and senescence. FEBS J,2010;277(1):2–21.
    47. de Champlain J, Wu R, Girouard H, et al. Oxidative stress in hypertension. Clin ExpHypertens,2004;26(7):593–601.
    48. Delles C, Miller H and Dominiczak AF.Targeting reactive oxygen species inhypertension. Antioxid Redox Sign,2008;10(6):1061–1077.
    49. Matsuno K, Yamada H, Iwata K, et al. Nox1is involved in angiotensin II-mediatedhypertension. Circulation,2005;112(17):2677–2685.
    50. Malec V, Gottschald OR, Li S, et al. HIF-1signaling is augmented during intermittenthypoxia by induction of the Nrf2pathway in NOX1-expressing adenocarcinoma A549cells. Free Radical Bio Med,2010;48(12):1626–1635.
    51. Murdoch CE, Alom-Ruiz SP, Wang M, et al. Role of endothelial Nox2NADPH oxidasein angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol,2011;106(4):527–538.
    52. Chen TM, Li J, Liu L, et al. Efects of heme oxygenase-1upregulation on blood pressureand cardiac function in an animal model of hypertensive myocardial infarction. Int JMol Sci,2013;14(2):2684–2706.
    53. Ryter SW, Otterbein LE, Morse D, et al. Heme oxygenase/carbon monoxide signalingpathways: regulation and functional signiicance.Mol Cell Biochem,2002;234(1):249–263.
    54. Morita T and Kourembanas S. Endothelial cell expression of vasoconstrictors andgrowth factors is regulated by smooth muscle cell-derived carbon monoxide. J ClinInvest,1995;96(6):2676–2682.
    55. Ndisang JF, Zhao W, and Wang R.Selective regulation of blood pressure by hemeoxygenase-1in hypertension.Hypertension,2002;40(3):315–321.
    56. Chen YH, Yet SF, and Perrella MA. Role of heme oxygenase-1in the regulation ofblood pressure and cardiac function. Exp Biol Med,2003;228(5):447–453.
    57. Li J, Zhang C, Xing Y, et al. Up-regulation of p27kip1contributes to Nrf2-mediatedProtection against angiotensin II-induced cardiac hypertrophy. Cardiovasc Res,2011;90(2):315–324.
    58. Gomez-Guzman M, Jimenez R, Sanchez M, et al.Epicate-chin lowers blood pressure,restores endothelial function, and decreases oxidative stress and endothelin-1andNADPH oxidase activity in DOCA-salt hypertension. Free Radical Bio Med,2012;52(1):70–79.
    59. de Groot H and Rauen U. Ischemia-reperfusion injury: processes in pathogeneticnetworks: a review. Transplant Proc,2007;39(2):481–484.
    60. Cao Z, Zhu H, Zhang L, et al. Antioxidants and phase2enzymes in cardiomyocytes:chemical inducibility and chemoprotection against oxidant and simulatedischemia-reperfusion injury. Exp Biol Med,2006;231(8):1353–1364.
    61. Parekh AK and Barton MB. The challenge of multiple comorbidity for the US healthcare system. JAMA,2010;303(13):1303–1304.
    1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012update: a report from the American Heart Association.Circulation,2012;125: e2–e220.
    2.[2] Lloyd-Jones DM, Hong Y, Labarthe D, et al. American Heart Association StrategicPlanning Task Force and Statistics Committee. Defining and setting national goals forcardiovascular health promotion and disease reduction: the American HeartAssociation’s strategic Impact Goal through2020and beyond.Circulation,2010;121(4):586-613.
    3. Williams B, Menon M, Satran D,et al. Patients with coronary artery disease notamenable to traditional revascularization: prevalence and3-year mortality. CatheterCardiovasc Interv,2010;75(3):886–891.
    4. Kim MC, Kini A, Sharma SK. Refractory angina pectoris: mechanism and therapeuticoptions. J Am Coll Cardiol,2002;39(6):923-34.
    5. Pleger ST, Brinks H, Ritterhoff J, et al. Heart failure gene therapy: the path to clinicalpractice. Circ Res,2013;113(6):792-809.
    6. Mitsos S, Katsanos K, Koletsis E,et al.Therapeutic angiogenesis for myocardialischemia revisited: basic biological concepts and focus on latest clinical trials.Angiogenesis,2012;15(1):1–12.
    7. Laham RJ, Rezaee M, Post M, et al. Intrapericardial delivery of fibroblast growthfactor-2induces neovascularizationin a porcine model of chronic myocardial ischemia.J Pharmacol Exp Ther,2000;292(2):795–802.
    8. Won YW, McGinn AN, Lee M, et al. Post-translational regulation of a hypoxia-responsive VEGF plasmid for the treatment of myocardial ischemia.Biomaterials,2013;34(26):6229–6238.
    9. Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res,2009;104:576–588.
    10. Tepper OM, Capla JM, Galiano RD, et al. Adult vasculogenesis occurs through insitu recruitment, proliferation, and tubulization of circulating bone marrow-derivedcells. Blood,2005;105(3):1068–1077.
    11. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis.Nat Rev Mol Cell Biol,2007;8:464–478.
    12. Jain RK. Molecular regulation of vessel maturation. Nat Med,2003;9:685–693.
    13. Heil M, Eitenmuller I, Schmitz-Rixen T, et al. Arteriogenesis versus angiogenesis:similarities and differences. J Cell Mol Med,2006;10(1):45–55.
    14. Rakusan K. Coronary angiogenesis. From morphometry to molecular biology and back.Ann N Y Acad Sci,1995;752:257-266.
    15. Carmeliet P. Angiogenesis in health and disease.Nat Med,2003;9:653–660.
    16. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev DrugDiscov,2007;6:273–286.
    17. Grochot-Przeczek A, Dulak J, Jozkowicz A. Therapeutic angiogenesis for revas-cularization in peripheral artery disease.Gene,2013;525(2):220-228.
    18. Kones R. Recent advances in the management of chronic stable angina I: approach tothe patient, diagnosis, pathophysiology, risk stratification, and gender disparities. VascHealth Risk Manag,2010;6:635-656.
    19. Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling anddifferentiation. Circ Res,2004;95(5):459-470.
    20. Habeck M. Wielding more power over angiogenesis. Mol Med Today,2000;6(4):138-139.
    21. Morabito CJ, Dettman RW, Kattan J,et al. Positive and negative regulation ofepicardial–mesenchymal transformation during avian heart development. Dev Biol,2001;234(1):204–215.
    22. Smart N, Dube KN, Riley PR. Coronary vessel development and insight towardsneovascular therapy. Int J Exp Pathol,2009;90(3):262–283.
    23. Meier P, Gloekler S, Zbinden R, et al. Beneficial effect of recruitable collaterals: a10-year follow-up study in patients with stable coronary artery disease undergoingquantitative collateral measurements. Circulation,2007;116(9):975–983.
    24. Said SS, Pickering JG, Mequanint K. Advances in growth factor deliveryfor therapeutic angiogenesis. J Vasc Res,2013;50(1):35–51.
    25.王冬,叶星沈.缺血性疾病与治疗性血管再生.基础医学与临床.2004;24(3):245-251.
    26. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemicdisease. Part I: angiogenic cytokines. Circulation,2004;109(21):2487–2491.
    27. Lazarous DF, Shou M, Stiber JA, et al. Adenoviral-mediated gene transfer inducessustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis.Cardiovasc Res,1999;44(2):294–302.
    28. Khan TA, Sellke FW, Laham RJ, et al. Gene therapy progress and prospects:therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther,2003;10(4):285–291.
    29. Lavu M, Gundewar S, Lefer DJ, et al. Gene therapy for ischemic heart disease. J MolCell Cardiol,2011;50(5):742–750.
    30. Kastrup J, Jorgensen E, Ruck A, et al. Direct intramyocardial plasmid vascularendothelial growth factor-A165gene therapy in patients with stable severe anginapectoris. A randomized double-blind placebo-controlled study: the Euroinject One trial.J Am Coll Cardiol,2005;45(7):982–988.
    31. Kulkarni M, Greiser U, O’Brien T, et al. Liposomal gene delivery mediated bytissue-engineered scaffolds.Trends Biotechnol,2010;28(1):28–36.
    32. Deiner C, Schwimmbeck PL, Koehler IS, et al. Adventitial VEGF165gene transferprevents lumen loss through induction of positive arterial remodeling after PTCA inporcine coronary arteries. Atherosclerosis,2006;189(1):123–132.
    33. Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-basedlocal intracoronary vascular endothelial growth factor gene transfer in the preventionof postangioplasty and in-stent restenosis and in the treatment of chronic myocardialischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation,2003;107(21):2677–2683.
    34. Stewart DJ, Hilton JD, Arnold JM, et al. Angiogenic gene therapy in patients withnonrevascularizable ischemic heart disease: a Phase2randomized, controlled trial ofAdVEGF(121)(AdVEGF121) versus maximum medical treatment. Gene Ther,2006;13(21):1503–1511.
    35. Baum C. Insertional mutagenesis in gene therapy and stem cell biology. Curr OpinHematol,2007;14(4):337–342.
    36. Pleger ST, Most P, Boucher M, et al. Stable myocardial-specific AAV6-S100A1genetherapy results in chronic functional heart failure rescue. Circulation,2007;115(19):2506–2515.
    37. Su H, Takagawa J, Huang Y, et al. Additive effect of AAV-mediated angiopoietin-1andVEGF expression on the therapy of infarcted heart. Int J Cardiol,2009:133(2):191–197.
    38. Gaffney MM, Hynes SO, Barry F, et al. Cardiovascular gene therapy: current statusand therapeutic potential. Br J Pharmacol,2007;152(2):175–188.
    39. Baker AH.Designing gene delivery vectors for cardiovascular gene therapy. ProgBiophys Mol Biol,2004;84(2–3):279–299.
    40. Collet G, Lamerant-Fayel N, Tertil M, et al. Hypoxia-regulated over expression ofsoluble VEGFR2controls angiogenesis and inhibits tumor growth. Mol Cancer Ther,2013Oct29.[Epub ahead of print]
    41. Murohara T, Horowitz JR, Silver M, et al. Vascular endothelial growth factor/vascularpermeability factor enhances vascular permeability via nitric oxide and prostacyclin.Circulation,1998;97(1):99–107.
    42. Leung DW, Cachianes G, Kuang WJ, et al.Vascular endothelial growth factor is asecreted angiogenic mitogen. Science,1989;246(4935):1306–1309.
    43. Lopez JJ, Laham RJ, Stamler A, et al. VEGF administration in chronic myo-cardialischemia in pigs. Cardiovasc Res,1998;40(2):272–281.
    44. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis:initial clinical results with direct myocardial injection of phVEGF165as sole therapyfor myocardial ischemia. Circulation,1998;98(25):2800-2804.
    45. Henry TD, Annex BH, McKendall GR, et al. The VIVA trial: Vascular endothelialgrowth factor in Ischemia for Vascular Angiogenesis.Circulation,2003;107(10):1359-1365.
    46. Ruel M, Beanlands RS, Lortie M, et al. Concomitant treatment with oral L-arginineimproves the efficacy of surgical angiogenesis in patients with severe diffuse coronaryartery disease: the Endothelial Modulation in Angiogenic Therapy randomizedcontrolled trial. J Thorac Cardiovasc Surg,2008;135(4):762-770.
    47. Kalil RAK, Salles FB, Giusti II, et al. Terapia gênica com VEGF para angiogênese naangina refratária: ensaio clínico fase I/II. Rev Bras Cir Cardiovasc,2010;25(3):311-321.
    48. Stewart DJ, Kutryk MJ, Fitchett D, et al. VEGF gene therapy fails to improveperfusion of ischemic myocardium in patients with advanced coronary disease: resultsof the NORTHERN trial. Mol Ther,2009;17(6):1109-1115.
    49. Bae J, Cho M. Gene therapy for heart failure. Korean Circ J,2005;35(5):345-352.
    50. Gupta R, Tongers J, Losordo W. Human studies of angiogenic gene therapy. Circ Res,2009;105(8):724-736
    51. Hao X, M nsson-Broberg A, Grinnemo KH, et al. Myocardial angiogenesis afterplasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model.Cardiovasc Res.2007;73(3):481-487.
    52. Boodhwani M, Voisine P, Ruel M, et al. Comparison of vascular endothelial growthfactor and fibroblast growth factor-2in a swine model of endothelial dysfunction. EurJ Cardiothorac Surg,2008;33(4):645–650.
    53. Voisine P, Bianchi C, Ruel M, et al. Inhibition of the cardiac angiogenic response toexogenous vascular endothelial growth factor. Surg,2004;136(2):407–415.
    54. Boodhwani M, Sodha NR, Mieno S, et al. Functional, cellular, and molecularcharacterization of the angiogenic response to chronic myocardial ischemia diabetes.Circulation,2007;116(Suppl.11): I31–I37.
    55. Robich MP, Osipov RM, Nezafat R, et al. Resveratrol improves myocardial perfusionin a swine model of hypercholesterolemia and chronic myocardial ischemia.Circulation,2010;122(Suppl.11): S142–S149.
    56. Boodhwani M, Sellke FW. Therapeutic angiogenesis in diabetes and hyper-cholesterolemia: influence of oxidative stress. Antioxid Redox Signal,2009;11(8):1945–1959.
    57. Sodha NR, Clements RT, Boodhwani M, et al. Endostatin and angiostatin are increasedin diabetic patients with coronary artery disease and associated with impaired coronarycollateral formation. Am J Physiol Heart Circ Physiol,2009;296(2): H428–H434.
    58. Boudoulas KD, Hatzopoulos AK. Cardiac repair and regeneration: the Rubik’s cube ofcell therapy for heart disease. Dis Model Mech,2009;2(7–8):344–358.
    59. Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signalingand therapy. Circ Res,2008;103(11):1204–1219.
    60. Zhang Z, Deb A, Pachori A,et al.Secreted frizzled related protein2protects cells fromapoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol,2009;46(3):370–377.
    61. Chen CW, Corselli M, Péault B, et al. Human blood-vessel-derived stem cells fortissue repair and regeneration. J Biomed Biotechnol.2012;2012:597439.
    62. Salomon C, Ryan J, Sobrevia L,et al. Exosomal signaling during hypoxia mediatesmicrovascular endothelial cell migration and vasculogenesis.Plos one,2013;8(7):e68451.
    63. Chen SY, Wang F, Yan XY,et al.Autologous transplantation of EPCs encoding FGF1gene promotes neovascularization in a porcine model of chronic myocardial ischemia.Int J Cardiol,2009;135(2):223–232.
    64. Singla DK, Hacker TA, Ma L, et al. Transplantation of embryonic stem cells into theinfarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol,2006;40(1):195–200.
    65. Behfar A, Perez-Terzic C, Faustino RS, et al. Cardiopoietic programming ofembryonic stem cells for tumor-free heart repair. J Exp Med,2007;204(2):405–420.
    66. Hirsch A, Nijveldt R, van der Vleuten PA, et al.Intracoronary infusion of autologousmononuclear bone marrow cells in patients with acute myocardial infarction treatedwith primary PCI: pilot study of the multicenter HEBE trial. Catheter CardiovascInterv,2008;71(3):273–281.
    67. Beitnes JO, Hopp E, Lunde K,et al.Long-term results after intracoronary injection ofautologous mononuclear bone marrow cells in acute myocardial infarction: theASTAMI randomised, controlled study. Heart,2009;95(24):1983–1989.
    68. Tongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy inischaemic heart disease: promise, uncertainties, and challenges. Eur. Heart J,2011;32(10):1197–1206.
    69. Cohen DE, Melton D. Turning straw into gold: directing cell fate for regenerativemedicine. Nat Rev Genet,2011;12(4):243–252.
    70. Kiskinis E, Eggan K. Progress toward the clinical application of patient-specificpluripotent stem cells. J Clin Invest,2010;120(1):51–59.
    71. Menasche P. Stem cell therapy for heart failure: are arrhythmias a real safety concern?Circulation,2009;119(20):2735–2740.
    72. Bhang SH, Cho SW, La WG, et al. Angiogenesis in ischemic tissue produced byspheroid grafting of human adiposederived stromal cells. Biomaterials,2011;32(11):2734–2747.
    73. Tang C, Drukker M. Potential barriers to therapeutics utilizing pluripotent cellderivatives: intrinsic immunogenicity of in vitromaintained andmatured populations.Semin Immunopathol,2011;33(6):563-572.
    74. Lu H, Xu X, Zhang M, et al.Combinatorial protein therapy of angiogenic andarteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs.Proc Natl Acad Sci USA,2007;104(29):12140–12145.
    75. Tang J, Wang J, Zheng F, et al.Combination of chemokine and angiogenic factor genesand mesenchymal stem cells could enhance angiogenesis and improve cardiac functionafter acute myocardial infarction in rats. Mol Cell Biochem,2011;339(1–2):107–118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700