用户名: 密码: 验证码:
陕西省华阳川铀多金属成矿作用地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对矿石进行精细研究,查明了矿石的矿物成分、化学成分、物理性质;对矿化围岩进行化学分析,查明了变质岩、碳酸岩、伟晶岩、花岗岩的岩石学、主微量元素特征,恢复了变质岩原岩,归纳了变质岩的年代学特征,阐述了碳酸岩脉的成因及流体特征,确定了花岗岩的类型,讨论了花岗岩的形成环境及物源,利用锆石U—Pb法测得了花岗岩的形成年龄为207Ma和225Ma—229Ma;经过详细的坑道编录,基本查明了重要含矿脉体类型、矿脉的形态特征、含矿脉岩穿插关系、矿脉的空间展布特点,结合矿石的物质组份、矿物之间的相互关系、热液蚀变,分析了成矿作用地球化学过程,明确了矿床为岩浆-热液复成因成矿类型,建立了成矿模式。具体结论成果如下:
     (1)从铀、铌、铅矿化的生成条件来看,铀-铌、铅矿化属于两套成矿系统,并不赋存于同一成矿空间,划分为铀铌矿石和铅矿石两类。但是铀铌矿化和铅矿化在空间上比较接近,从综合利用角度来看,称为铀铌铅混合矿石类型。铀矿石构造主要有浸染状、细脉状、网脉状、不规则团块状等。方铅矿以稀疏的斑点构造和网脉状构造为主,次为稀疏团块状和细脉状构造。铌钛铀矿沉淀在黑云母、独居石周边、微斜长石及黑云母的裂隙中,铌钛铀矿包括独居石、晶质铀矿。方铅矿嵌布于脉石矿物粒间,多呈他形粒状结构。
     (2)U、Pb、Nb、稀土元素为主要有用元素,Ag、Bi、Sr、Rb等为伴生有益有用元素。矿石矿物主要有铌钛铀矿、晶质铀矿、方铅矿,其次为独居石、褐帘石、磷灰石、磁铁矿、菱锶矿、重晶石-天青石簇矿物等。脉石矿物主要有微斜长石、石英、斜长石、角闪石、黑云母、方解石等。
     (3)93.245%的UO2赋存于铌钛铀矿中,5.98%赋存于晶质铀矿中,其余以类质同象或吸附的形式赋存于独居石、褐帘石、磷灰石、榍石矿物中。Pb主要以方铅矿产出,铅矿物中的铅集中系数为87.32%,其余12.68%分散于其它矿物中。95.982%的Nb2O5赋存于铌钛铀矿中,其余以类质同象或吸附的形式赋存于独居石、褐帘石、磷灰石、榍石矿物中。稀土元素赋存于独居石、褐帘石、铌钛铀矿、榍石、磷灰石中总计63.20%。其它分散于方解石、重晶石等矿物中。
     (4)矿石围岩分为变质岩和岩浆岩,其中黑云斜长片麻岩为中深变质作用形成,花岗斑岩、花岗伟晶岩、碳酸岩属于岩浆岩。这些围岩的球粒陨石标准化稀土元素配分曲线具轻稀土异常富集的右倾特征,轻重稀土比值较大,具有一定程度的铕亏损和微弱铈亏损。矿石中的球粒陨石标准化稀土元素配分曲线同样具轻稀土异常富集的右倾特征,其稀土元素组成特征与围岩具有相似性。
     (5)花岗岩表现为I型花岗岩的特征,其源区可能为中-下地壳岩层,即太华群或熊耳群。成岩有两期年龄,分别为207Ma和225Ma—229Ma。继承锆石的年龄同样分为两期,分别为1907Ma和2420Ma;2.7Ga左右为太华群原岩的形成时间,2.2~2.3Ga为其变质时代,这一变质年龄与花岗岩中继承锆石的年龄相差不大。
     (6)碳酸岩脉呈脉群产出,受控于太华群片麻岩的构造裂隙。从宏观和微观两个方面来看,碳酸岩脉和伴生的碱性岩脉的成岩物质是同源的,是由源于EMI的碱性硅酸盐-碳酸盐熔体-溶液不混溶结晶分异,先后或同时形成的产物,碳酸岩脉比碱性岩脉更加富含稀土元素,可能是在液态不混溶过程中,稀土元素尤其是轻稀土元素优先进入碳酸盐熔体所导致。碳酸岩流体包裹体可以分为2类:Ⅰ类CO2—H2S气相包裹体、Ⅱ类CO2—H2O液相包裹体。均一温度为195.0℃~197.0℃,冰点温度-13.7℃~-12.4℃。初步判断华阳川矿床的含矿碳酸岩脉很可能源于EMI。
     (7)不同类型、规模的矿脉沿着不同方向、不同性质的裂隙贯入,不同阶段的矿脉相互叠加、穿插。矿脉总体走向、特别是主矿化阶段的矿脉以NW、NNW方向为主,规模NW组较大、延伸较远。矿区矿脉总体构成了NWW向展布的矿脉密集带,带内含脉率一般50%~60%,最高90%以上,最低20%~30%。矿脉密集带向NW侧伏,剖面上呈现上推式雁列。
     (8)厘定了矿物的生成顺序。首先是伟晶期,铀主要存在于钍石、铀钍矿、独居石、褐帘石、锆石等含铀矿物,少量以铌钛铀矿形式产出,铀矿化作用微弱;在高中温热液期,形成铌钛铀矿,其与磷灰石及独居石共生,是铌钛铀矿矿化主要阶段;在中低温热液期,形成方铅矿、黄铁矿和钡锶硫酸盐及碳酸盐矿物,是硫化物矿化主要阶段。在方铅矿形成过程中,与铅地球化学性质相似的银、铋、硒、碲、铟等元素主要呈分散状态赋存于方铅矿中;在晚期阶段,形成大量的沸石、方解石、重晶石、石英等低温热液矿物组成的碳酸岩脉;在表生期,形成的主要矿物是白铅矿、铅矾和铅丹等铅的氧化矿物及锰土、褐铁矿、粘土及少量的方解石。
     (9)与铌钛铀矿矿化有关的热液蚀变主要是混合伟晶岩和石英碳酸岩脉中的热液蚀变作用,围岩中分布的硅化、黑云母化、碳酸盐化等热液蚀变。花岗斑岩和花岗伟晶岩中由岩浆结晶晚期自交代作用形成的钠长石化,混合岩化作用形成的微斜长石化、钠长石化、绿帘石化、绿泥石化、绢云母化等蚀变遍布全区。
Detailed research has been carried out to study essentials of the HuayangchuanU-Nb-Pb (uranium-niobium-lead) deposit with respect to mineralogy, petrology,geochemistry, geochronology and tectonics. Mineral composition, chemicalcomposition and physical property of ore were partly solved by detailed research ofore. The study on petrology, geochemistry and geochronology of different types ofmineralization country rocks points out: types, U-Pb ages of zircon (207Ma and225Ma-229Ma), evolution processes and origins of granite; protoliths and ages ofmetamorphic rocks; genesis and fluid characteristics of carbonatite veins; Veins arecommon features in rocks and here we provide a general profile of morphology,transect relationships, spatial distribution characteristics of leads by detailed workingsdocumentation. Combined with the study on ore composition, the correlationsbetween minerals, hydrothermal alteration, this paper presents an overview aboutore-forming geochemistry processes, genetic type (magmatic hydrothermalmulti-origin type) and metallogenic model. There are the specific results:
     (1) Distinctive formation conditions of U、Nb and Pb mineralization indicate thatmineralization can be divided into U-Nb-mineralization and Pb-mineralization, whichdo not occur in same place. In terms of comprehensive utilization, we emphasizeanother mineralization of U-Nb-Pb-mineralization, which means U-Nb-mineralizationand Pb-mineralization have a close occurrence location. At the same time, the types ofore can be divided into U-Nb ore, Pb ore and U-Nb-Pb ore. U ore are mostlyimpregnation structure, veinlet structure, network structure and irregular crumbstructure. Rarefaction spotted structure and network structure are common structuresin Pb ore. Rarefaction crumb structure and veinlet structure can be observedsometimes. Betafite precipitate around the margin of biotite、monazite, and in thefractures of microcline、biotite. Galena that precipitates in the intergranular space ismostly xenomorphic granular texture.
     (2) U、Pb、Nb、rare earth elements (REE) are the major useful elements. Ag(silver), Bi (bismuth), Sr (strontium), Rb (rubidium) and other elements are regarded as useful associated elements. Betafite, uraninite and galena are major ore minerals,and other minerals include monazite, allanite, apatite, magnetite, strontianite, baritefamily. Microcline, quartz, plagioclase, amphibole, biotite and calcite are majorgangue minerals.
     (3) Betafite hosts93.245%total UO2, uraninite contains5.98%total UO2, andthe rest disseminates in monazite, allanite, apatite and titanite as isomorphic andabsorbed components. Galena is the major plumbeous mineral that contains87.32%Pb, and12.68%Pb disseminates in other minerals. Betafite contains95.982%Nb2O5,and the rest disseminates in monazite, allanite, apatite and titanite as isomorphic andabsorbed components. The contents of REE in monazite, allanite, betafite, titanite,apatite account for63.20%, and the rest disseminates in calcite, barite etc.
     (4) Country rocks in this region are metamorphic rock and igneous rock. Bearingbiotite plagioclase gneiss is the product of medium and high grade metamorphism.Igneous rocks include granite porphyry, granitic pegmatite, carbonatite. These countryrocks have an abnormal light REE (LREE) enrichment relative to heavy REE (HREE),to some extent, show a negative Eu (europium) anomaly and faint negative Ce(cerium) anomaly. And chondrite normalized REE abundance patterns of countryrocks apparently present a trend of right incline. The REE abundance patternscharacteristics of ores are similar to country rocks’.
     (5) Detailed research shows that granite in this region that can be distinguishedas I-type granite may derive from medium-lower crust (Taihua group and Xiongergroup in this region). The diagenesis ages are207Ma and225Ma-229Ma. Inheritancezircon gives two ages of1907Ma and2420Ma. Taihua group protolith diagenesis ageand metamorphic events occurrence age are2.7Ga and2.2-2.3Ga, respectively.Metamorphic events and granite diagenesis may occur at an approximate time.
     (6) Carbonatite veins group is controlled by the tectonic fractures of Taihuagroup gneiss. Macroscopic and microscopic evidences show that the rock-formingsubstances of carbonatite veins and associated alkaline veins come from immiscibilitycrystallization differentiation products of alkaline silicate-carbonate melt-solution thatcome from enriched mantle type1(EMI). Carbonatite veins have higher abundances of REE compared with alkaline rock veins probably because melt have an enrichmentof REE, especially LREE, during the liquid immiscibility process. There are thedivisions of carbonatite fluid inclusions: CO2-H2S gaseous inclusions; CO2-H2Oliquid inclusions. Homogenization temperature and freezing temperature are195.0-197.0℃a nd-13.7--12.4℃, respectively. The preliminary conclusionis that thecarbonatite veins of Huayangchuan deposit may derive from EMI.
     (7) Leads of different types and sizes inject into fractures with differentdirections and characteristics. Distinctive stages leads that superimpose and transecteach other show a complex network morphology in space. The overall trend directionsof leads, especially the master leads, are predominant directions of NW and NNW.The NW leads have a large size and extend relatively widely. Leads density zones thatveins commonly account for50%to60%, even up to at least90%, down to20%,generally distribute along NWW. Leads pitch NW, and occur in en-échelon arrays onthe section.
     (8) Field geological works and microgeology facts provide an overview aboutgeneration of minerals: in pegmatitic stage, U mainly occour in forms of thorite,uranothorite, monazite, allanite, zircon, together with a small amount of betafite. TheU-mineralization is faint; in hypothermal-mesothermal stage, betafite form. Betafite,apatite, and monazite are paragenetic mineral association. This stage is the mainbetafite-mineralization stage; in mesothermal-epithermal stage, galena, pyrite,Ba-Sr-sulphate, carbonate occur. In this main sulfide-mineralizaiton stage, Ag, Bi, Se,Te, In that geochemistry characteristics are similar to Pb, disseminate in galena; in thelate stage, the carbonate veins that consist of a large amount of zeolite, calcite, barite,quartz and other epithermal minerals occur; in supergene stage, wad, limonite, clay, asmall amount of calcite and the main oxide of Pb including cerussite, anglesite,minium are the main minerals.
     (9) Hydrothermal alteration process related to betafite mineralization is mainlyhydrothermal alteration in mixing pegmatite veins and quartz carbonatite veins.Alterations occur in country rocks including silication, biotitization, carbonation.Albitization related to late magmatic crystallization autometamorphism and microclinizaiton, albitization, epidotization, chloritization, sericitization related tomigmatization disseminate in research area.
引文
[1] LeBas M J. Diversification of carbonatites [A].Bell K.Carbonatiates: Genesis and Evolution[M]. London:Unwin Hyman,1989,427~447.
    [2] Tilton G R, Bryce J G, Mateen A. Pb-Sr-Nd isotope data from30and300Macollision zonecarbonatites in Northwest Pakistan [J]. Journal of Petrology,1998,39:1865~1874.
    [3] Treiman A H. Carbonatites magma: Properties and processes[A].Bell K.Carbonatites:Genesisand Evolution [M]. London:Unwin Hyman,1989,89~104.
    [4] Doboson D P, Jones A P. In-situ measurement of viscosity and density of carbonate melts athigh pressure [J]. Earth Planet Sci Lett,1996,143:207~215.
    [5] Bell K, Blenkinsop J. Archean depleted mantle evidence from Nd and Sr initial isotopic ratiosof carbonatites [J].Geochimica et Cosmochimica Acta,1987.51:291~298.
    [6] Bell K, Blenkinsop J. Nd and Sr isotopic composition of East African carbonatites:Implications for mantle heterogeneity [J].Geology,1987.15:99~102.
    [7] Church A A, Jones A P. Silicate-carbonatite immiscibility at Oldoinyo Lengai [J].J Petro,1995,36:869~889.
    [8] Ionov D, Harmer R E. Trace element distribution on calcite-dolomite carbo-natites fromSpitskop:Inferences for differentiation of carbonatite magmasand the origin of carbonates inmantle xenoliths [J]. Earth Planet Sci Lett,2002,198:495~510.
    [9] Woolley A R, Church A A. Extrusive carbonatites: A brief review [J].Lithos,2005,85:1~14.
    [10] Xu C,Campbell I H,Allen C M,Huang Z L,Qi L,Zhang H,Zhang G S.Flat rare earth elementpatterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China[J].Lithos,2007,95:267~278.
    [11] Eckermann, et al. The Alkaline District of Alno Island [M].Sweden:Sveriges GeologiskaUndersokning,Stockholm,1948,1~176.
    [12] Willams C E. Sulculu complex, eastern Uganda, and the origin of the African carbonatite[D].University of Capetown,1959.
    [13] Roedder E. Fluid inclusions from the fluorite deposits associated with carb-onatite, of AmbaDongar, Hidia, and Okorusu, southern Africa [J].Inst Mining Metall Trans Sect,1973,82:835~839.
    [14] Wallace M E, Green D H. An experimental determination of primary carbonatitecomposition[J]. Nature,1988,335:343~346.
    [15] Sweeney R. Carbonatite melt compositions in the earth′s mantle [J].Earth Planet. Sci. Lett.,1994,128:259~270.
    [16] Lee W J, Wyllie P J. Liquid immiscibility between nephelinite and carbonatite from1.0to2.5GPa compared with mantle melt compositions [J]. Contrib. Mineral. Petrol.,1997,127:1~16.
    [17] Waker M B, Wyllie P J. Liquid immiscibility in a nephelinite-carbonate system at25kbar andimplications for carbonatite origin [J]. Nature,1990,246:168~170.
    [18] Hyndman D W. Prtrology of igneous and metamorphic rocks [J]. Mc Graw Hill BookCompany, New York,1985.
    [19] Le Bas M J. Carbonatite magma[J]. Mineralogical Magazine,1981,34(44):133~140.
    [20]喻学惠.陕西华阳川碳酸岩地质学和岩石学特征及其成因初探[J].地球科学,1992,17(2):156~157.
    [21]王林均,许成,吴敏,宋文磊.华阳川碳酸岩流体包裹体研究[J].矿物学报,2011,31(3):374~375.
    [22]徐九华,谢玉玲,李建平,等.四川冕宁牦牛坪稀土矿床流体包裹体中发现含锶和轻稀土的子矿物[J].自然科学进展,2001,11(5):543~547.
    [23] Xu Cheng, Wang Linjun, Song Wenlei, et al. Carbonatites in China: A review for genesis andmineralization[J]. Geoscience Frontiers,2010,(1):1~10.
    [24] Ting W, Burke E A J, Rankin A H, et al., Characterisation and petrogene-tic significance ofCO2, H2O and CH4fluid inclusions in apatite from the Sukulucarbonatite [J]. Eur J Mineral,1994,6(6):787~803.
    [25] Williams R W, Gill J B, Bruland K W. Ra-Th disequilibria systematics:Tim-escale ofcarbonatites magma formation at Oldoinyo Lengai volcano,Tanzania[J]. Geochimica etCosmochimica Acta,1986,50:1249~1259.
    [26] Doboson D P, Jones A P. In-situ measurement of viscosity and density ofcarbonate melts athigh pressure[J]. Earth Planet Sci Lett,1996,143:207~215.
    [27]Rankin A H. Fluid inclusion evidence for the formation conditions of apatite from the Tororocarbonatite complex of Eastern Uganda [J]. Min Mag,1977,41:155~164.
    [28] Woolley A R, Kjarsgaard B A. Paragenetic types of carbonatite as indicatedby the diversityand relative abundances of associated silicate rocks: Evidence from a global database[J].TheCanadian Mineralogist,2008,46:741~752.
    [29] Wood S A. The aqueous geochemistry of the rare-earth elements and yttrium.1.Review ofavailable low-temperature data for inorganic complexes andthe inorganic REE speciation ofnature waters[J]. Chemical Geology,1990,82:159~186.
    [30]徐夕生,邱检生.火成岩岩石学[M].2012,256~257.
    [31]张玲,林德松.我国稀有金属资源现状分析[J].地质与勘探.2004,40(1):26~30.
    [32]东野脉兴.世界内磷矿地质及成矿规律[J].化工矿产地质,26(3):134~144.
    [33]杨学明,杨晓勇,陈天虎.白云鄂博富稀土元素碳酸岩墙的地球化学特征及稀土富集机制[J].矿床地质,17(增刊):527~532.
    [34]黄典豪,王义昌,聂凤军,江秀杰.陕西黄龙铺钼(铅)矿床类型、成因及铼分布特点的研究[J].地质出版社,1986,矿床地质研究所科研成果(专辑6):1~126.
    [35]黄典豪,王义昌,聂凤军,江秀杰.一种新的钼矿床类型-陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制[J].地质学报,1985,3:241~257.
    [36]黄典豪,吴澄,杜安道,何红蓼.东秦岭地区钼矿床的铼-饿同化素年龄及其意义[J].矿床地质,1994,13(3):221~230.
    [37]许成,宁文磊,漆亮,工林均.黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景[J].岩石学报,2009,25(2):422~430.
    [38]白鸽,袁忠信.碳酸岩地质及其矿产.矿床地质研究所科研成果(专辑5)[M].地质出版社,1985,48~187.
    [39]侯增谦,田世洪,谢玉玲,袁忠信,杨竹森,尹淑苹,费红彩,邹天人,李小渝,杨志明.川两冕宁—德吕喜马拉雅期稀上元素成矿带:矿床地质特征与区域成矿模型[J].矿床地质,2008,27(2):145~176.
    [40]陈肇博,范军,郭智添,何钟琦,王树良,任坤才.赛马碱性岩与成矿作用[M].北京:原子能出版社,1996.
    [41]张斌辉,丁俊,任光明,张林奎,石洪召.云南马关老君山花岗岩的年代学、地球化学特征及地质意义[J].地质学报,2012,86(4):588~597.
    [42]杨森楠.中国区域大地构造学[M].北京:地质出版社,1985.
    [43]陕西省核工业地质局二二四大队.陕西省华阴市华阳川铀铌铅矿床详查地质报告.2012,18~49.
    [44]彭大明.秦岭铀资源研究[J].铀矿地质,1999,15(3):151~152.
    [45]张海洋,张伯友.赣北星子群变质岩的原岩恢复及其形成构造环境判别[J].中国地质,2003,30(3):254~260.
    [46]王仁民,贺高品,陈珍珍.变质岩原岩图解判别法[M].北京:地质出版社,1987.
    [47]孙鼎,彭亚呜.火成岩石学[M].北京:地质出版社,1985.
    [48]邱家骧.应用岩浆岩岩石学[M].武汉:中国地质大学出版社,1991.
    [49] Simonen A. Stratigraphy and Sedimentation of the Svecofennidic, Early ArcheanSupracrustal Rocks in Southweatern Finland[J]. Bull Commm Geol Finland,1953,160:1~64.
    [50]王仁民,贺高品,陈珍珍.变质岩原岩图解判别法[M].北京:地质出版社,1987.
    [51] Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes [J]. Geological society, London, specialpublications,1989,42:313~345.
    [52]黎彤,倪守斌.地球和地壳的化学元素丰度[M].北京:地质出版社.
    [53]黎彤.中国陆壳及其沉积岩和上地壳的化学元素丰度[J].地球化学,1994,23(2):140~145.
    [54] Alleger C J et al. Quantitative models of trace element behavior in magmatic processes [J].Earth and Planetary Science Letters,1978,38(1):1~25.
    [55]周汉文,李献华,钟增球,涂湘林,刘颖.小秦岭太华杂岩中大理岩、Pb-Pb等时线年龄及地质意义[J].地球学报,1997,18(增刊):49~51
    [56]周汉文,钟增球,凌文黎,钟国楼,徐启东.豫西小秦岭地区太华杂岩斜长角闪岩Sm-Nd等时线年龄及其地质意义[J].地球化学,1998,27(4):367~372.
    [57]赵太平,翟明国,夏斌,李惠民,张毅星,万渝生.熊耳群火山岩锆石SHRIMP年代学研究:对华北克拉通盖层发育初始时间的制约[J].科学通报,2004,49(22):2342~2349.
    [58]李厚民,陈毓川,王登红,叶会寿,王彦斌,张长青,代军治.小秦岭变质岩及脉体锆石SHRIMP U-Pb年龄及其地质意义[J].岩石学报,2007,23(10):2504~2512.
    [59] Xu X S, William L, Griffin XM, O’Reilly SY, He ZY and Zhang CL. The Taihua Group onthe southern margin of the North China craton: Further insights from U-Pb ages and Hfisotope compositions of zircons[J].Mineral.Petrol.,2009.97(1-2):43~59.
    [60] Sun Y, Yu ZP and Krner A. Geochemistry and single zircon geochronology of Archean TTGgneisses in the Taihua high grade terrain,Lushan area, central China[J]. Journal of SoutheastAsian Earth Sciences,1994,10(3-4):227~233.
    [61]薛良伟,原振雷,张萌树,强立志.鲁山太华群Sm-Nd同位素年龄及其意义[J].地球化学,1995,24(增刊):92~97.
    [62]陈好寿,周慧芳,李华芹,黄斌,叶伯丹,李志昌,白云彬,刘树林.豫中地区晚太古代含铁变质岩系同位素地质年代学研究[J].中国地质科学院院报,1980,1(2):88~102.
    [63]林宝钦,陶铁镛.豫陕小秦岭地区太古代主要含金地层特征研究.中国金矿类型区域成矿条件文集(3)—小秦岭地区[M].北京:地质出版社,1989,1~46.
    [64]河南省地质矿产局.河南省区域地质志[M].北京:地质出版社,1989,1~772.
    [65]林慈銮.河南鲁山地区太古代片麻岩系的地球化学、锆石年代学及其构造环境[M].硕士学位论文,西安:西北大学,2006,1~89.
    [66] Wan YS, Wilde SA, Liu DY, Yang CX, Song B and Yin XY. Further evidence for~1.85Gametamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zirconfrom metamorphic rocks in the Lushan area, Henan Province[J].Gondwana Research,2006.9(1-2):189~197.
    [67] Liu DY, Wilde SA, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ,Yang CX,Zhang YX and Gao LZ. Combined U-Pb, hafnium and oxygen isotope analysis of zirconsfrom metaigneous rocks in the southern North China Craton reveal multiple events in the LateMesoarchean Early Neoarchean[J]. Chem. Geol,2009.261(1-2):140~154.
    [68]张宗清,黎世美.河南省西部熊耳山地区太古宙太华群变质岩的Sm-Nd, Rb-Sr年龄及其地质意义[J].见程裕淇主编.华北地台早前寒武纪地质研究论文集[M].北京:地质出版社,1998,1~149.
    [69]倪志耀,王仁民,童英,杨淳,戴潼谟.河南洛宁太华岩群斜长角闪岩的锆石207Pb/206Pb和角闪石40Ar/39Ar年龄[J].地质论评,2003,49(4):361~366.
    [70]赵太平,周美夫,金成伟,关鸿,李惠民.华北陆块南缘熊耳群形成时代讨论[J].地质科学,2001,36(3):326~334.
    [71]王国栋,王浩,陈泓旭,卢俊生,肖玲玲,吴春明.华北中部造山带南缘华山地区太华变质杂岩中锆石U-Pb定年[J].地质学报,2012,86(9):1542~1549.
    [72]时毓,于津海,徐夕生,唐红峰,邱检生,陈立辉.陕西小秦岭地区太华群的锆石U-Pb年龄和Hf同位素组成[J].岩石学报.2011,27(10):3096~3105.
    [73] Wolley AR and Kempe DRC. Carbonatites: Nomenclature, average chemical composition. In:Bell K (ed.) Carbonatites: Genesis and Evolution[J]. London: Unwin Hyman,1989,1~14.
    [74] Keller J and Hoefs J. Stable isotope characteristics of recent natrocarbonatites from OldoinyoLengai. In: Bell K and Keller J (eds). Carbonatites Volcanism: Oldoinyo Lengai and Petrogenesis of Natrocarbonatites. LAVCEI Proceeding in Volcanology [J]. Berlin: Springer-Verlay,1995,113~123.
    [75] Demeny A, Ahijado A and Casillas RL. Crustal contamination and fluid/rock interaction inthe carbonatites of Fuerteventura Canary Islands, Spain: A C, O, H isotope study [J]. Lithos,1998,44:101~115.
    [76] Kjarsgaard BA and Hamilton DL. The genesis of carbonatites by immiscibility.In: Bell K(ed.). Carbonatites: Genesis and Evolution[J]. London: Unwin Hyman,1989,388~404.
    [77] Lee WJ and Wyllie P J. Liquid immiscibility between nephelinite and carbonatite from1.0to2.5Gpa compared with mantle composition[J]. Contrib. Mineral. Petrol.1997,388~404.
    [78] Verhulst A, Balaganskaya E, Kirnarsky Y and Demaiffe D. Petrological and geochemical(trace elements and Sr-Nd isotopes) characteristics of the Pateozic Korodor ultramafic,alkaline and carbonatite intrusion (Kola Peninsula, NW Russia)[J]. Lithos,2000,51:1~25.
    [79] Harmer and Gittins. The case for primary mantle-denrived carbonatite magma[J].J Petro,1998,39:1895~1903.
    [80] Harmer RE. The petrogenetic association of carbonatite and alkaline magmatism: Constraintsfrom the Spits kop complex, South Africa [J]. J Petro,1999,40:525~548.
    [81] Nelson DR, Chivas AR, Chappell BW and Mclulloch MT. Geochemical and isotopicsystematic in carbonstites and implications for the evolution of ocean-island sources[J].Geochimica et Cosmochimica Acta,1988,52:1~17.
    [82] Woolly AR and Kjsrsgaard BA. Paragentic types of carbonatite as indicated by the diversityand relative abundances of associated silicate rocks: Evidence from a global database [J]. TheCanadian Mineralogist,2008,46:741~752.
    [83] Bell K. Radiogenic isotope constraints on relationship between carbonatites and associatedsilicaterocks a brief review [J].J Petrol,1998,39:1987~1996.
    [84] Culler R I, Graf J I. Rare earth elements in igneous rocks of the continental cruse:Predominantly basic and ultra basic rocks. In: Henderson P.(ed). Developments inGeochemistry [J]. Vol.2: Rare Earth Geochemistry.Amsterdam; Elsevier.1984,237~274.
    [85] Dalton JA and Wood BJ. The composition of primary carboantemelts and their evolutionthrough wall rock reaction in the mantle [J]. Earth Planet. Sci. Lett,1993,119:511~525.
    [86]严阵.陕西省花岗岩[M].西安:西安交通大学出版社,1985.9~17.
    [87]陕西地质矿产勘查开发局综合研究队.小秦岭地区1:5万区域地质调查报告(太峪口幅、山幅、华阳川幅),1996.
    [88] Hugh R Collision (杨学明,杨晓勇,陈双喜,译).岩石地球化学[M].合肥:中国科学技术大学出版社,2000,40~43.
    [89] Richwood P C. Boundary lines with in petrologic diagrams which use oxides of major andminor elements [J]. Lithos,1989,22:247~263.
    [90] Peccadillo R T aylor SR. Geochemistry of Eocene calcalkaline volcanic rocks from theKastamonu area, northern Turkey [J]. Contributions to Mineralogy and Petrology,1976,58(1):63~81.
    [91]欧阳海松,何红生,胡祥昭.内蒙古太仆寺旗姚五沟花岗斑岩地球化学特征研究[J].矿物岩石地球化学通报,2009,28(3):229~231.
    [92]王昊.河南银洞沟银多金属矿床地球化学特征与成矿机理初探[J].地质与勘探,2011,47(2):222~229.
    [93] Campbell I H, Turner J S. Turbulent mixing between fluids with different viscosities [J].Nature,1985,313:39~42.
    [94]王晓霞,胡能高,王涛,孙延贵,巨生成,卢欣祥,李舢,齐秋菊.柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学[J].岩石学报,2012,28(9):2954~2955.
    [95]吴福元,李献华,杨进辉,郑永飞.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217~1238.
    [96] Collins W J, Beams S D, White A J R, Chappell B W. Nature and origin of A type graniteswith particular reference to Southeastern Australia [J]. Contrib. Mineral. Petrol.,1982,80:189~200.
    [97] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics,discrimination and petro genesis [J]. Contrib. Mineral. Petrol.,1987,95:407~419.
    [98] Eby G N. Chemical subdivision of the A-type granitoids: Petro genetic and tectonicimplications [J]. Geology,1992,20:641~644.
    [99] Chappell B W. Aluminum saturation in I-and S-type granites and the characterization offractionated haplogranites [J]. Lithos,1999,46:535~551.
    [100]张斌辉,丁俊,任光明,张林奎,石洪召.云南马关老君山花岗岩的年代学、地球化学特征及地质意义[J].地质学报,2012,86(4):594~597.
    [101] King P L, White A J R, Chappell B W, Allen C M. Characterization and origin of aluminousA-type granites from the Lachlan fold belt, southeastern Australia [J].J petro,1997,38:371~391.
    [102]King P L, Chappell B W, Allen C M, White A J R. Are A-type granites the high-temperaturefelsic granites? Evidence from fractionated granites of the Wang rah Suite. Aust [J]. EarthSci.,2001,48:501~514.
    [103] Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effectsin a variety of crustal magma types [J]. Earth planet.Sci. Lett,1983,64:295~304.
    [104]李献华,李武显,李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报,2007,52(9):981~991.
    [105]肖庆辉,邓晋福,马大全.花岗岩研究与思维方法[M].北京:地质出版社,2002.
    [106] Kroner A, Compston W, Zhang G W, Guo AL and Todt W. Age and tectonic setting of lateArchaean greenstore-gneisses terrain in Henan Province, China, as revealed by single-grainzircon dating[J].Geology,1988,16:211~9215.
    [107]薛良伟,原振雷,张荫树,强立志.鲁山太华群Sm-Nd同位素年龄及其意义[J].地球化学,1995,24(增刊):92~998.
    [108]周汉文,钟增球,凌文黎,钟国楼,徐启东.豫西小秦岭地区太华群杂岩斜长角闪岩Sm-Nd等时线年龄及其地质意义[J].地球化学,1998,27(4):367~9372.
    [109] Diwu CR, Sun Y, Lin CL and Wang HL. LA-(MC)-ICPMS U-Pb zircon geochronology andLu-Hf isotonpe compositions of the Taihua complex on the southern margin of the NorthChina Craton [J]. Chinese Sci. Bull.,2010,55:2557~2571.
    [110]倪志耀,王仁民,童英,杨淳,戴憧漠.河南洛宁太华群斜长叫闪岩的锆石207Pb/206Pb和角闪岩40Ar/39Ar年龄[J].地质论评,2003,19(4):361~366.
    [111] Jones J H, Walker D, Picket D A, Murrell M T, Beattie P. Experimental investigations of thepartitioning of Nb,Mo,Ba,Ce,Pb,Ra,Th,Pa and U between immiscible carbonate and silicateliquids[J]. Geochim, cosmocim, Acta.1995,59:1307~1320.
    [112]邹天人,徐建国.论花岗伟晶岩的成因与类型划分[J].地球化学,1975,(3):161~174.
    [113] Bau M, Dulski P. Comparative study of yttrium and rare earth element behaviours influorine rich hydrothermal fluids [J]. Contrib Mineral Petrol,1995,119:213~223.
    [114]丁振举.海底热液系统高温流体的稀土元素组成及其控制因素[J].地球科学进展,2000,15(3):307~312.
    [115] McLennan S M, Taylor S R. Rare earth element mobility associated with uraniummineralisation [J]. Nature,1979,282:247~250.
    [116] Ray J S, Ramesh R, Pande K, Trivedi J R, Shukla P N, Patel P P. Isotope and rare earthelement chemistry of carbonatitealkaline complexes of Deccan volcanic province:implications to magmatic and alteration processes[J]. Journal of Asian Earth Sciences.2000,18:177~194.
    [117] Powell J L, Murley P M, Fairbairn H W. The strontium isotopic composition and origin ofcarbonatites [J].1966,365~376.
    [118] Simonetti A, Bell K, Viladkar S G. Isotopic data from the Amba Dongar carbonatite complex,west-central India: evidence for an enriched mantle source [J]. Chemical Geology.1995,122:185~198.
    [119] White W M. Sources of oceanic basalts; Radiogenic isotopz evidence [J]. Geology.1985.13:115~118.
    [120] Bell K, Tilton G R. Nd. Pb and Sr isotopic compositions of East African Carbonatites:evidence for mantle mixing and plume inhomogeneity [J]. Journal of Petrology.2001,42(10):1927~1945.
    [121] Smoliar M I, Walker R J, Morgan J W. Re-Os ages of groupⅡA,ⅢA,ⅣA andⅣB ironmeteorites[J]. Science.1996,271:1099~1102.
    [122]李曙光,刘德良.大别山印支运动的同位素年代学证据[M].大地构造与成矿学.1990,14(2):159~163.
    [123]王鸿祯,徐成彦,周正国.东秦岭古海域两侧大陸边缘区的构造发展[J].地质学报,1982,56(3):270~279.
    [124]黄典豪,侯增谦,杨志明,李振清,许道学.东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-
    地球化学特征、成矿机制及成矿构造背景[J].2009,83(12):1969~1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700