用户名: 密码: 验证码:
高含CO_2天然气管道输送技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国已发现多个不同CO2含量的天然气气田,如:长庆长北气田(CO2含量5.321%),江苏黄桥气田(CO2含量90~99%),广东三水气田(CO2含量84~99%),吉林万金塔气田(CO2含量90~99%)等。高含CO2天然气开采出来后需要通过集输管道输送到处理厂进行CO2和天然气的分离;分离出的CO2也需要通过管道或车船等运输方式输送到消费市场用于化工生产、油气开采、消防、食品加工等。然而由于CO2的热物性特点(纯CO2临界温度为304.25K,临界压力为7.36MPa),当纯CO2或含CO2天然气进行管道输送时,其工况明显不同于常规天然气,如容易出现气相、液相、超临界的相互转换等,所有这些给含CO2天然气管道的设计和管理带来了新的课题。
     针对高含CO2天然气和纯CO2管道输送过程中的有关工艺设计和计算问题,采用实验和理论研究相结合的方法,首先评价和筛选了高含CO2天然气物性参数和相态的计算方法;研究了管道设计过程中的管径优选问题;讨论了高含CO2天然气水合物预测与防止问题;最后分别考虑气相、液相、超临界三种情况,基于管道输送基本方程和特征线求解方法,开发出了CO2管道仿真系统软件。取得的主要成果如下:
     (1)对4种CO2含量(10%、50%、90%、100%)气体样品进行配制,在-10~40℃、0~15MPa范围内,对压缩因子、密度、粘度、泡点、露点等参数进行实验测试,获得了完整的实验数据,为高含CO2天然气物性参数计算方法的筛选修正提供了依据;实验还表明:当压力、温度相同时,随着天然气中CO2含量的增加,天然气相对体积、密度、粘度总体均呈增大的趋势,而天然气压缩因子、体积系数则呈降低的趋势。
     (2)针对5种CO2含量(10%、30%、50%、70%、90%)与甲醇(质量浓度16.5%、34.6%)、乙二醇(质量浓度21.8%、42.6%)2种抑制剂在0~15MPa范围内进行水合物生成温度测试。结果显示,在实验条件范围内,加甲醇可以降低水合物生成温度15~18℃左右,加乙二醇可以降低水合物生成温度6~10~C左右。从抑制效果来看,甲醇优于乙二醇,且在同样的抑制效果下甲醇的使用量低于乙二醇。
     (3)在-10~40℃、0~15MPa范围内,采用实验数据评价RK、SRK、PR、BWRS气体状态方程,以误差±5%为界,确定了各状态方程的适用范围(表3.2),通过对比发现BWRS方程的适用范围相对较广。因此,在实际计算中可依据不同的压力、温度具体选择状态方程计算物性参数以获得更佳的计算精度。
     (4)对比分析国外已有的CO2管道投资估算模型,结合我国管道投资实际情况,建立了适合我国实际情况的CO2管道投资费用估算模型,并得到了输量与管径、输量与年折合费用、输量与经济流速之间的关系,可为管道设计人员提供参考依据。
     (5)采用实验数据在0~15MPa范围内对用于水合物生成条件预测的Chen-Guo模型进行分析,发现Chen-Guo模型在计算高含CO2天然气水合物生成温度时的误差在2-7℃内。基于实验结果对Chen-Guo模型进行改进,改进后的模型计算平均误差小于0.25℃,能够满足CO2含量在10%~90%、压力0~15MPa范围的计算要求。
     (6)在CO2气相、液相输送管道系统数学模型的基础上,考虑压缩机、泵、阀门等非管元件,结合不同的初值条件、边界条件,采用特征线求解方法,基于C#语言,开发了CO2管道仿真系统软件,并针对气相、液相、超临界三种高含C02天然气管道输送管网进行了具体应用,分析了各种管输条件下管路沿线的温度、压力分布规律,预测管路沿线流体介质的相态变化,证明了软件和方法的合理性。
     论文为CO2气田和高含CO2天然气气田的有效开发利用以及CO2安全、经济、高效的管道输送奠定理论基础,具有重要的社会意义和经济价值。
Recently, China has found many natural gas fields with high content of CO2for example Changbei natural gas field of Changqing (5.321%content of CO2), Huangqiao natural gas field (90-99%content of CO2), Sanshui natural gas field in Guangdong Province (84-99%content of CO2), Wanjinta natural gas field in Jilin Province (90-99%content of CO2). The high-CO2-content gas always transports by gathering pipelines from the gas fields to process plants for CO2separation. The pure CO2separated from the gas then delivers to commercial systems such as oil and gas exploitation, chemical production, fire control, food-processing, etc. However, the transmission process for CO2contained gas is much different from the one for regular gas because of the low critical parameters (Tc=304.25K, Pc=7.36MPa) which would cause phase change along the pipelines. So feasible design and operation methods for the CO2pipelines become a new issue in the field.
     In order to build an effective design and calculation method for high-CO2-content gas as well as the pure CO2transmission process, this paper studied the calculation method of corresponding physical parameters firstly. Then, the methods for the investment estimation, pipe diameter optimization and economic flow velocity determination were also studied. Thirdly, the hydrate formation prediction and inhibition methods were also researched for flow assurance of the CO2contained gas pipelines. Finally, the simulation models for different transmission process, including vapor phase, liquid phase and supercritical phase process, were built and solved by the method of characteristic. On these bases, a CO2pipeline simulation software package was developed. In details, the main achievements of the paper are as follows.
     (1) Four gas samples with different CO2content (10%,20%,30%,40%) were prepared. The compressibility factors, densities, viscosities, bubble points and dew points of the samples were measured at temperatures ranging from-10℃to40℃and the pressures ranging from OMPa to15MPa. The experimental results show, when the pressures and temperatures keep constant, with the increase of CO2content in natural gas, the relative volume, density, viscosity generally showed an increasing trend, while the compressibility factor and volume coefficient showed a decreasing trend.
     (2) The hydrate formation conditions of five gas samples with different CO2content (10%、30%、50%、70%、90%) were measured in the presence of2inhibitors methanol(mass concentrations are16.5%and34.6%) and glycol (mass concentrations are21.8%and42.6%). The experimental pressure is from OMPa to15MPa. The results show the presence of the methanol would decrease the hydrate formation temperature about15-18℃, and the injection of the glycol would decrease the hydrate formation temperature about1℃to10℃. The methanol has better hydrate inhibition performance than the glycol has.
     (3) The experimental data under the conditions-10℃to40℃and OMPa to15MPa were used to evaluate the accuracy of four equations of state (EoSs):RK, SRK, PR and BWRS. The applicability scopes of the four EoSs were determined by the principle that the maximum relative tolerance of the deviation between the experimental and calculation is5%. The results show the BWRS EoS has the widest applicability scope. In the pipeline simulation, the EoSs are selected dynamically according to the pressure and temperature in the pipe, thus the accuracy of the predicted physical parameters can be improved.
     (4) Based on the comparing and analysis of existed cost estimation models for the CO2transportation pipelines, a cost estimation mathematical model for the CO2transportation pipeline which is suitable for the actual situation of China was developed. The conversion cost and economic flow velocity of the pipelines with different diameter and transportation amount are determined with using of the cost estimation model. The achievement provides evidences for selecting the pipe diameter and transportation amount.
     (5) The experimental hydrate formation results were used to validate the Chen-Guo model which is used to predict the hydrate formation condition prediction. The results show the deviations between the predicted and experimental results are from2℃to7℃. The original Chen-Guo model was improved based on above comparisons. Finally, The improved model can predict the hydrate formation temperature better than the original model, whose average deviation is less than0.25℃.
     (6) On the basis of the mathematical model for CO2pipelines, the simulation software was developed according to the suitable considerations of the tube elements, different initial conditions and boundary conditions. The practical applications analyzed temperature and pressure distributions as well as fluid phase behavior changing along the pipelines under different transportation processes and different kinds of conditions. The applications proved technical rationality of design scheme and operation scheme.
     This paper provides a theoretical basis for the development of CO2gas fields as well as the high CO2content gas fields. The paper also makes a theoretical foundation for the safety, economic and efficient transmission of CO2pipeline. The achievements are significant to both the social significance and economic development.
引文
[1]Working Group III of IPCB. IPCC Special Report on Carbon Dioxide Capture and Storage [R]. IPCC,2005:181-192.
    [2]戴金星.中国东部和大陆架二氧化碳气田(藏)及其气的类型[J].大自然探索,1996,15(58):18-20.
    [3]徐俊,张军营,潘霞,张楚光.二氧化碳储存技术的研究现状[J].煤炭转化,2005,28(3):79-85.
    [4]向彦楠,李长俊,刘恩斌.高含二氧化碳天然气压缩系数的计算方法比较[J].油气田地面工程,2011,30(3):1-3.
    [5]吕静.二氧化碳跨临界循环及换热特性的研究[D].天津:天津大学硕士学位论文,2005.
    [6]陈中明,李传华,凌海,李穗凡.二氧化碳的生产与综合利用[J].2001,31(5):9-11.
    [7]曾荣树,孙枢,陈代钊,段振豪.减少二氧化碳向大气层的排放——二氧化碳地下储存研究[J].中国科学基金,2004,13(4):196-200.
    [8]Holloway S. An overview of the underground disposal of carbon dioxide [J]. Energy Conversion and Management,1997,38:193-198.
    [9]张晓宇,成建梅,刘军,王言振.C02地质处置研究进展[J].水文地质工程地质,2006,19(4):85-88.
    [10]Holloway S. An overview of the joule II project the underground disposal of carbon dioxide[J]. Energy Conversion and Management,1996,37 (6-8):1149-1154.
    [11]Holloway S. Underground sequestration of carbon dioxide-a viable greenhouse gas mitigation option [J]. Energy Conversion and Management,2005,30 (11-12):231-333.
    [12]Christensen N P. European potential for geological storage of CO2 from fossil fuel combustion(GESTCO)[J]. EuroGeo Surveys,1999,3:3.
    [13]曾强,陈杰,王鸿捷,杨劲松.高酸气田集输线路选线原则探讨[J].天然气与石油,2006,24(5):22-24.
    [14]John Gale, John Davison. Transmission of CO2——safety and economic considerations [J]. Energy,2004,29 (9-10):1319-1328.
    [15]李建英.二氧化碳的回收和利用[J].石油化工环境保护,2004,27(2):40-44.
    [16]陶凤云,张新妙,马润宇.酸性气体C02的膜分离技术研究进展[J].北京联合大学学报(自然科学版),2006,20(2):23-25.
    [17]王玉晶,林海波,陈海岩.二氧化碳驱油地面工程技术研究[J].石油规划设计,2008, 19(2):30-31.
    [18]董喜贵.大庆油田二氧化碳驱油先导性矿场试验[M].北京:石油工业出版社,1998.
    [19]DNV-RP-J202, DESIGN AND OPERATION OF CO2 PIPELINES,2010.4.
    [20]Marvin N.Swink. CO2 pipeline design detailed [J]. Oil & Gas Journal,1982(4):117-119.
    [21]G.G.King. Design considerations for carbon dioxide pipelines [M]. Pipeline Industry, 1981 (11):125-128.
    [22]Tihanyi, L.1985:Pressure and Temperature Conditions of CO2 Pipelines[R]. SPE 13961.
    [23]Golomb D. Transport systems for ocean disposal of CO2 and their environmental effects [J]. Energy Con-version and Management,1997,38 (Suppl):S279-S286.
    [24]David L. McCollum, Joan M. Ogden, Techno-Economic Models forCarbon Dioxide Compression, Transport, and Storage[R], University of California, Davis, One Shields Avenue, Davis, CA 95616,2006
    [25]Vendrig M., J. Spouge, A. Bird, J. Daycock, and O. Johnsen. Risk analysis of the geological sequestration of carbon dioxide [R]. Department of Trade and Industry, London, UK,2003.
    [26]Gale J., J. Davision. Transmission of CO2-safety and economic considerations [R]. GHGT-6,2002.
    [27]IEA Greenhouse Gas R&D Programme.CO2 pipeline Infrastructure:An analysis of global challenges and opportunities[R].2010.
    [28]W.A Maxey. Long shear fractures in CO2 lines controlled [J]. Oil & Gas Journal,1986 (4):44-46.
    [29]郭文斌,陈晓威.管道输送二氧化碳单井吞吐工艺[J].石油钻采工艺,1999,21(1):94-97.
    [30]张早校,冯霄.二氧化碳输送过程的优化[J].西安交通大学学报,2005,39(3):274-277.
    [31]Perry R. H. Perry's chemical engineer's handbook [Z]. New York:McGraw-Hill, 1999.10.1-10.152.
    [32]李长俊.天然气管道输送[M].北京:石油工业出版社,2008.
    [33]West, J.M. Design and operation of a supercritical CO2 pipeline-compression system, SACROC unit, Scurry County, Texas [R]. Society of Petroleum Engineers Permian Basin Oil and Gas Recovery Conference,1974, paper SPE 4804.
    [34]梁兆才.BWRS状态方程密度根两种求解方法的考核及其应用[J].石油大学学报(自然科学组),1993,17(3):74-77.
    [35]Perry M. Jarrell etB. Practical Aspects of CO2 Flooding [M]. Richardson. Texas:SPE InB.,2002.
    [36]吴玉国,陈保东BWRS方程在天然气物性计算中的应用[J].油气储运,2003,22(10):16-21.
    [37]GB-T9711.1-1997.石油天然气工业输送钢管交货条件:A级钢管[S].1997.
    [38]潘家华,郭光臣.油罐及管道强度设计[M].北京:石油工业出版社,1984.
    [39]杨筱蘅.输油管道设计与管理[M].山东:中国石油大学出版社,2006.
    [40]秦娜.超临界二氧化碳水平管内传热的实验研究和数值模拟[D].天津商学院硕士学位论文,2006.
    [41]侯光武,丁信伟,陈彦泽,陈金如.超临界二氧化碳传热特性的研究[J].化工装备技术,2006,27(1):25-19.
    [42]E.M. Multiphase Technology:Is It of Interest for Future Field Development, SPE18361.
    [43]朱发根,陈磊.我国CCS发展的现状、前景及障碍[J].能源技术经济,2011,23(1):46-49.
    [44]Schoots, K.; Rivera-Tinoco, R.; Verbong, G.,etc. The cost of pipelining climate change mitigation:an overview of the economics of CH4, CO2 and H2 transportation[C]. The International energy Workshop 2010, The Royal Institute of Technology, Stockholm, Sweden.2010.
    [45]钱焕群,朱义成,张璐等.亚临界管道输送CO2研究[J].可再生能源,2010,28(2)50-52.
    [46]Thomas J. Tarka. Estimating Carbon Dioxide Transport and Storage Costs[R]. National Energy Technology Laboratory, Pittsburgh.2010.
    [47]李长俊等.输气管道系统仿真技术发展状况[J].管道技术与设备1999(5):15-17
    [48]J.A.福克斯.管网中不稳定流动的水力分析[M].北京:石油工业出版社,1984.
    [49]常大海等.国外管道仿真技术发展状况[J].油气储运,1997,16(10):25-27
    [50]王善坷.应用仿真技术提高我国管道设计水平[J].油气储运,1998,17(8):18-19
    [51]Nicolai NG, Selandari S, Renzi Z, S System for the control and operation of a transmission pipeline [J], Engineering symposium,1989.
    [52]Peizheng Zhou, Erbar JH, Maddox RN, Analyzing unsteady-state flowin gas pipelines [J], OGJ,1983.
    [53]Wylie EB, streeter VL, stoner MA, Unsteady-state natural gas calculations in complex pipe systems [J], SPE,1974.
    [54]Forlenza DG, New training technology of the pipeline industry [J], Pipeline industry, 1992(4).
    [55]Mantri VB, Preston LB and Pringle CS, computer program optimizes natural gas pipeline operation [J]. Pipeline industry, July 1986.
    [56]金峰.计算机仿真技术在输油管道系统方面的应用[J].国外油田工程,1998(2):15-17
    [57]江茂泽.徐羽镗等.输配气管网的模拟与分析[M].北京:石油工业出版社,1995.
    [58]李长俊,江茂泽.输气管道中的不稳定流动分析[J].石油学报,1998,19(4):65-68.
    [59]刘恩斌,李长俊.液体输送管道瞬变流动分析[J].油气储运,2010,29(4):263-265.
    [60]张红兵.长距离输气管道系统事故诊断技术研究[D].四川:西南石油大学博士学位论文,2005.
    [61]江茂泽等.天然气在复杂枝状管网系统内不稳定流动及其计算机模拟[J].石油学报,1992,13(4):61-63.
    [62]李长俊等.天然气在管道系统中不稳定流动的分析[J].天然气工业,1994,14(6):75-78.
    [63]李长俊,江茂泽.复杂输气管道中不稳定流动的迦辽金解[J].天然气工业,1998,18(3):81-83.
    [64]喻西崇,李志军,潘鑫鑫等.C02超临界态输送技术研究[J].天然气工业,2009,29(12):83-86.
    [65]Hendriks. C.A. Carbon Dioxide Removal from Coal-Fired Power Plants [M]. Kluwer Academic Publishers, Dordrecht, the Netherlands,1994.
    [66]Skovholt. O. CO2 Transportation System [J]. Energy Conservation and Management, 1993,34(9-11):1095-1103.
    [67]Huai. X.L., Koyama. S., Zhao. T.S. An experimental study of flowand heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions [J]. Chemical Engineering Science.2005,60,3337-3345.
    [68]Sean T. McCoy; Edward S. Rubin. Models of CO2 Transport and Storage Costs and Their Importance in CCS Cost Estimates[C]. Fourth annual conference on carbon capture and sequestration DOE/NETL,2005.
    [69]Vandeginste. V.; Piessens. V. Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle [C]. The 4th Trondheim Conference on CO2 Capture, Transport and Storage.2008.
    [70]erpa. J.; Morbee. J.; Tzimas. E. Technical and Economic Characteristics of a CO2 Transmission Pipeline Infrastructure[R]. JRC Sceientific and Technical Reports,2011.
    [71]Schoots, K.; Rivera-Tinoco, R.; Verbong, G.etc. The cost of pipelining climate change mitigation:an overview of the economics of CH4. CO2 and H2 transportation[C]. The International energy Workshop 2010. The Royal Institute of Technology, Stockholm, Sweden.2010.
    [72]Vesovic. V.; Wakeham. W.A.; Olchowy, G.A., etc. The transport properties of carbon dioxide [J]. The Journal of Physical Chemistry.1990,19,763-808.
    [73]Span. R.; Wagner. W., A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa [J]. The Journal of Physical Chemistry.1996,25(6):1509-1596.
    [74]Fenghour. A.; Wakeham. W.A.; Vesovic. V. The Viscosity of Carbon Dioxide [J]. The Journal of Physical Chemistry.1998,27,31-44.
    [75]Hailong Li.Thermodynamic Properties of CO2 Mixtures and Their Applications in Advanced Power Cycles with CO2 Capture Processes [D]. Royal Institute of Technology, Stockholm, Sweden,2008.
    [76]N. Parker. Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs[R]. Institute of Transportation Studies-University of California, Davis.2004.
    [77]Hendriks, C., W. Graus, and F. van Bergen, Global Carbon Dioxide Storage Potential and Costs[R]. Ecofys report no. EEP-02001,2004.
    [78]IE A Greenhouse Gas R&D Programme.Building the Cost Curves for CO2 Storage: European Sector[R].2005.
    [79]Heddle. G.; Herzog. H.; Klett. M. The Economics of CO2 Storage[R]. Massachusetts Institute of Technology, Cambridge.2003.
    [80]Hendriks. N., Wildenborg. T., Feron. P., etc. EC-Case Carbon Dioxide Sequestration[R]. Ecofys, London.2003.
    [81]Joan M. Ogden. Conceptual Design of Optimized Fossil Energy Systems with Capture and Sequestration of CO2[R]. Princeton Environmental Institute, Princeton.2004.
    [82]发改投资[2006]1325号.建设项目经济评价方法与参数[M].北京:中国计划出版社,2006.
    [83]中油计划[2010]543号.中国石油天然气集团公司建设项目其他费用和相关费用规定[S].2010.
    [84]张双蕾.CO2输送管道设计技术研究[D].四川:西南石油大学硕士学位论文,2012.
    [85]张萍.二氧化碳液化及输送技术研究[D].山东:中国石油大学(华东)硕士学位论文,2008.
    [86]郭秀丽.东方1-1气田C02储存与输送方案优化分析[D].山东:中国石油大学(华东)硕士学位论文,2009.
    [87]钱焕群,朱义成,张璐等.亚临界管道输送C02研究[J].可再生能源,2010,28(2):50-52.
    [88]陈光进,孙长宇等.气体水合物科学与技术[M].北京:化学工业出版社,2007.
    [89]刘志安.天然气水合物生成机理和热力学模型研究[D].北京:中国石油大学硕士学位论文,2007.
    [90]李长俊,杨宇.天然气水合物形成条件预测及防止技术[J].管道技术与设备,2002.(1):8-10.
    [91]李长俊,杨宇.天然气水合物形成条件预测及防止技术(续)[J].管道技术与设备,2002.(2):9-11.
    [92]胡顺渠.天然气水合物预测综合模型及其应用[D].四川:西南石油大学硕士学位论文,2003.
    [93]杜亚和,郭天民.天然气水合物生成条件的预测Ⅰ——不含抑制剂体系[J].石油学报(石油加工),1988,3(3):82-92.
    [94]G-J Chen,T-M Guo.Thermodynamic Modeling of Hydrate Formation Based on New Concepts[J].Fluid Phase equilibria,1996,122 (1-2):43-65.
    [95]Du Y H, Guo T M. Predict of Hydrate Formation for Systems Containing Methanol [J]. Chem Eng Sci,1990,45(4):893-900.
    [96]陈光进,马庆兰等.水合物模型的建立及在含盐体系中的应用[J].石油学报,2000,21(1):64-70.
    [97]Ahmed A Elgibaly, Ali M EIkamel.A new correlation for prediction drate formation condition for various gas mixture sand inhibitors [J].Fluid Phase Equilibria,1998,152:23-42.
    [98]Jafar Javanmardi, Mahmood Moshfeghian,et al. An Accurate Model for Prediction of Gas Hydrate Formation Conditions in Mixtures of Aqueous Electrolyte Solutions and Alcohol [J].The Canadian Journal of Chemical Engineering,2001,79:367-373.
    [99]Jafar Javanmardi, Mahmood Moshfeghian. A new approach for prediction of gas hydrate formation conditions in aqueous electrolyte solutions [J].Fluid Phase Equilibria,2000,168: 135-148.
    [100]Kh.Nasrifar,M.Moshfeghian.Computation of equilibrium hydrate formation temperature for CO2 and hydrocarbon gases containing CO2 in the presence of an alcohol, electrolytes and their mixtures [J].Journal of Petroleum Science and Engineering,2000,26:143-150.
    [101]Kh.Nasrifar,M.Moshfeghian. A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and or alcohol [J].J.Chem.Thermodynamics. 2001,33:999-1014.
    [102]Ruiyan Sun, Changjun Li, et al. Hydrate Formation Conditions of Natural Gas with High Content of Carbon Dioxide and the Calculation Model[A]. International Oil & Gas Conference and Exhibition in China[C]. Beijing, SPE,2010.
    [103]黄强,孙长宇等.含(CH4+CO2+H2S)酸性天然气水合物形成条件实验与计算[J].化工学报,2005,56(7):1159-1162.
    [104]周怀阳,彭晓彤,叶瑛.天然气水合物[M].北京:海洋出版社,2000.
    [105]雷群,张书平等.长庆气田防止气井水合物堵塞综合技术[J].低渗透油气田,2000,5(4):58-63.
    [106]J.Ben Bloys. Hydtate Engineering, The society of Petroleum Engineers Inc,2000.
    [107]孙志高,王如竹.天然气水合物研究进展[J].天然气工业,2002,21(1):93-97.
    [108]冯叔初,郭揆等.油气集输与矿场加工[M].东营:中国石油大学出版社,2006.
    [109]廖健,梅东海.天然气水合物相平衡研究的进展[J].天然气工业,1998,18(3):75-82.
    [110]E.Dendy Sloan.Jr.Clathrate Hydrates of Natural Gases.Marcel Dekker, Inc,1998.
    [111]惠健等.高含CO2水合物生成条件模拟与预测研究[J].西南石油大学学报,2007,29(2):14-16.
    [112]徐春碧,黎洪珍,冷奎,易洋.高含硫气井生产状况分析及应对措施探讨[J].油气田地面工程,2008,27(10):25-27.
    [113]胡德芬,徐立,李祥斌,宋晓健.天然气集输管线冬季冻堵及措施分析[J].天然气与石油,2009,27(1):21-25.
    [114]程小姣,宫敬.天然气管道内水合物形成的预测[J].油气田地面工程,2003,22(2):4-5.
    [115]邹德永,王瑞和.气井油管中水合物的形成及预测[J].石油钻采工艺,2001,23(6):46-49.
    [116]喻西崇,赵金洲等.天然气水合物生成条件预测模型的比较[J].油气储运,2002,21(1):20-24.
    [117]刘士鑫,郭平等.醇盐混合体系中天然气水合物生成条件预测[J].石油与天然气化工,2005,34(5):346-348.
    [118]Chow M et al. On the application and design of artificial neural networks for motor fault detection[J], IEEE trans. Ind. Election,1991,38(6):448-453.
    [119]Fenghour. A.; Wakeham. W.A.; Vesovic. V. The Viscosity of Carbon Dioxide [J]. The Journal of Physical Chemistry.1998,27,31-44.
    [120]IEA Greenhouse Gas R&D Programme.CO2 pipeline Infrastructure:An analysis of global challenges and opportunities[R].2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700