用户名: 密码: 验证码:
生物成因煤层气定量判识及其成藏效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合成因煤层气(热成因与生物成因气)在世界各含煤盆地广泛地被发现和报道,定量查明煤层气内生物成因气的相对含量及其成藏演化过程是一个重要的问题。为此,本文以柳林地区和芦岭地区为对象,采用物理实验与数值模拟方法,重点探讨生物成因煤层气定量研究方法及其成藏演化特征,取得如下主要成果。
     首先,基于高压釜封闭体系生烃热模拟实验,提出热成因气成熟演化阶段判识模型,揭示气体碳氢同位素组成与样品演化阶段对应关系及演化特征。认为随有机质演化程度升高,甲烷、乙烷和丙烷碳同位素组成具有先变轻后变重,而甲烷氢同位素组成及二氧化碳碳同位素组成具有逐渐变重的特征。
     其次,采用数理统计方法,系统分析不同成因类型煤型气分布特征,提出多个判识煤型气成因类型图版。认为生物成因气δ~(13)C_1<-60‰,热成因气δ~(13)C_1>-30‰,混合成因气介于二者之间。随有机质演化程度增强,从生物成因气至热成因气,δ~(13)C_1、δ~(13)C_(CO_2)-CH_4、δ~(13)C_(2-1)及CH_4/(C_2H_6+C_3H_8)具有变重趋势且相关性明显, δ~(13)C_1与δ~(13)C_(CO_2)-CH_4、δ~(13)C_1与δ~(13)C_(2-1)及δ~(13)C_1与CH_4/(C_2H_6+C_3H_8)是划分煤型气成因类型的图版。
     再次,基于次生生物成因气模拟产出实验,结合生物成因气甲烷累积产率分析,完善生物成因气生烃地质模型与数学模型。运用红外光谱分析,从分子学角度分析热解和微生物降解前后样品分子结构变化特征。认为样品经微生物降解后分子间作用力变弱,含硫化合物对微生物降解具抑制作用。借助甲烷碳同位素组成地化测试手段,提出一个定量计算生物成因气相对含量新方法,定量考察同位素分馏作用对甲烷碳同位素组成的影响,二者结果偏差较小。
     最后,运用数值模拟方法,探讨生物成因煤层气成藏演化特征及其与热成因气成藏效应,定量查明生物成因气对现今煤层含气量贡献。认为生物成因气对煤层累积生气量和含气量贡献显著,其演化过程具明显的阶段性,在不同地质演化阶段,生物成因煤层气发生运移的方式不同,主要以扩散、渗流和盖层突破为主。原生生物成因气对现今煤层含气量贡献较小,次生生物成因气贡献相对较大。
Coal bed methane (CBM) mixed by thermogenic and biogenic gases has beensubsequently discovered and reported in many coal basins all over the word. It is importantto quantitatively investigate the relative amount of biogenic gas in CBM reservoir and theprocess of reservoiring. To understand thses, the Liulin and Luling CBM exploitation sitesare taken as the study areas. Quantitative method and reservoiring characteristic ofbiogenic CBM are emphatically discussed by using laboratory experiments and numericalsimulation technology. Major innovations are as follows.
     Firstly, based on hydrocarbon thermal simulation experiments in an autoclave closedsystem, the model for identifing the evolution stage of thermogenic gas generated byorganic matter is proposed. The evolutionary characteristics and ralationships betweencarbon and hydrogen isotopic compositions of gas with the evolution stage of samples arereviewed. The carbon isotopic compositions of methane, ethane, and propane changedfrom heavy to light, then back to heavy, whereas the hydrogen isotopic composition ofmethane and the carbon isotopic composition of carbon dioxide become increasinglyheavier with increasing evolution of organic matters (Rovalues).
     Secondly, following mathematical statistics method, the distribution characteristics ofdifferent genetic types of coal type gas are systematically analyzed, and several charts foridentifying the genetic types of coal type gas are also raised. Results show that the δ~(13)C_1value of biogenic gas, thermogenic gas, and a mixture of both types are less than-60‰,more than-30‰, and occur in between, respectively. From biogenic gas to thermogenicgas, the δ~(13)C_1, δ~(13)C_(CO_2)-CH_4, δ~(13)C_(2-1), and CH_4/(C_2H_6+C_3H_8) values gradually become heavierwith the increase of Rovalues, and an obvious positive correlation exists among theaforementioned parameters. The charts of δ~(13)C_1-δ~(13)C_(CO_2)-CH_4, δ~(13)C_1-δ~(13)C_(2-1), andδ~(13)C_1-CH_4/(C_2H_6+C_3H_8) can be used to divide the genetic types of coal type gas.
     Thirdly, by conducting secondary biogenic gas simulation experiments and combiningthe analysis of biogenic gas cumulative yields, hydrocarbon geologic and mathematicalmodels of biogenic gas are perfected. From the perspective of molecular structure, thechangements of samples from before and after during pyrolysis and microbial degradationare studied by using infrared spectrum analysis. The intermolecular forces of samples areweakening during the microbial degradation. Sulfocompound possibly has an inhibitoryaction on microbial degradation. By geochemical testing of methane carbon isotopiccomposition, a new method for quantitatively calculating the relative content of biogenicgas is presented. And the fractionation effect on methane carbon isotopic composition is also quantitatively inverstigated. By comparing these results, it is found that there is asmall deviation.
     Fourthly, using numerical simulation technology, the reservoiring characteristics ofbiogenic gas and the reservoiring affect of biogenic and thermogenic gases are discussed.Biogenic gas contributed to the methane content of coal seam presently is alsoquantitatively studied. Biogenic gas has obviously contribution on cumulative gasproduction and gas content in coalbed. An obvious periodicity exists in the process ofCBM reservoiring. CBM containing biogenic gas migrate in different way at differentevolution stage, mainly in the way of diffusion, percolation, and cap outburst dissipation.Primary biogenic gas has relatively small contribution on the gas content of coal seampresently, whereas secondary biogenic gas has much.
引文
[1] Ahmed M, Smith J W. Biogenic methane generation in the degradation of eastern AustralianPermian coals[J]. Organie Geoehemistry,2001,32(6):809-816.
    [2] Albert D B, Martens C S, Alperin M J. Biogeochemical processes controlling methane in gassycoastal sediments--Part2: groundwater flow control of acoustic turbidity in Eckernforde BaySediments[J]. Continental Shelf Research,1998,18:1771-1793.
    [3] Alekseyev F A. Zonality in oil and gas formation in the earth’s crust based on isotope studies[J].Geologiya Nefti Gaza,1974,(4):62-67.
    [4] Alsaab D, Izart A, Elie M, et al.2D modelling of coalification history, hydrocarbons (oil&gas)generation, expulsion and migration in Donets Basin (Ukraine)[A]. Abstract, AAPG HedbergResearch Conference. Basin Modelling Perspectives: Innovative Developments and NovelApplications[C], May2007,3.
    [5] Ayers W B. Coalbed gas systems, resources, and production and a review of contrasting casesfrom the San Juan and powder river basins[J]. AAPG Bulletin,2002,86(11):1853-1890.
    [6] Baylis S A, Cawley S J, Clayton C J, et al. The origin of unusual gas seeps from onshore PapuaNew Guinea[J]. Marine Geology,1997,137:109-120.
    [7] Behar F, Vandenbroucke M, Teermann S C, et al. Experimental simulation of gas generation fromcoals and a marine kerogen[J]. Chemical Geology,1995,126:247-260.
    [8] Berner U, Faber E. Maturity related mixing model for methane, ethane and propane, based oncarbon isotopes[J]. Organic Geochemistry,1988,13:67-72.
    [9] Boreham C, Golding S, Glikson M. Factors controlling the origin of gas in Australian BowenBasin coals[J]. Organic Geochemestry,1998,29(1-3):347-362.
    [10] Bray R J, Green P F, Duddy I R. Thermal history reconstruction using apatite fission trackanalysis and vitrinite reflectance: a case study from the East Midlands of England and thesouthern North Sea[C]. In: Hardmen R S P. ed. Exploration Britain: Geological Insights for theNext Decade. Geological Society of London Special Publication,1992,67:3-25.
    [11] Bryant M P. The microbiology of anaerobic degradation and methanogenesis with specialreference to sewage[J]. Microbial energy conversion UNTAR symposium,1976,(6):107-117.
    [12] Burnham A K, Sweeney J J. A chemical kinetic model of vitrinite maturation and reflectance[J].Geochemica et Cosmochemica Acta,1989,53:2649-2657.
    [13] Carey E. Recherche des directions principales de containtes associees au jeu dune population defailles[J]. Rview Geologique Dynamique Geographique Physique,1979,21:57-66.
    [14] DeLaune R D, Smith C J, Patrick W H. Methane production in Mississippi River deltaic plainpeat[J]. Organic geochemistry,1986,9(4):193-197.
    [15] Duan Y, Sun T, Qian Y R, et al. Pyrolysis experiments of forest marsh peat samples with differentmaturities: An attempt to understand the isotopic fractionation of coalbed methane during stagedaccumulation[J]. Fuel,2012,94:480-485.
    [16] Duddy I R, Green P F, Hegarty K A, et al. Reconstruction of thermal history in basin modelingusing apatite fission track analysis: what is really possible[R]. Sydney: Offshore AustraliaConference Process,1991,1(Ⅲ):49-61.
    [17] Faiz M, Stalker L, Sherwood N, et al. Bio-enhancement of coal bed methane resources in theSouthern Sydney Basin[J]. APPE A J,2003,595-608.
    [18] Faiz M, Saghafi A, Sherwood N, et al. The influence of petrological properties and burial historyon coal seam methane reservoir characterisation, Sydney Basin, Australia[J]. InternationalJournal of Coal Geology,2007,70:193-208.
    [19] Floodgate G D, Judd A G. The origin of shallow gas[J]. Continental Shelf Research,1992,12(10):1145-1156.
    [20] Fuex A N. The use of stable carbon isotopes in hydrocarbon exploration[J]. Journal ofGeochemical Exploration,1977,7:155-188.
    [21] Galimov E M. Sources and mechanisms of formation of gasesous hydrocarbons in sedimentaryrocks[J]. Chemical Geology,1988,71:77-95.
    [22] Garcia-Gil S, Vilas F, Garcia-Garcia A. Shallow gas feature in incised-valley fills (Ria de Vigo,NW Spain): A case study[J]. Continental Shelf Research,2002,22(16):2303-2315.
    [23] Green P F, Duddy I R, Gleadow A J W. Thermal annealing of fission tacks in appetite (1) aquantitative description[J]. Chemical Geology (Isotope Geoscience Section),1986,59:237-253.
    [24] Hackley C, Guevara H, Hentz F, et al. Thermal maturity and organic composition ofPennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gaspotential[J]. International Journal of Coal Geology,2009,77:294-309.
    [25] Hakan H, Namik Y M, Cramer B, et al. Isotopic and molecular composition of coal-bed gas inthe Amasra region (Zonguldak basin-western Black Sea)[J]. Organic Geochemistry,2002,33:1429-1439.
    [26] Hakan H. Origin and secondary alteration of coalbed and adjacent rock gases in the ZonguldakBasin, western Black Sea Turkey[J]. Geochemical Journal,2007,41:201-211.
    [27] Harris S H, Smith R L, Barker C E. Microbial and chemical factors influencing methaneproduction in laboratory incubations of low–rank subsurface coals[J]. International Journal ofCoal Geology,2008,76:46-51.
    [28] Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin ofheavy oil[J]. Nature,2003,426:344-352.
    [29] Hunt J M. Petroleum geochemistry and geology[M]. San Francisco: W. H. Freeman,1979,61-160.
    [30] Jenden P D, Newell K D, Kaplan I R, et al. Composition and stable-isotope geochemistry ofnature gases from Kanas Midcontinent[J]. USA Chemical Geology,1978,71:117-147.
    [31] Jenden P D, Kaplan I R. Comparison of microbial gases from the Middle America Trench andScripps Submarine Canyon: implications for the origin of natural gas[J]. Applied Geochemistry,1986,1(6):631-646.
    [32] Johnson R, Flores R. Developmental geology of coalbed methane from shallow to deep in RockyMountain basins and in Cook Inlet–Matanuska basin, Alaska, U.S.A. and Canada[J].International Journal of Coal Geology,1998,35:241-282.
    [33] Jones E J P, Voytek M A, Warwick P D, et al. Bioassay for estimating the biogenicmethane–generating potential of coal samples[J]. International Journal of Coal Geology,2008,76:138-150.
    [34] Juottonen H, Galand P E, Yrjala K. Detection of methanogenic Archaea in peat: comparison ofPCR primers targeting the mcrA gene[J]. Research in Microbiology,2006,157:914-921.
    [35] Kotarba M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin basins,Poland[J]. Organic Geochemistry,2001,32:163-180.
    [36] Kotarba M J, Rice D D. Composition and origin of coalbed gases in the Lower Silesian basin,southwest Poland[J]. Applied Geochemistry,2001,16:895-910.
    [37] Kotarba M J, Lewan M D. Characterizing thermogenic coalbed gas from Polish coals of differentranks by hydrous pyrolysis[J]. Organic Geochemistry,2004,35:615-646.
    [38] Kotelnikova S. Microbial production and oxidation of methane in deep subsurface[J].Earth-Science Reviews,2002,58(3):367-395.
    [39] Levine J R. Coalification: the evolution of coal as source rock and reservoir rock for oil andgas[A]. In: Law B E, Riee D D, eds. Hydrocarbons from coal[C]. AAPG Studies in Geology,1993,38:39-77.
    [40] Lewan M D, Winters J C, McDonald J H. Generation of oil-like pyrolyzates from organic-richshales[J]. Science,1979,203:897-899.
    [41] Lewan M D. Evaluation of petroleum generation by hydrous pyrolysis experimentation[J].Philosophical Transactions of the Royal Society of London, Series A,1985,315:123-134.
    [42] Lewan M D, Williams I A. Evaluation of petroleum generation from resinites by hydrouspyrolysis[J]. AAPG Bulletin,1987,7(2):207-214.
    [43] Lewan M D, Ruble T E. Comparison of petroleum generation kinetics by isothermal hydrous andnonisothermal open-system pyrolysis[J]. Organic Geochemistry,2002,33:1457-1475.
    [44] Lin C M, Zhuo H C, Gao S. Sedimentary facies and evolution of the Qiantang River incisedvalley, eastern China[J]. Marine Geology,2005,219(4):235-259.
    [45] Luo D K, Dai Y J, Xia L Y. Economic evaluation based policy analysis for coalbed methaneindustry in China[J]. Energy,2011,36(1):360-368.
    [46] Luton P E, Wayne J M, Sharp R J, et al. The mcrA gene as an alternative to16S rDNA in thepylogenetic analysis of methanogenen populations in landfill[J]. Microbiogy,2002,148:3521-3530.
    [47] Martini A M, Budai J M, Walter L M, et al. Microbial generation of economic accumulations ofmethane within a shallow organicrich shale[J]. Nature,1996,383:155-157.
    [48] Martens, Christopher S, Albert, et al. Biogeochemical processes controlling methane in gassycoastal sediments--Part1. A model coupling organic matter flux to gas production, oxidation andtransport[J]. Continental Shelf Research,1998,18(14-15):1741-1770.
    [49] Mattavall, Ricchiuto L T, Grignani D, et al. Geochemistry and habitat of natural gases in PoBasin, Northern Italy[J]. AAPG Bulletin,1983,67(12):2239-2254.
    [50] Melodye A R, George E C, Chung H M.刘全有译.利用天然气的碳同位素比值建立热成因气模型[J].天然气地球科学,2002,13(5):19-26.
    [51] Moore T A. Coalbed methane: a review[J]. International Journal of Coal Geology,2012,101:36-81.
    [52] Nozhevnikova A N, Holliger C, Ammann A, et al. Methano-genesis in sediments from deep lakesat different temperatures (12-70degrees C)[J]. Water Science and Technology,1997,36(1):57-64.
    [53] Okyar M, Ediger V. Seismic evidence of shallow gas in the sediment on the shelf off Trabzon,southeastern Black Sea[J]. Continental Shelf Research,1999,19:575-587.
    [54] Pace N R. A molecular view of microbial diversity and the biosphere[J]. Science,1997,276(5313):734-740.
    [55] Penner T J, Foght J M, Budwill K. Microbial diversity of western Canadian subsurface coal bedsand methanogenic coal enrichment cultures[J]. International Journal of Coal Geology,2010,82:81-93.
    [56] Papendick S L, Downs K R, Vo K D, et al. Biogenic methane potential for Surat Basin,Queensland coal seams[J]. International Journal of Coal Geology,2011,88:123-134.
    [57] Payne D, Ortoleva P. A model for lignin alteration-part II: numerical model of natural gasgeneration and application to the Piceance Basin, Western Colorado[J]. Organic Geochemistry,2001,32(9):1087-1101.
    [58] Rashid M A, Vilks G. Environmental controls of methane production in Holocene Basin ineastern Canada[J]. Organic geochemistry,1977,1:123-135.
    [59] Rice D D. Coastal and deltaic sedimentation of Upper Cretaceous Eagle Sandstone: relation toshallow gas accumulations, nourth-central Montana[J]. AAPG Bulletin,1980,64:316-338.
    [60] Rice D D, Claypool G E. Generation, accumulation and resource potential of biogenic gas[J].AAPG Bulletin,1981,65(1):5-25.
    [61] Rice D D. Composition and origins of coalbed gas[A]. Law B E, Rice D D, eds. Hydrocarbonsfrom coal[C]. AAPG Studied in Geology Series,1993,38:159-184.
    [62] Rightmire C T, Eddy G E, Kirr J N. Coalbed methane resources of the United States[J]. AAPGStudied in Geology Series,1984,17(Ⅶ-Ⅷ):1-14.
    [63] Ronald C J, Romeo M F. Developmental geology of coalbed methane from shallow to deep inRocky Mountain basins and in Cook Inlet-Matanuska basin, Alaska, USA and Canada[J].International Journal of Coal Geology,1998,35:241-282.
    [64] Schenk H J, Horsfield B. Kinetics of petroleum generation by programmed-temperatureclosed-versus open-system pyrolysis[J]. Geochimica et Cosmochimica Acta,1993,57(3):623-630.
    [65] Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases ofvarious origins[J]. Geochimicaet Cosmochimica Acta,1980,44(5):649-661.
    [66] Schoell M. Genetic characterization of natural gas[J]. AAPG Bulletin,1983,67:2225-2238.
    [67] Schoell M. Multiple origins of methane in the earth[J]. Chemical Geology,1988,71(1-3):1-10.
    [68] Scott A R. Composition and origin of coalbed gases from selected basins in the United States[A].International coalbed methane symposium proceedings,1993,207-222.
    [69] Scott A R, Kaiser W R, Ayers W B. Thermogenic and secondary biogenic gases, San Juan basin,Coloabo and New Mexico-Implications for coalbed gas producibility[J]. AAPG Bulletin,1994,78(8):1186-1209.
    [70] Scott A R. Improving coal gas recovery with microbially enhanced coalbed methane[A]. In:Mastalerz M, Golding S D,(Eds) Coalbed Methane: Scientific, Environmental and EconomicEvaluation[C]. Kluwer, Dordrecht,1999,89-110.
    [71] Smith J W, Gould K W, Rigby D. The stable isotope geochemistry of Australian coals[J]. OrganicGeochemistry,1982,3:111-131.
    [72] Smith J W, Pallasser R J. Microbial origin of Australian coalbed methane[J]. AAPG Bulletin,1996,80(6):891-897.
    [73] Stahl W J, Carey B D. Source rock identification by isotope analyses of natural gases from fieldsin the Val Verde and Delaware basins, West Texas[J]. Chemical Geology,1975,16(4):257-267.
    [74] Stahl W J. Carbon and nitrogen isotopds in hydracarbon research and exploration[J]. ChemicalGeology,1977,20:121-149.
    [75] Stahl W J. Geochemische Daten Nordwest-Deutscher Oberkarbon, Zechstein undBuntsandsteinga-se[J]. Erdol und Kohle-Erdgas-Petrochemie,1979,32:65-70.
    [76] Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based onchemical kinetics[J]. American Association of Petroleum Geologists Bulletin,1990,74(10):1559-1570.
    [77] Tang Y, Behar F. Rate Constants of n-Alkanes Generation from Type II Kerogen in Open andClosed Pyrolysis Systems[J]. Energy Fuels,1995,9(3):507-512.
    [78] Tao M X, Shi B G, Li J Y, et al. Secondary biological coalbed gas in the Xinji area, Anhuiprovince, China: Evidence from the geochemical features and secondary changes[J].International Journal of Coal Geology,2007,71:358-370.
    [79] Teichmuller M, Teichmuller R, Colombo U. Iso-topen Verhaltnis im Methan von Grubengas undFlozgasund seine Abhangigkeit von den geologischen Verhaltnissen[J]. Geologische Mitteilungen,1968,9,181-206.
    [80] Vilks G M, Rashid A, Van Der W J M. Methane in recent sediments of the Labrador shelf[J].Canadian Journal of Earth Science,1974,11(6):1427-1434.
    [81] Wei C T, Qin Y, Wang G X, et al. Numerical simulation of coalbed methane generation,dissipation and retention in SE edge of Ordos Basin, China[J]. International Journal of CoalGeology,2010,82(3-4):147-159.
    [82] Wever T F, Abegg F, Fiedler H M, et al. Shallow gas in the muddy sediments of Eckernf rde Bay,Germany[J]. Continental Shelf Research,1998,18:1715-1739.
    [83] Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwaterenvironments: CO2reduction vs. acetate fermentation-Isotopic evidence[J]. Geochimica etCosmochimica Acta,1986,50:693-709.
    [84] Whiticar M J. Stable isotope geochemistry of coals, humic kerogens and related natural gas[J].International Journal of Coal Geology,1996,32:191-215.
    [85] Wygrala B P. Integrated study of an oil field in the southern Po Basin, northern Italy[D]. Koeln:University of Cologne,1989.
    [86]包茨.天然气地质学[M].北京:科学出版社,1988.
    [87]鲍园,韦重韬,王超勇等.贵州织纳煤田水公河向斜上二叠统8煤层三史模拟[J].煤田地质与勘探,2012,40(6):13-16.
    [88]曹佳,韦重韬,鲍园等.多层叠置含煤层气系统成藏模拟技术及实例研究[J].中国煤炭地质,2012,24(3):17-19.
    [89]陈荣书.天然气地质学[M].武汉:中国地质大学出版社,1989.
    [90]陈荣书,唐仲华,徐思煌等.双开关排烃模型及其在辽东湾地区的应用[J].中国海上油气(地质),1995,9(4):254-262.
    [91]陈安定,刘桂霞,连莉文等.生物甲烷形成试验与生物气聚集的有利地质条件探讨[J].石油学报,1991,12(3):7-16.
    [92]陈安定,徐永昌.沉积岩成烃热模拟实验研究产物的同位素特征及应用[J].中国科学: B辑,1993,23(2):209-217.
    [93]陈安定.陕甘宁盆地中部气田奥陶系天然气的成因及运移[J].石油学报,1994,15(2):1-9.
    [94]陈安定.论鄂尔多斯盆地中部气田混合气的实质[J].石油勘探与开发,2002,29(2):33-38.
    [95]陈英,戴金星,戚厚发.关于生物气研究中几个理论及方法问题的研究[J].石油实验地质,1994,16(3):209-218.
    [96]陈践发,李春园,沈平等.煤型气烃类组分的稳定碳、氢同位素组成研究[J].沉积学报,1995,13(2):59-69.
    [97]陈富勇.芦岭矿特厚构造煤储层特征及抽取行评价[D].淮南:安徽理工大学,2005.
    [98]陈富勇,李翔.淮北芦岭煤矿构造煤发育特征及成因探讨[J].中国煤炭地质,21(6):17-21.
    [99]陈瑞银,罗晓容,陈占坤等.鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J].地质学报,2006,80(5):685-693.
    [100]陈瑞银,赵文智,张水昌等.塔里木盆地下古生界油气晚期成烃成藏的地质依据[J].地学前缘,2009,16(4):173-181.
    [101]陈赓.基于GIS的顶板岩体稳定性定量评价[D].淮南:安徽理工大学,2012.
    [102]戴金星,戚厚发,宋岩.鉴别煤成气和油型气若干指标的初步探讨[J].石油学报,1985,6(2):31-38.
    [103]戴金星,戚厚发,宋岩等.我国煤层气组分、碳同位素类型及其成因和意义[J].中国科学: B辑,1986,12:1317-1326.
    [104]戴金星,宋岩,关德师等.鉴别煤成气的指标[A].见《煤成气地质研究》编委会.煤成气地质研究[C].北京:石油工业出版社,1987,156-170.
    [105]戴金星,戚厚发.我国煤成烃气的δ13C1-Ro关系[J].科学通报,1989,34(9):690-692.
    [106]戴金星.各类烷烃气的鉴别[J].中国科学: B辑,1992,(2):183-193.
    [107]戴金星,陈英.中国生物气中烷烃组分的碳同位素特征及其鉴别标志[J].中国科学: B辑,1993,23(3):303-310.
    [108]戴金星,裴锡古,戚厚发.中国天然气地质学(卷二)[M].北京:石油工业出版社,1996,1-264.
    [109]邓宇,钱贻伯,林世平等.藻类的产甲烷及产烃潜力实验[J].中国沼气,2000,18(4):24-26.
    [110]党玉琪,侯泽生,徐子远等.柴达木盆地生物气成藏条件[J].新疆石油地质,2003,24(5):374-379.
    [111]党洪艳,沈忠民,刘四兵等.保山盆地生物气地球化学特征[J].四川地质学报,2010,130(1):91-93.
    [112]段利江,唐书恒,刘洪林等.晋城和昌吉地区煤层甲烷碳同位素分馏特征对比分析[J].中国矿业大学学报(自然科学版),2008,37(5):715-718.
    [113]段利江,唐书恒,刘洪林等.煤储层物性对甲烷碳同位素分馏的影响[J].地质学报,2008,82(10):1330-1334.
    [114]段毅,张晓丽,孙涛等.草本沼泽泥炭不同演化阶段气体碳氢同位素组成及其演化特征[J].科学通报,2011,56(6):407-413.
    [115]傅家谟,刘德汉,盛国英,主编.煤成烃地球化学[J].北京:科学出版社,1990,1-372.
    [116]傅雪海,秦勇,韦重韬.煤层气地质学[M].徐州:中国矿业大学出版社,2007,10.
    [117]高先志.利用甲烷碳同位素研究混合气的混合体积[J].沉积学报,1997,15(2):63-65.
    [118]高波,陶明信,张建博等.煤层气甲烷碳同位素的分布特征与控制因素[J].煤田地质与勘探,2002,30(3):14-17.
    [119]高小康,宋岩,柳少波等.关于煤层气甲烷碳同位素值对比的探讨[J].天然气工业,2010,30(6):11-14.
    [120]郭建,张志庆,韦重韬.柳林矿区煤层气演化史数值模拟研究[J].山东科技大学学报,2008,27(1):27-31.
    [121]关德师.甲烷菌的生成条件与生物气[J].天然气工业,1990,10(5):13-20.
    [122]关德师.控制生物气富集成藏的基本地质因素[J].天然气工业,1997,17(5):8-12.
    [123]关德师,戚厚发,钱贻伯等.生物气的生成演化模式[J].石油学报,1997,18(3):31-36.
    [124]桂学智.河东煤田晚古生代聚煤规律与煤田资源评价[M].太原:山西科学技术出版社,1993.
    [125]郝石生,陈明章,高耀斌.天然气藏的形成和保存[M].北京:石油工业出版社,1995.
    [126]胡国艺,刘顺生,李景明等.沁水盆地晋城地区煤层气成因[J].石油与天然气地质,2001,22(4):319-321.
    [127]贺建桥.神山侏罗系褐煤生烃模拟实验研究[D].兰州:中国科学院兰州地质研究所,2004.
    [128]黄勇,姜军. U型水平连通井在河东煤田柳林地区煤层气开发的适应性分析[J].中国煤炭地质,2009,21(1):32-37.
    [129]黄晓明,安德鲁,莫日和等.安徽宿州芦岭矿区煤层气生产条件分析[J].中国煤层气,2011,8(3):3-7.
    [130]姜乃煌,宋孚庆,任冬苓等.甲烷菌发酵阶段划分[J].石油勘探与开发,1993,20(4):39-43.
    [131]贾承造,赵文智,魏国奇等.国外天然气勘探与研究最新进展及发展趋势[J].天然气工业,2002,22(4):5-9.
    [132]贾星亮,周世新,宋振响等.柴达木盆地三湖地区生物气地球化学特征及重烃组分成因分析[J].天然气地球科学,2008,19(4):524-529.
    [133]琚宜文,王桂梁.淮北宿临矿区构造特征及演化[J].辽宁工程技术大学学报(自然科学版),2003,21(3):286-289.
    [134]金强,程付启,刘文汇.混源气藏及混源比例研究[J].天然气工业,2004,24(2):22-24.
    [135]李长吉.山西上古生界煤成气形成条件及其前景[J].山西地质,1988,3(4):389-397.
    [136]李赞豪.具有广阔勘探前景的一种新型浅层天然气-煤层、煤层厌氧菌解再生生物气[J].石油实验地质,1994,16(3):220-229.
    [137]李明宅,张洪年.生物化学作用阶段有机质演化[J].石油勘探与开发,1995,22(4):32-36.
    [138]李明宅,张洪年,刘华.生物气模拟试验的进展[J].石油与天然气地质,1996,17(2):117-125.
    [139]李明宅,张洪年,张辉等.煤的厌氧微生物降解研究[J].石油实验地质,1997,19(3):274-277.
    [140]李晶莹,陶明信.国际煤层气组成和成因研究[J].地球科学进展,1998,13(5):467-473.
    [141]李本亮,王明明,冉启贵等.地层水含盐度对生物气运聚成藏的作用[J].天然气工业,2003,23(5):16-20.
    [142]李先奇,张水昌,朱光有等.中国生物成因气的类型划分与研究方向[J].天然气地球科学,2005,16(4):477-484.
    [143]李景坤,刘伟,宋兰斌等.天然气混合比例研究新方法及其应用[J].天然气工业,2005,25(3):14-16.
    [144]练友红.芦岭煤矿瓦斯地质规律分析[J].矿业安全与环保,2007,34(6):73-75.
    [145]梁士昌,杨安红.沙曲矿北翼风井揭过突出煤层瓦斯抽放及防突效果分析[J].能源技术与管理,2010,4:34-36.
    [146]林春明,钱奕中.浙江沿海平原全新统气源岩特征及生物气形成的控制因素[J].沉积学报,1997,15(增刊):70-75.
    [147]林春明,李广月,卓弘春等.杭洲湾地区晚第四纪下切河谷充填物沉积相与浅层生物气勘探[J].古地理学报,2005,7(1):12-24.
    [148]林春明,李艳丽,漆滨汶.生物气研究现状与勘探前景[J].古地理学报,2006,8(3):317-328.
    [149]刘池阳.渤海湾盆地基地正断层缓断面的形成原因及其地质意义[J].西北大学学报(自然科学版),1987,17(1):34-42.
    [150]刘华民.淮北芦岭矿低透气性煤层采空区煤层气开发技术方案研究[J].中国煤层气,1995,(2):82-85.
    [151]刘文汇,徐永昌.生物-热催化过渡带油气关系[J].沉积学报,1995,13(2):4-13.
    [152]刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学,1999,28(4):359-365.
    [153]刘文汇,宋岩,刘全有等.煤岩及其主显微组份热解气碳同位素组成的演化[J].沉积学报,2003,21(1):183-190.
    [154]刘文汇,陈孟晋,关平等.天然气成烃成藏三元地球化学示踪体系及实践[M].北京:科学出版社,2009,39-146.
    [155]刘冬梅,张玉贵,唐修义.煤层气中甲烷δ13C值偏轻的机理探讨[J].焦作工学院学报,1997,16(2):89-94.
    [156]刘树根,戴苏兰,赵永胜等.云南保山盆地烃源岩及其天然气生成特征[J].天然气工业,1998,18(1):18-22.
    [157]刘全有.煤成烃热模拟地球化学特征研究[D].兰州:中国科学院兰州地质研究所,2001.
    [158]刘全有.塔里木盆地侏罗系煤岩成烃实验及其地球化学特征与评价[D].兰州:中科学院兰州地质研究所,2003.
    [159]刘全有,戴金星,李剑等.塔里木盆地天然气氢同位素地球化学与对热成熟度和沉积环境的指示意义[J].中国科学: D辑,2007,37(12):1599-1608.
    [160]刘振兴.河东煤田石楼南区煤成气成藏条件分析[J].石油地质与工程,2009,23(1):19-21.
    [161]陆伟文,海秀珍.生物气模拟生成实验及地层中生物气生气量的估算[J].石油实验地质,1991,13(1):65-76.
    [162]罗毅,朱扬明,薛秀丽等.百色盆地第三系浅层气成因类型与形成机制[J].广西科学,2003,10(4):286-191.
    [163]孟波.芦岭煤矿10煤层顶板特征及回采覆岩破坏性研究[D].淮南:安徽理工大学,2010.
    [164]潘钟祥.石油地质学[M].北京:地质出版社,1986.
    [165]戚厚发.煤系天然气与煤层瓦斯甲烷碳同位素的差异及影响因素的初步探讨[J].石油实验地质,1985,7(2):81-84.
    [166]戚厚发,关德师,钱贻伯等.中国生物气成藏条件[M].北京:石油工业出版社,1997,48-61.
    [167]钱泽澍,闵行.沼气发酵微生物学[M].杭州:浙江科技出版社,1988.
    [168]钱贻伯,连莉文,尹小波等.地质沉积物中残留有机质生化产甲烷作用的可行性研究[J].中国沼气,1996,14(3):13-16.
    [169]钱贻伯,连莉文,陈文正等.生物气形成过程中CH4碳同位素变化规律的研究[J].石油学报,1998,19(1):29-35.
    [170]秦勇,曾勇主编译.煤层甲烷储层评价及生产技术[G].徐州:中国矿业大学出版社,1996.
    [171]秦勇,宋党育,王超.山西南部晚古生代煤的煤化作用及其控气特征[J].煤炭学报,1997,22(3):230-235.
    [172]秦勇,唐修义,叶建平.华北上古生界煤层甲烷稳定碳同位素组成与煤层气解吸-扩散效应[J].高校地质学报,1998,4(2):127-132.
    [173]秦勇,唐修义,叶建平等.中国煤层甲烷稳定碳同位素分布与成因探讨[J].中国矿业大学学报,2000,29(2):113-119.
    [174]秦勇.国外煤层气成因与储层物性研究进展与分析[J].地学前缘,2005,12(3):289-298.
    [175]秦建中,钱志浩,曹寅等.油气地球化学新技术新方法[J].石油实验地质,2005,27(5):519-528.
    [176]秦胜飞,唐修义,宋岩等.煤层甲烷碳同位素分布特征及分馏机理[J].中国科学: D辑,2006,36(12):1092-1097.
    [177]任战利,赵重远,张军等.鄂尔多斯盆地古地温研究[J].沉积学报,1994,12(1):56-65.
    [178]任战利.鄂尔多斯盆地东缘地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-23.
    [179]沈平,徐永昌,王先彬.气源岩和天然气的地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991.
    [180]沈平,陈践发.塔里木盆地天然气同位素地球化学特征及气源对比[J].天然气地球科学,1991,(3):147-149.
    [181]沈平,王晓峰,徐茵等.我国生物气藏碳氢同位素特征形成途径及意义[J].沉积学报,2010,28(1):183-188.
    [182]沈勇.离柳矿区煤的显微特征[J].西安工程大学学报,2002,24(2):38-42.
    [183]石广仁.油气盆地数值模拟方法[M].北京:石油工业出版社,1994.
    [184]史占祯.渤海湾盆地及其外围的生物气研究[J].天然气工业,2002,22(5):11-16.
    [185]帅燕华,邹艳荣,刘金钟等.煤成甲烷、乙烷碳同位素动力学研究和应用[J].地质论评,2005,51(6):665-671.
    [186]宋岩,秦胜飞,赵孟军.中国煤层气成藏的两大关键地质因素[J].天然气地球科学,2007,18(4):545-553.
    [187]苏现波,陈润,林晓英等.煤吸附δ13CH14与δ2CH4的特性曲线及其应用[J].煤炭学报,2007,32(5):539-543.
    [188]苏现波,吴昱,夏大平等.温度对低煤阶煤生物甲烷生成的影响[J].煤田地质与勘探,2012,40(5):23-25.
    [189]孙俊民.煤层气的成因及地球化学特征[J].焦作工学院学报,1998,17(4):245-248.
    [190]孙茂远.中国煤层气勘探开发现状、问题及其建议[J].中国能源,2002,(11):27-30.
    [191]孙茂远,杨陆武,刘申平.煤层气基础理论研究的关键科学问题[J].煤炭科学技术,2002,30(9):46-48.
    [192]汤达祯,王激流,张君峰等.鄂尔多斯盆地东缘煤的二次生烃作用与煤层气的富集[J].石油实验地质,2000,22(2):140-145.
    [193]唐小强,黄光辉,张敏等.裂解热模拟实验中碳同位素变化特征及其地球化学意义[J].天然气地球科学,2010,21(6):1029-1035.
    [194]陶明信.煤层气地球化学研究现状与发展趋势[J].自然科学进展,2005,15(6):648-652.
    [195]陶明信,王万春,解光新等.中国部分煤田发现的次生生物成因煤层气[J].科学通报,2005,50(增刊):14-18.
    [196]陶明信,李晓斌,史宝光等.次生生物气特征、形成条件与资源潜力[A].第二届全国应用地球化学学术讨论会论文专辑[C],云南地质,2007,25(4):407-408.
    [197]韦重韬,桑树勋,刘焕杰.河东煤田中南部煤层气地质及勘探开发前景[J].华北地质矿业,1998,13(3):243-248.
    [198]韦重韬.煤层甲烷地质演化史数值模拟[M].徐州:中国矿业大学出版社,1999.
    [199]韦重韬,秦勇,傅雪海等.沁水盆地中南部煤层气聚散史模拟研究[J].中国矿业大学学报,2002,31(2):146-150.
    [200]韦重韬,周荣福.煤层气多煤层扩散逸失地质历史模型[J].高校地质学报,2003,9(3):390-395
    [201]韦重韬,秦勇,傅雪海.煤层气地质演化史数值模拟[J].煤炭学报,2004,28(5):518-522.
    [202]韦重韬,秦勇,满磊.沁水盆地中南部超压史数值模拟研究[J].天然气工业,2005,25(1):81-84.
    [203]韦重韬,任战利,孙占学.煤层气富集的热动力条件与数值模拟[A].见:煤层气成藏机制及经济开采理论基础[M],宋岩,张新民主编.北京:科学出版社,2005,159-164.
    [204]韦重韬,张志庆,郭建等.河东煤田中南部煤层气成藏史模拟研究[A].雷群,李景明,赵庆波主编.煤层气勘探开发理论与实践[M].石油工业出版社,2007a,84-89.
    [205]韦重韬,姜波,傅雪海等.宿南向斜煤层气地质演化史数值模拟研究[J].石油学报,2007b,28(1):54-57.
    [206]韦重韬,秦勇,姜波等.华北残留盆地煤层气成藏动力学过程研究–以沁水盆地和鄂尔多斯盆地东缘为例[J].地质学报,2008,82(10):1362-1367.
    [207]王桂梁,朱炎铭.论煤层流变[J].中国矿业学院学报,1988,(3):16-25.
    [208]王启军,陈建渝.油气地球化学[M].武汉:中国地质大学出版社,1988.
    [209]王屿涛.准噶尔盆地西北缘混合气中煤型气和油型气的定量分析[J].石油勘探与开发,2004,21(1):14-19.
    [210]王双明.鄂尔多斯侏罗纪盆地形成演化和聚煤规律[J].地学前缘,1999,6(增刊):147-154.
    [211]王大悦,罗槐章.云南陆良盆地天然气及烃源岩地球化学特征-兼论滇黔桂地区寻找生物气田的可能性[J].天然气工业,2000,20(3):12-15.
    [212]王庭斌.中国天然气地质理论进展与勘探战略[J].石油与天然气地质,2002,32(1):1-7.
    [213]王万春,刘文汇,刘全有.浅层混源天然气判识的碳同位素地球化学分析[J].天然气地球科学,2003,14(6):469-473.
    [214]王勃,姜波,王红岩等.低煤阶煤层气藏水动力条件的物理模拟实验[J].新疆石油地质,2006,27(2):176-177.
    [215]王爱宽.褐煤本源菌生气特征及其作用机理[D].徐州:中国矿业大学,2010.
    [216]王振升,于学敏,国建英等.歧口凹陷天然气地球化学特征及成因分析[J].天然气地球科学,2010,21(4):683-691.
    [217]文忠国.晋城矿区(新区)煤层气地质与资源评价[J].中国煤层气,1996,(2):64-66.
    [218]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005,239-326.
    [219]吴财芳,秦勇,傅雪海等.煤基块弹性能及其与地质控制因素之间的关系[J].中国矿业大学学报,2005,34(5):636-639.
    [220]徐永昌,沈平,刘文汇等.一种新的天然气成因类型-生物-热催化过渡带气[J].中国科学: B辑,1990,(9):975-980.
    [221]徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994,84-100.
    [222]徐永昌,傅家谟,郑健京.天然气成因及大中型气田形成的地学基础[M].北京:科学出版社,2000.
    [223]徐永昌,刘文汇,沈平等.陆良、保山气藏碳、氢同位素特征及纯生物乙烷发现[J].中国科学: D辑,2005,35(8):758-764.
    [224]徐耀辉,文志刚,唐友军等.热模拟在线同位素技术在气源对比中的应用[J].石油天然气学报(江汉石油学院学报),2005,27(6):708-710.
    [225]杨永恒.鄂尔多斯盆地东部紫金山岩体地球化学特征及热力构造演化[D].西安:长安大学,2006.
    [226]杨智.宿东矿区8煤和10煤煤体结构特征及其差异性成因研究[D].淮北:安徽理工大学,2008.
    [227]于强,任战利,曹红霞.鄂尔多斯盆地延长探区下古生界热演化史[J].兰州大学学报(自然科学版),2011,47(5):24-29.
    [228]早稻田周,重川守.牟驱译.日本油气田中天然气成因的地球化学研究[J].天然气勘探与开发,1989,(2):1-8.
    [229]张义刚,陈焕疆.论生物气的生成和聚集[J].石油与天然气地质,1983,4(2):160-170.
    [230]张义刚,章复康,郑朝阳.识别天然气的碳同位素方法[A].有机地球化学论文集[C].北京:地质出版社,1987,1-14.
    [231]张士亚,郜建军,蒋泰然等.利用甲乙烷碳同位素判识天然气类型的一种新方法[A].石油与天然气地质文集(第一集)-中国煤成气研究[C].北京:地质出版社,1988,48-58.
    [232]张厚福,张万选.石油地质学[M].北京:石油工业出版社,1989.
    [233]张宗祜,张之一,王芸生等.中国黄土[M].北京:地质出版社,1989,180-182.
    [234]张辉,连莉文,张洪年.不同沉积环境中几种厌氧细菌的组成与分布[J].微生物学报,1992,32(3):182-190.
    [235]张晓宝,徐自远,段毅等.柴达木盆地三湖地区第四系生物气的形成途径与运聚方式[J].地质论评,2003,49(2):168-174.
    [236]张水昌,赵文智,李先奇等.生物气研究新进展与勘探策略[J].石油勘探与开发,2005,32(4):90-96.
    [237]张泓,崔永君,陶明信等.淮南煤田次生生物成因与热成因混合型煤层气成藏动力学系统演化[J].2005,50(增刊):19-26.
    [238]张子敏,张玉贵,闫江伟.淮北煤田构造演化对瓦斯分布的控制[C].煤矿灾害事故预测预警及控制技术学术研讨会论文集,2006,3-10.
    [239]张小军,陶明信,解光新等.淮南煤田此生生物成因气的比例及资源意义[J].沉积学报,2007,25(2):314-318.
    [240]张小军,陶明信,马锦龙等.含次生生物成因煤层气的碳同位素组成特征--以淮南煤田为例[J].石油实验地质,2009,31(6):622-626.
    [241]张英,王晓波,李瑾等.不同类型有机质生物产甲烷模拟[J].实验研究石油实验地质,2009,31(6):633-636.
    [242]赵重远,刘池洋.残延克拉通内盆地及其含油气性-以鄂尔多斯盆地和四川盆地为例[A].见:中国地质学会编,―七五‖地质科技重要成果学术交流会议论文选集[C].北京:科学技术出版社,1992,610-613.
    [243]赵俊峰.鄂尔多斯盆地直罗安定期原盆恢复[D].西北大学,2004.
    [244]赵青芳.惠民凹陷上古生界煤系源岩的热演化特征与成烃研究[D].广州:中国科学院广州地球化学研究所,2005.
    [245]赵东升,李文厚,吴清雅等.柴达木盆地天然气的碳同位素地球化学特征及成因分析[J].沉积学报,2006,24(1):135-140.
    [246]赵永庆.松潘-阿坝地区晚三叠世热演化异常原因研究[J].天然气技术,2008,2(3):15-17.
    [247]郑绍贵,郭念发,王宏祥.江苏天然气藏及成藏模式[J].天然气工业,2000,20(2):8-11.
    [248]曾勇,范炳恒,刘洪林等.晋东南山西组主煤层热演化生烃史及热源分析[J].地质科学,1999,1:90-98.
    [249]祖金华,吴乾蕃,廉雨方.郯庐断裂带中段及邻区的地热研究[J].中国地震,1996,12(1):43-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700