用户名: 密码: 验证码:
棉蚜类异戊二烯通路两个关键酶基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉蚜(Aphis gossypii Glover),属半翅目Hemiptera、蚜科Aphididae、蚜属Aphis,是一种世界性的农业害虫,主要通过刺吸植物汁液和传播病毒病对棉花、瓜果蔬菜等造成严重危害。类异戊二烯通路是棉蚜体内一个重要的代谢途径,此通路上的多种类异戊二烯代谢产物对棉蚜的生长发育、生理活动都有重要的作用,因此对此通路上的一些关键酶进行深入的分析和研究具有重要的意义。异戊二烯基焦磷酸合成酶(又称为异戊二烯基转移酶)就是这样一类关键酶,其催化产物是多种类异戊二烯化合物的前体物质。本研究对其中的两个关键酶——十聚异戊二烯焦磷酸合成酶(DPPS)和牻牛儿基牻牛儿基焦磷酸合成酶(GGPPS)的编码基因进行了克隆、重组表达和功能分析。
     十聚异戊二烯焦磷酸合成酶(DPPS)属于长链异戊二烯基焦磷酸合成酶,是辅酶Q异戊二烯侧链合成过程中的关键酶。辅酶Q在生物体中发挥着重要的生理作用。长链异戊二烯基焦磷酸合成酶在细菌、酵母、植物和哺乳动物中已得到广泛研究,但在昆虫中研究得很少。本研究克隆了编码棉蚜十聚异戊二烯焦磷酸合成酶(AgDPPS)两个亚基的基因(AgDPPS1和AgDPPS2, GenBank登录号:KC431243和KC431244)。它们分别包含1230bp和1275bp的开放阅读框,编码409个和424个氨基酸。序列比对和系统进化分析表明,AgDPPS与人类的DPPS类似,是由两个异源亚基构成的。重组表达和体外的酶促分析结果表明,这两个亚基对该酶的催化活性是缺一不可的,形成的主要中间产物是牻牛儿基牻牛儿基焦磷酸(GGPP)。在大肠杆菌DH5α的体内表达分析表明,AgDPPS是棉蚜合成辅酶Q10的关键酶。我们的研究表明,AgDPPS的催化过程包含两个主要步骤,其催化过程以GGPP作为主要中间产物,以十聚异戊二烯焦磷酸(DPP)作为最终产物。我们的研究是昆虫中首次对合成辅酶Q10侧链的关键酶的研究。
     牻牛儿基牻牛儿基焦磷酸合成酶(GGPPS)是短链异戊烯转移酶,其催化产物牻牛儿基牻牛儿基焦磷酸(GGPP)在蚜虫体内最重要的作用是蛋白质的异戊烯基化。这种修饰对于蛋白质在膜结构或胞质中的特异性定位、细胞骨架组装、细胞间信号传导有重要意义。GGPPS在植物、真细菌、古细菌、酵母和哺乳动物中已被广泛研究,但对昆虫中GGPPS的研究仍然非常少。本研究克隆了编码棉蚜牻牛儿基牻牛儿基焦磷酸合成酶(AgGGPPS)的基因(GenBank登录号KF220654),其具有930bp的开放阅读框,编码309个氨基酸,理论等电点是6.21。序列分析和系统进化分析表明,AgGGPPS的氨基酸序列包含所有异戊二烯基转移酶具有的富含天冬氨酸的保守区域,AgGGPPS作为昆虫的GGPPS被归类为Ⅲ型GGPPS.本研究对AgGGPPS的原核重组表达、亲和层析纯化以及体外酶活性的测定,发现了AgGGPPS能催化DMAPP、GPP或FPP作为烯丙基底物与IPP反应形成GGPP。虽然在不同的底物情况下AgGGPPS的酶活性有所不同,但与其他只接受FPP为烯丙基底物的Ⅲ型GGPPS是不同的。
     本研究首次鉴定了棉蚜类异戊二烯通路两个关键酶,并对其生化特性进行了深入研究,所获得的结果有助于利用棉蚜类异戊二烯通路调控蚜虫的发育,从而为蚜虫的防控提供科学依据。
The cotton aphid, Aphis gossypii Glover (Hemiptera:Aphididae), is an important agricultural pest worldwide. It causes serious harm to cotton, fruits and vegetables by sucking plant juices and spreading viral diseases. Isoprenoid pathway is very important in the metabolism of the cotton aphid. Many metabolites of this pathway have significant effects on cotton aphid's growth and physiological activities. Therefore, it is necessary to study the key enzymes of this pathway. Specifically, prenyltransferase (polyprenyl diphosphate synthases) plays an important role in the control and regulation of the isoprenoid pathway since its catalytic products are the precursors of many other isoprenoid compounds. In this study, decaprenyl diphosphate synthase (DPPS) and geranylgeranyl diphosphate synthase (GGPPS), two prenyltransferases with great significance to cotton aphid, were studies.
     DPPS is a long chain polyprenyl diphosphate synthase; all medium-and long-chain polyprenyl diphosphate synthases (PDDSs) catalyze the synthesis of the sidechain prenyl tails of ubiquinones, which play critical physiological roles in all organisms. This class of enzymes has been extensively studied in bacteria, yeast, plants and mammals, but little information is available in insects. Here we cloned the cDNAs encoding the two subunits of an aphid long-chain PDDS (designated as AgDPPSl and AgDPPS2, GenBank accession nos. KC431243and KC431244). AgDPPSl and AgDPPS2had an open reading frame of1230bp and1275bp, with a calculated isoelectric point of8.13and6.28, respectively. Sequence alignment and phylogenetic analysis showed that the enzyme was a candidate decaprenyl diphosphate (DPP) synthase with two heterologous subunits like human DPPS. Recombinant expression and in vitro enzymatic assay revealed that the two subunits were essential for the activity of the enzyme that catalyzed the formation of a major intermediate product geranylgeranyl diphosphate. In vivo analysis of ubiquinone (UQ) by expressing the insect enzyme in Escherichia coli DH5a identified UQ-10. Our data suggested that the insect enzyme is a novel DPP synthase with a two-major step catalytic mechanism, which catalyzes the formation of DPP as the final product, and geranylgeranyl diphosphate as the major intermediate product. This is the first characterization of an insect long-chain DPPS that synthesizes the side-chain of coenzyme Q-10.
     GGPPS is short-chain prenyltransferase. GGPP is very important to the production of geranylgeranylated proteins. The modification plays a critical role in the specific localization of proteins in the membrane structure or cytoplasm, cytoskeleton, cell signaling and so on. GGPPSs have been extensively studied in plants, eubacteria, archaebacteria, yeast and mammals, but up to now information about an insect GGPPS is still scarce. Here we cloned the cDNA encoding an insect GGPPS from the cotton aphid (designated as AgGGPPS, GenBank accession No. KF220654). AgGGPPS had an open reading frame of930bp, coding for309amino acids, with a theoretical pI of6.21. Sequence and phylogenetic analysis showed that the amino acid sequence of AgGGPPS included the conserved aspartate-rich motifs characterized by all prenyltransferases known to date, and AgGGPPS as a GGPPS of insect could be classified as type-Ⅲ GGPPS. AgGGPPS was over-expressed in E. coli, and recombinant protein was purified by affinity chromatography. In vitro enzymatic activity assay coupled with product identification by gas chromatography-mass spectrometry demonstrated that AgGGPPS could catalyzed the formation of GGPP with DMAPP, GPP or FPP as the allylic cosubstrate in the presence of IPP, suggesting that AgGGPPS accepted not only FPP but also GPP and DMAPP as the allylic cosubstrate. Although the activity of AgGGPPS is different in the case of different allylic cosubstrate, it is different from other type-Ⅲ GGPPSs which accepted only FPP as the allylic cosubstrate.
     To sum up, two key enzymes in the cotton aphid isoprenoid pathway were identified, and their biochemical characteristics were studied. The data help understand the regulation of the isoprenoid pathway in the cotton aphid, and provide scientific basis for controlling the cotton aphid.
引文
[1]朱弘复,张广学.棉蚜为害对于棉株生长与棉产质量之影响.中国科学,1950(01):201-242.
    [2]张永孝,赵之刚,曹赤阳.棉蚜为害损失与防治指标的研究.植物保护学报,1982(04):229-236.
    [3]高宗仁,罗印凡,郭良仁.棉花不同生育期棉蚜危害损失及防治指标的研究.华北农学报,1989(03):60-66.
    [4]郭贵明,苏芝业,杨伦伦,等.麦长管蚜蜜露分泌量与小麦品种的关系研究初报.山西大学学报(自然科学版),1993(02):228-231.
    [5]孟玲,刘芳政,于江南.棉蚜的排蜜规律及蜜露中氨基酸成份的研究.八一农学院学报,1991(03):37-41.
    [6]刘芳政,孟玲,于江南,等.棉蚜对棉纤维物理性状含糖量及棉结量的影响.八一农学院学报,1994(04):24-28.
    [7]Pitrat M, Lecoq H. Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology,1980,70(10):958-961.
    [8]Perry K L, Zhang L, Palukaitis P. Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii. Virology, 1998,242(1):204-210.
    [9]史晓斌,谢文,张友军.植物病毒病媒介昆虫的传毒特性和机制研究进展.昆虫学报,2012(07):841-848.
    [10]张鹏飞,陈建群,张闲,等.棉蚜获得黄瓜花叶病毒的行为与取食过程的关系.昆虫学报,2001(04):395-401.
    [11]宋新元,张广学.蚜传植物病毒病的特点及其防治.北方果树,2005(02):5-6.
    [12]Ebert T A, Cartwright B. Biology and ecology of Aphis gossypii Glover (Homoptera:Aphididae). Southwestern Entomologist,1997,22(1):116-153.
    [13]龚鹏,张孝羲,杨效文,等.用微卫星引物PCR分析棉蚜不同蚜型的DNA多态性.昆虫学报,2001(04):416-421.
    [14]陈倩,沈佐锐,王永模.蚜虫的表型可塑性及其遗传基础.昆虫学报,2006(05):859-866.
    [15]朱弘复,张广学.连载讲座—我国的大害虫(一)——关于棉蚜的简单介绍.昆虫知识,1955(01):41-44.
    [16]Steenis M J, Khawass K. Life history of Aphis gossypii on cucumber:influence of temperature, host plant and parasitism. Entomologia Experimentalis et Applicata,1995,76(2):121-131.
    [17]苏晓丹,李学军,王淑贤.蚜虫的生活周期概述.黑龙江农业科学,2009(02):74-75.
    [18]张孝羲,赵静雅,张广学,等.棉蚜种群寄主转换的适应和变异规律研究.生态学报,2001(01):106-111.
    [19]肖云丽,印象初,刘同先.不同生物型棉蚜对夏寄主葫芦科作物的选择.生态学报,2013(12):3706-3711.
    [20]耿桃兰,刘向东.冬寄主木槿上夏季滞留棉蚜产生有性世代的能力及繁殖模式.南京农业 大学学报,2010(05):45-48.
    [21]Wu W, Liang X L, Zhao H Y, et al. Special plant species determines diet breadth of phytophagous insects:A study on host plant expansion of the host-Specialized aphis gossypii Glover. PloS One, 2013,8(e608324).
    [22]张近光.棉花伏蚜和秋蚜危害分布规律研究.中国棉花,1982(06):41-43.
    [23]戈峰,丁岩钦.不同类型棉田生态系统中棉蚜种群能量动态及其生态学效率分析.生态学报,1995(04):399-406.
    [24]陈连芳,陆民.棉蚜发生规律及综合防治.农村科技,2009(08):44-45.
    [25]刘健,吴孔明,赵奎军,等.不同地理种群棉蚜对温度和光周期的生态适应性.生态学报,2003(05):863-869.
    [26]LiU Y C, Perng J J. Population growth and temperature-dependent effect of cotton aphid, Aphis gossypii Glover. Chinese Journal of Entomology,1987,7(2):95-111.
    [27]高桂珍,吕昭智,夏德萍,等.高温和密度效应对棉蚜死亡和繁殖的影响.应用生态学报,2013(05):1300-1304.
    [28]邹先伟,蒋志胜.棉蚜抗药性及其抗性治理对策的研究.农药,2004(07):294-297.
    [29]诸凤丹,黎波涛,赵大兴,等.棉蚜发生和为害的影响因子及综合防治方法.江西棉花,2010(05):32-34.
    [30]问亚军,王永潮,万会萍,等.渭北苹果绵蚜发生规律和防治技术研究.陕西农业科学,2006(04):48-49.
    [31]王兆斌.棉花主要病虫害农田生态调控综合治理技术.现代农业科技,2013(05):156-157.
    [32]刘生瑞.小麦蚜虫的优势天敌及对蚜虫的自然控制.昆虫知识,2000(05):265-267.
    [33]韩新才.大豆蚜虫及其天敌田间消长规律.湖北农业科学,1997(02):22-24.
    [34]桂承明.蚜虫天敌昆虫的研究.吉林农业科学,1982(03):76-84.
    [35]李芳,杨建全,陈家骅.蚜霉的应用研究与展望.福建农业科技,1995(03):21-22.
    [36]侯东红,范绍强,郑王义.麦蚜生物控制模式效应比较研究.陕西农业科学,2013(05):17-21.
    [37]曹雪会,陈忠云.设施蔬菜关键病虫害发生特点及配套综合防治措施.蔬菜,2012(06):34-36.
    [38]张纯胄.害虫对色彩的趋性及其应用技术发展.温州农业科技,2007(02):1-4.
    [39]黄保宏,林桂坤,王学辉,等.防虫网对设施蔬菜害虫控害作用研究.植物保护,2013(06):164-169.
    [40]Patel Y. Efficacy and Economics of Some Modern Insecticides against Aphid, Aphis gossypii L. in Cotton. Trends in Biosciences,2013,6(6):823-826.
    [41]梁彦,张帅,邵振润,等.棉蚜抗药性及其化学防治.植物保护,2013(05):70-80.
    [42]Shi X B, Jiang L L, Wang H Y, et al. Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Management Science,2011,67(12):1528-1533.
    [43]Han Z, Moores G D, Denholm I, et al. Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology, 1998,62(3):164-171.
    [44]Koksal M, Hu H Y, Coates R M, et al. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Nature Chemical Biology,2011,7(7):431-433.
    [45]Oldfield E, Lin F Y. Terpene Biosynthesis:Modularity Rules. Angewandte Chemie International Edition,2012,51(5):1124-1137.
    [46]Ma G Y, Sun X F, Zhang Y L, et al. Molecular cloning and characterization of a prenyltransferase from the cotton aphid, Aphis gossypii. Insect Biochemistry and Molecular Biology,2010, 40(7):552-561.
    [47]Zhang F L, Casey P J. Protein prenylation:Molecular mechanisms and functional consequences. Annual Review of Biochemistry,1996,65:241-269.
    [48]Gvozdjakova A, Simko F, Kucharska J, et al. Captopril increased mitochondrial coenzyme Q(10) level, improved respiratory chain function and energy production in the left ventricle in rabbits with smoke mitochondrial cardiomyopathy. Biofactors,1999,10(1):61-65.
    [49]黄宝琛,宋景社,姚薇,等.高反式-1,4-聚异戊二烯的合成及应用开发.材料导报,2001(02):56.
    [50]申海燕,李振秋,王红,等.青蒿倍半萜合酶(环化酶)研究进展.生物工程学报,2007(06):976-981.
    [51]骆建新,陈永勤,刘占杰.紫杉醇生物合成相关酶基因的克隆与表达.中国生物工程杂志,2003(06):36-40.
    [52]郝宏蕾,朱旭芬,曾云中.类异戊二烯的生物合成及调控.浙江大学学报(农业与生命科学版),2002(02):108-114.
    [53]陈大华,叶和春,李国凤,等.植物类异戊二烯代谢途径的分子生物学研究进展.植物学报,2000(06):551-558.
    [54]Wallach O. Zur Kenntniss der Terpene und atherischen Oele. Justus Liebigs Annalen der Chemie, 1887,238(1-2):78-89.
    [55]Ruzicka L. The isoprene rule and the biogenesis of terpenic compounds. Experientia,1953, 9(10):357-367.
    [56]Lynen F, Agranoff B W, Eggerer H, et al. γ, γ-Dimethyl-allyl-pyrophosphat und Geranyl pyrophosphat, biologische Vorstufen des Squalens Zur Biosynthese der Terpene, Ⅵ). Angewandte Chemie,1959,71(21):657-663.
    [57]Seemann M, Bui B, Wolff M, et al. Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway:Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Letters, 2006,580(6):1547-1552.
    [58]刘艳,胜振涛,蒋容静,等.保幼激素合成的研究进展.昆虫学报,2007(12):1285-1292.
    [59]Lichtenthaler H K, Rohmer M, Schwender J. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiologia Plantarum,1997, 101(3):643-652.
    [60]Vranova E, Coman D, Gruissem W. Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annual Review of Plant Biology,2013,64:665-700.
    [61]Eisenreich W, Sagner S, Zenk M H, et al. Monoterpenoid essential oils are not of mevalonoid origin. Tetrahedron Letters,1997,22(38):3889-3892.
    [62]RamosValdivia A C, VanderHeijden R, Verpoorte R. Isopentenyl diphosphate isomerase:a core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Natural Product Reports,1997,14(6):591-603.
    [63]Wang K, Ohnuma S. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends in Biochemical Sciences,1999,24(11):445-451.
    [64]Liang P H, Ko T P, Wang A. Structure, mechanism and function of prenyltransferases. European Journal of Biochemistry,2002,269(14):3339-3354.
    [65]Kellogg B A, Poulter C D. Chain elongation in the isoprenoid biosynthetic pathway. Current Opinion in Chemical Biology,1997,1(4):570-578.
    [66]Marecak D M, Horiuchi Y, Arai H, et al. Benzoylphenoxy analogs of isoprenoid diphosphates as photoactivatable substrates for bacterial prenyltransferases. Bioorganic and Medicinal Chemistry Letters,1997,7(15):1973-1978.
    [67]Wang K C, Ohnuma S. Isoprenyl diphosphate synthases. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2000, 1(1529):33-48.
    [68]Ogura K, Koyama T, Sagami H. Polyprenyl diphosphate synthases. Cholesterol. Springer US,1997:57-87.
    [69]Mori T, Ogawa T, Yoshimura T, et al. Substrate specificity of undecaprenyl diphosphate synthase from the hyperthermophilic archaeon Aeropyrum pernix. Biochemical and Biophysical Research Communications,2013,436(2):230-234.
    [70]王惠,赵德刚,韩玉珍.植物中的异戊烯基转移酶.植物生理学通讯,2005(05):135-141.
    [71]Ashby M N, Edwards P A. Elucidation of the deficiency in two yeast coenzyme Q mutants. Characterization of the structural gene encoding hexaprenyl pyrophosphate synthetase. Journal of Biological Chemistry,1990,265(22):13157-13164.
    [72]Koyama T, Tajima M, Sano H, et al. Identification of significant residues in the substrate binding site of Bacillus stearothermophilus farnesyl diphosphate synthase. Biochemistry,1996, 35(29):9533-9538.
    [73]Sun X F, Li Z X. In silico and in vitro analyses Identified Three Amino Acid Residues Critical to the Catalysis of Two Aphid Farnesyl Diphosphate Synthase. The Protein Journal,2012, 31(5):417-424.
    [74]Song L S, Poulter C D. Yeast farnesyl-diphosphate synthase:site-directed mutagenesis of residues in highly conserved prenyltransferase domains I and II. Proceedings of the National Academy of Sciences,1994,91(8):3044-3048.
    [75]Laskovics F M, Poulter C D. Prenyltransferase:determination of the binding mechanism and individual kinetic constants for farnesylpyrophosphate synthetase by rapid quench and isotope partitioning experiments. Biochemistry,1981,20(7):1893-1901.
    [76]Tarshis L C, Yan M J, Poulter C D, et al. Crystal Structure of Recombinant Farnesyl Diphosphate Synthase at 2.6-. ANG. Resolution. Biochemistry,1994,33(36):10871-10877.
    [77]Tarshis L C, Proteau P J, Kellogg B A, et al. Regulation of product chain length by isoprenyl diphosphate synthases. Proceedings of the National Academy of Sciences,1996, 93(26):15018-15023.
    [78]Frick S, Nagel R, Schmidt A, et al. Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proceedings of the National Academy of Sciences,2013, 110(11):4194-4199.
    [79]Joly A, Edwards P A. Effect of site-directed mutagenesis of conserved aspartate and arginine residues upon farnesyl diphosphate synthase activity. Journal of Biological Chemistry,1993, 268(36):26983-26989.
    [80]Okada K, Suzuki K, Kamiya Y, et al. Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1996,1302(3):217-223.
    [81]Tachibana A, Yano Y, Otani S, et al. Novel prenyltransferase gene encoding farnesylgeranyl diphosphate synthase from a hyperthermophilic archaeon, Aeropyrum pernix-Molecular evolution with alteration in product specificity. European Journal of Biochemistry,2000,267(2):321-328.
    [82]Hemmi H, Ikejiri S, Yamashita S, et al. Novel medium-chain prenyl diphosphate synthase from the thermoacidophilic archaeon Sulfolobus solfataricus. Journal of Bacteriology,2002, 184(3):615-620.
    [83]Hemmi H, Noike M, Nakayama T, et al. Change of product specificity of hexaprenyl diphosphate synthase from Sulfolobus solfataricus by introducing mimetic mutations. Biochemical and Biophysical Research Communications,2002,297(5):1096-1101.
    [84]Shimizu N, Koyama T, Ogura K. Molecular cloning, expression, and characterization of the genes encoding the two essential protein components of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase. Journal of Bacteriology,1998,180(6):1578-1581.
    [85]Zhang Y W, Koyama T, Marecak D M, et al. Two subunits of heptaprenyl diphosphate synthase of Bacillus subtilis form a catalytically active complex. Biochemistry,1998,37(38):13411-13420.
    [86]Zhang Y W, Koyama T, Ogura K. Two cistrons of the gerC operon of Bacillus subtilis encode the two subunits of heptaprenyl diphosphate synthase. Journal of Bacteriology,1997, 179(4):1417-1419.
    [87]Yazdi M A, Moir A. Characterization and cloning of the gerC locus of Bacillus subtilis 168. Journal of General Microbiology,1990,136(7):1335-1342.
    [88]Hirooka K, Ohnuma S, Koike-Takeshita A, et al. Mechanism of product chain length determination for heptaprenyl diphosphate synthase from Bacillus stearothermophilus. European Journal of Biochemistry,2000,267(14):4520-4528.
    [89]Kainou T, Okada K, Suzuki K, et al. Dimer formation of octaprenyl-diphosphate synthase (IspB) is essential for chain length determination of ubiquinone. Journal of Biological Chemistry,2001, 276(11):7876-7883.
    [90]Okada K, Minehira M, Zhu X F, et al. The ispB gene encoding octaprenyl diphosphate synthase is essential for growth of Escherichia coli. Journal of Bacteriology,1997,179(9):3058-3060.
    [91]Tonhosolo R, D'Alexandri F L, Genta F A, et al. Identification, molecular cloning and functional characterization of an octaprenyl pyrophosphate synthase in intra-erythrocytic stages of Plasmodium falciparum. Biochem. J,2005,392(1):117-126.
    [92]Saiki R, Nagata A, Kainou T, et al. Characterization of solanesyl and decaprenyl diphosphate synthases in mice and humans. FEBS Journal,2005,272(21):5606-5622.
    [93]Teclebrhan H, Olsson J, Swiezewska E, et al. Biosynthesis of the side chain of ubiquinone: trans-prenyltransferase in rat liver microsomes. Journal of Biological Chemistry,1993, 268(31):23081-23086.
    [94]Runquist M, Ericsson J, Thelin A, et al. Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. Journal of Biological Chemistry, 1994,269(8):5804-5809.
    [95]Ohara K, Sasaki K, Yazaki K. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa. Journal of Experimental Botany,2010,61(10):2683-2692.
    [96]Yonekura M, Aoki N, Hirose T, et al. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose. Frontiers in Plant Science,2013,4 (doi:10.3389/fpls.2013.00031).
    [97]Hirooka K, Bamba T, Fukusaki E I, et al. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem. J,2003,370(2):679-686.
    [98]Jun L, Saiki R, Tatsumi K, et al. Identification and subcellular localization of two solanesyl diphosphate synthases from Arabidopsis thaliana. Plant and Cell Physiology,2004, 45(12):1882-1888.
    [99]Hirooka K, Izumi Y, An C I, et al. Functional analysis of two solanesyl diphosphate synthases from Arabidopsis thaliana. Biosci Biotechnol Biochem,2005,69(3):592-601.
    [100]Phatthiya A, Takahashi S, Chareonthiphakorn N, et al. Cloning and expression of the gene encoding solanesyl diphosphate synthase from Hevea brasiliensis. Plant Science,2007, 172(4):824-831.
    [101]Okada K, Kainou T, Tanaka K, et al. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans. European Journal of Biochemistry,1998,255(1):52-59.
    [102]Lee J K, Her G, Kim S Y, et al. Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnology Progress,2004, 20(1):51-56.
    [103]Choi J H, Ryu Y W, Park Y C, et al. Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q(10) production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene. Journal of Biotechnology,2009,144(1SI):64-69.
    [104]Zhang D W, Shrestha B, Li Z P, et al. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system. Molecular Biotechnology,2007, 35(1):1-14.
    [105]Liu X Y, Wu H Z, Ye J, et al. Cloning and characterization of the ddsA gene encoding decaprenyl diphosphate synthase from Rhodobacter capsulatus B10. Canadian Journal of Microbiology,2006, 52(12):1141-1147.
    [106]Kaur D, Brennan P J, Crick D C. Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis. Journal of Bacteriology,2004,186(22):7564-7570.
    [107]Suzuki K, Okada K, Kamiya Y, et al. Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant. Journal of Biochemistry,1997, 121(3):496-505.
    [108]Saiki R, Nagata A, Uchida N, et al. Fission yeast decaprenyl diphosphate synthase consists of Dpsl and the newly characterized Dlpl protein in a novel heterotetrameric structure. European Journal of Biochemistry,2003,270(20):4113-4121.
    [109]Crane F L, Hatefi Y, Lester R L, et al. Isolation of a quinone from beef heart mitochondria. Biochimica et Biophysica Acta,1957,25(1):220-221.
    [110]Battino M, Ferri E, Gorini A, et al. Natural distribution and occurrence of coenzyme Q homologues. Molecular Membrane Biology,1990,9(3):179-190.
    [111]Brandt U, Trumpower B. The protonmotive Q cycle in mitochondria and bacteria. Critical Reviews in Biochemistry and Molecular Biology,1994,29(3):165-197.
    [112]Lenaz G, Genova M L. Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2009,1787(6):563-573.
    [113]Maroz A, Anderson R F, Smith R, et al. Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical:implications for in vivo antioxidant activity. Free Radical Biology and Medicine,2009,46(1):105-109.
    [114]Frei B, Kim M C, Ames B N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proceedings of the National Academy of Sciences,1990, 87(12):4879-4883.
    [115]Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,1995,1271(1):195-204.
    [116]Witting P K, Pettersson K, Stocker R. Anti-atherogenic effect of coenzyme Q10 in apolipoprotein E gene knockout mice. Free Radical Biology and Medicine,2000,29(3):295-305.
    [117]Crane F L. Biochemical functions of coenzyme Q (10). Journal of the American College of Nutrition,2001,20(6):591-598.
    [118]Do T Q, Shultz J R, Clarke C F. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proceedings of the National Academy of Sciences,1996,93(15):7534-7539.
    [119]Uchida N, Suzuki K, Saiki R, et al. Phenotypes of fission yeast defective in ubiquinone production due to disruption of the gene for p-hydroxybenzoate polyprenyl diphosphate transferase. Journal of Bacteriology,2000,182(24):6933-6939.
    [120]Saiki R, Ogiyama Y, Kainou T, et al. Pleiotropic phenotypes of fission yeast defective in ubiquinone-10 production. A study from the abclSp (coq8Sp) mutant. Biofactors,2003, 18(1-4SI):229-235.
    [121]GomezDiaz C, RodriguezAguilera J C, Barroso M P, et al. Antioxidant ascorbate is stabilized by NADH-coenzyme Q(10) reductase in the plasma membrane. Journal of Bioenergetics and Biomembranes,1997,29(3):251-257.
    [122]Papucci L, Schiavone N, Witort E, et al. Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. Journal of Biological Chemistry,2003,278(30):28220-28228.
    [123]Thomas S R, Neuzil J, Stocker R. Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arteriosclerosis, Thrombosis, and Vascular Biology,1996,16(5):687-696.
    [124]Turunen M, Wehlin L, Sjoberg M, et al. β 2-Integrin and lipid modifications indicate a non-antioxidant mechanism for the anti-atherogenic effect of dietary coenzyme Q10. Biochemical and Biophysical Research Communications,2002,296(2):255-260.
    [125]Ewbank J J, Barnes T M, Lakowski B, et al. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science,1997,275(5302):980-983.
    [126]Jonassen T, Marbois B N, Faull K F, et al. Development and fertility in Caenorhabditis elegans clk-1 mutants depend upon transport of dietary coenzyme Q(8) to mitochondria. Journal of Biological Chemistry,2002,277(47):45020-45027.
    [127]Larsen P L, Clarke C F. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science,2002,295(5552):120-123.
    [128]Rodriguez-Aguilera J C, Gavilan A, Asencio C, et al. The role of ubiquinone in Caenorhabditis elegans longevity. Ageing Research Reviews,2005,4(1):41-53.
    [129]Littarru G P, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10:recent developments. Molecular Biotechnology,2007,37(1):31-37.
    [130]Kawamukai M. Recent advance of the biosynthesis and the function of ubiquinone. Seikagaku. The Journal of Japanese Biochemical Society,1998,70(11):1344-1349.
    [131]Mancuso M, Orsucci D, Volpi L, et al. Coenzyme Q10 in Neuromuscular and Neurodegenerative Disorders. Current Drug Targets,2010,11(1):111-121.
    [132]Quinzii C M, Hirano M, DiMauro S. CoQ(10) deficiency diseases in adults. Mitochondrion,2007, 7S:S122-S126.
    [133]Galpern W R, Cudkowicz M E. Coenzyme Q treatment of neurodegenerative diseases of aging. Mitochondrion,2007,7S:S146-S153.
    [134]Young A J, Johnson S, Steffens D C, et al. Coenzyme Q10:A review of its promise as a neuroprotectant. CNS Spectrums,2007,12(1):62-68.
    [135]Mollet J, Giurgea I, Schlemmer D, et al. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. Journal of Clinical Investigation,2007,117(3):765-772.
    [136]Rotig A, Mollet J, Rio M, et al. Infantile and pediatric quinone deficiency diseases. Mitochondrion,2007,7S:S112-S121.
    [137]Saiki R, Lunceford A L, Shi Y, et al. Coenzyme Q(10) supplementation rescues renal disease in Pdss2(kd/kd) mice with mutations in prenyl diphosphate synthase subunit 2. American Journal of Physiology-Renal Physiology,2008,295(5):F1535-F1544.
    [138]Chen P, Yu J, Knecht J, et al. Decrease of PDSS2 expression, a novel tumor suppressor, in non-small cell lung cancer. Cancer Epidemiology,2013,37(2):166-171.
    [139]Lopez L C, Schuelke M, Hirano C Q, et al. Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. The American Journal of Human Genetics,2006,6(79):1125-1129.
    [140]Ziegler C, Peng M, Falk M J, et al. Parkinson's disease-like neuromuscular defects occur in prenyl diphosphate synthase subunit 2 (Pdss2) mutant mice. Mitochondrion,2012,12(2):248-257.
    [141]Peng M, Falk M J, Haase V H, et al. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genetics,2008,4(4):e10000614.
    [142]Grant J, Saldanha J W, Gould A P. A Drosophila model for primary coenzyme Q deficiency and dietary rescue in the developing nervous system. Disease Models and Mechanisms,2010, 3(11-12):799-806.
    [143]Laskaris G, Bounkhay M, Theodoridis G, et al. Induction of geranylgeranyl diphosphate synthase activity and taxane accumulation in Taxus baccata cell cultures after elicitation by methyl jasmonate. Plant Science,1999,147(1):1-8.
    [144]Aharoni A, Giri A P, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. The Plant Cell Online,2003,15(12):2866-2884.
    [145]Hemmi H, Noike M, Nakayama T, et al. An alternative mechanism of product chain-length determination in type III geranylgeranyl diphosphate synthase. European Journal of Biochemistry, 2003,270(10):2186-2194.
    [146]Sitthithaworn W, Kojima N, Viroonchatapan E, et al. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis. Chemical and Pharmaceutical Bulletin (Tokyo),2001, 49(2):197-202.
    [147]Ericsson J, Greene J M, Carter K C, et al. Human geranylgeranyl diphosphate synthase:isolation of the cDNA, chromosomal mapping and tissue expression. Journal of Lipid Research,1998, 39(9):1731-1739.
    [148]Kainou T, Kawamura K, Tanaka K, et al. Identification of the GGPS1 genes encoding geranylgeranyl diphosphate synthases from mouse and human. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,1999,1437(3):333-340.
    [149]Zhao Y, Yu L, Gao J, et al. cDNA cloning, chromosome mapping and expression characterization of human geranylgeranyl pyrophosphate synthase. Science in China Series C:Life Sciences,2000, 43(6):613-622.
    [150]Kuntz M, Romer S, Suire C, et al. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum:correlative increase in enzyme activity and transcript level during fruit ripening. The Plant Journal,1992,2(l):25-34.
    [151]Badillo A, Steppuhn J, Deruere J, et al. Structure of a functional geranylgeranyl pyrophosphate synthase gene from Capsicum annuum. Plant Molecular Biology,1995,27(2):425-428.
    [152]Aitken S M, Attucci S, Ibrahim R K, et al. A cDNA encoding geranylgeranyl pyrophosphate synthase from white lupin. Plant Physiology,1995,108(2):837-838.
    [153]Scolnik P A, Bartley G E. Nucleotide sequence of an Arabidopsis cDNA for geranylgeranyl pyrophosphate synthase. Plant Physiology,1994,104(4):1469-1470.
    [154]Zhu X F, Suzuki K, Saito T, et al. Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Molecular Biology,1997,35(3):331-341.
    [155]Okada K, Saito T, Nakagawa T, et al. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiology, 2000,122(4):1045-1056.
    [156]Engprasert S, Taura F, Kawamukai M, et al. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq. BMC Plant Biology,2004, 4(1):18.
    [157]Thabet I, Guirimand G, Guihur A, et al. Characterization and subcellular localization of geranylgeranyl diphosphate synthase from Catharanthus roseus. Molecular Biology Reports,2012, 39(3):3235-3243.
    [158]Carattoli A, Romano N, Ballario P, et al. The Neurospora crassa carotenoid biosynthetic gene (albino 3) reveals highly conserved regions among prenyltransferases. Journal of Biological Chemistry,1991,266(9):5854-5859.
    [159]Sandmann G, Misawa N, Wiedemann M, et al. Functional identification of al-3 from Neurospora crassa as the gene for geranylgeranyl pyrophosphate synthase by complementation with crt genes, in vitro characterization of the gene product and mutant analysis. Journal of Photochemistry and Photobiology B:Biology,1993,18(2-3):245-251.
    [160]Jiang Y, Proteau P, Poulter D, et al. BTS1 encodes a geranylgeranyl diphosphate synthase in Saccharomyces cerevisiae. Journal of Biological Chemistry,1995,270(37):21793-21799.
    [161]Ohnuma S, Suzuki M, Nishino T. Archaebacterial ether-linked lipid biosynthetic gene. Expression cloning, sequencing, and characterization of geranylgeranyl-diphosphate synthase. Journal of Biological Chemistry,1994,269(20):14792-14797.
    [162]Soderberg T, Chen A J, Poulter C D. Geranylgeranylglyceryl phosphate synthase. Characterization of the recombinant enzyme from Methanobacterium thermoautotrophicum. Biochemistry,2001,40(49):14847-14854.
    [163]Artz J D, Wernimont A K, Dunford J E, et al. Molecular Characterization of a Novel Geranylgeranyl Pyrophosphate Synthase from Plasmodium Parasites. Journal of Biological Chemistry,2011,286(5):3315-3322.
    [164]Ling Y, Li Z H, Miranda K, et al. The Farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates. Journal of Biological Chemistry,2007,282(42):30804-30816.
    [165]Sagami H, Morita Y, Ogura K. Purification and properties of geranylgeranyl-diphosphate synthase from bovine brain. Journal of Biological Chemistry,1994,269(32):20561-20566.
    [166]Chang T H, Guo R T, Ko T P, et al. Crystal structure of type-Ⅲ geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mechanism of product chain length determination. Journal of Biological Chemistry,2006,281(21):14991-15000.
    [167]Kavanagh K L, Guo K, Dunford J E, et al. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proceedings of the National Academy of Sciences, 2006,103(20):7829-7834.
    [168]Miyagi Y, Matsumura Y, Sagami H. Human geranylgeranyl diphosphate synthase is an octamer in solution. Journal of Biochemistry,2007,142(3):377-381.
    [169]Matthews P D, Wurtzel E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Applied Microbiology and Biotechnology,2000,53(4):396-400.
    [170]Addlesee H A, Gibson L, Jensen P E, et al. Cloning, sequencing and functional assignment of the chlorophyll biosynthesis gene, chlP, of Synechocystis sp PCC 6803. FEBS Letters,1996, 389(2):126-130.
    [171]Beck G, Coman D, Herren E, et al. Characterization of the GGPP synthase gene family in Arabidopsis thaliana. Plant Molecular Biology,2013,82(4-5):393-416.
    [172]杨海燕,刘成前,卢山.异戊二烯类植物激素赤霉素和脱落酸的代谢调控.植物生理学通讯,2010(11):1083-1091.
    [173]Takai Y, Kaibuchi K, Kikuchi A, et al. Small GTP-binding proteins. Int Rev Cytol,1992, 133:187-230.
    [174]Boguski M S, McCormick F. Proteins regulating Ras and its relatives. Nature,1993, 366(6456):643-654.
    [175]丁跃有,蒋世峰,康彬,等.辛伐他汀对老年高胆固醇血症患者骨密度和骨转换影响的研究.中国老年学杂志,2009(04):457459.
    [176]Yamane H K, Farnsworth C C, Xie H Y, et al. Brain G protein gamma subunits contain an all-trans-geranylgeranylcysteine methyl ester at their carboxyl termini. Proceedings of the National Academy of Sciences,1990,87(15):5868-5872.
    [177]Cates C A, Michael R L, Stayrook K R, et al. Prenylation of oncogenic human PTPCAAX protein tyrosine phosphatases. Cancer Letters,1996,110(1-2):49-55.
    [178]Inglese J, Koch W J, Caron M G, et al. Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature,1992,359(6391):147-150.
    [179]Clarke S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annual Review of Biochemistry,1992,61:355-386.
    [180]Marshall C J. Protein prenylation:a mediator of protein-protein interactions. Science,1993, 259(5103):1865-1866.
    [181]Macchia M, Jannitti N, Gervasi G, et al. Geranylgeranyl diphosphate-based inhibitors of post-translational geranylgeranylation of cellular proteins. Journal of Medicinal Chemistry,1996, 39(7):1352-1356.
    [182]Gesi M, Pellegrini A, Soldani P, et al. Ultrastructural and biochemical evidence of apoptosis induced by a novel inhibitor of protein geranylgeranylation in human MIA PaCa-2 pancreatic cancer cells. Ultrastructural Pathology,1998,22(3):253-261.
    [183]Kuzuguchi T, Morita Y, Sagami I, et al. Human geranylgeranyl diphosphate synthase-cDNA cloning and expression. Journal of Biological Chemistry,1999,274(9):5888-5894.
    [184]Choi H J, Choi J Y, Cho S W, et al. Genetic Polymorphism of Geranylgeranyl Diphosphate Synthase (GGSP1) Predicts Bone Density Response to Bisphosphonate Therapy in Korean Women. Yonsei Medical Journal,2010,51(2):231-238.
    [185]Epstein W W, Lever D, Leining L M, et al. Quantitation of prenylcysteines by a selective cleavage reaction. Proceedings of the National Academy of Sciences,1991,88(21):9668-9670.
    [186]Moriya K, Tsubota T, Ishibashi N, et al. Bombyx mori Ras proteins BmRas1, BmRas2 and BmRas3 are neither farnesylated nor palmitoylated but are geranylgeranyl ated. Insect Molecular Biology,2010,19(3):291-301.
    [187]Lai C Q, McMahon R, Young C, et al. quemao, a Drosophila bristle locus, encodes geranylgeranyl pyrophosphate synthase. Genetics,1998,149(2):1051-1061.
    [188]Hojo M, Toga K, Watanabe D, et al. High-level expression of the Geranylgeranyl diphosphate synthase gene in the frontal gland of soldiers in Reticulitermes speratus (Isoptera:Rhinotermitidae). Archives of Insect Biochemistry and Physiolog,2011,77(1):17-31.
    [189]Hojo M, Matsumoto T, Miura T. Cloning and expression of a geranylgeranyl diphosphate synthase gene:insights into the synthesis of termite defence secretion. Insect Molecular Biology, 2007,16(1):121-131.
    [190]Vandermoten S, Charloteaux B, Santini S, et al. Characterization of a novel aphid prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity. FEBS Letters, 2008,582(13):1928-1934.
    [191]Vandermoten S, Santini S, Haubruge E, et al. Structural features conferring dual Geranyl/Farnesyl diphosphate synthase activity to an aphid prenyltransferase. Insect Biochemistry and Molecular Biology,2009,39(10):707-716.
    [192]Zhang Y L, Li Z X. Functional analysis and molecular docking identify two active short-chain prenyltransferases in the green peach aphid, Myzus persicae. Archives of Insect Biochemistry and Physiology,2012,81(2):63-76.
    [193]Zhang Y L, Li Z X. Two different farnesyl diphosphate synthase genes exist in the genome of the green peach aphid, Myzus persicae. Genome,2008,51(7):501-510.
    [194]Lewis M J, Prosser I M, Mohib A, et al. Cloning and characterisation of a prenyltransferase from the aphid Myzus persicae with potential involvement in alarm pheromone biosynthesis. Insect Molecular Biology,2008,17(4):437-443.
    [195]张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略.生物工程进展,2000(04):3-5.
    [196]Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts:amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences,1988,85(23):8998-9002.
    [197]Thompson J D, Higgins D G, Gibson T J. Clustal W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research,1994,22(22):4673-4680.
    [198]Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution,2011,28(10):2731-2739.
    [199]Kawamukai M, Matsuda H, Yajima K. Method of expressing long-chain prenyl diphosphate synthase. US,7402413B2.2008-07-22
    [200]Nagai K, Perutz M F, Poyart C. Oxygen binding properties of human mutant hemoglobins synthesized in Escherichia col. Proceedings of the National Academy of Sciences, 1985,82(21):7252-7255.
    [201]Quinlan R A, Moir R D, Stewart M. Expression in Escherichia coli of fragments of glial fibrillary acidic protein:characterization, assembly properties and paracrystal formation. Journal of Cell Science,1989,93(1):71-83.
    [202]Eaton D, Rodriguez H, Vehar G A. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry,1986,25(2):505-512.
    [203]刘欣毅,张惠展,袁勤生.荚膜红细菌十聚异戊二烯焦磷酸合成酶异源表达及纯化的研究.中国药学杂志,2007(01):13-16.
    [204]Crane F L, Rita B. Determination of ubiquinones. Methods in Enzymology,1971,18:137-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700