用户名: 密码: 验证码:
黄河三角洲柽柳植物的居群结构和遗传分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为黄河三角洲关键建群物种之一,柽柳(T. chinensis)在维持当地生态系统平衡中起着重要作用。为了解柽柳居群遗传结构和进化动力学,本研究采用ISSR分子标记技术,通过比较分析黄河三角洲分布在不同盐碱生境下的五个柽柳居群的遗传多态,从柽柳居群的遗传多样性水平、居群内和居群间的遗传分化指数以及土壤盐成分对其居群遗传结构形成和进化的影响等方面进行了深入研究,我们的研究为黄河三角洲柽柳自然居群的种质保护和永续利用提供了必要的理论依据。主要结果如下:
     一、首先建立了适合于柽柳(T. chinensis)的ISSR-PCR反应体系和扩增程序。25μL的优化体系中包括:10×PCR Buffer 2.5μL、Mg2+2 mM、dNTP 0.2 mM、引物0.4pM、模板DNA10ng、TaqDNA聚合酶1U。优化的PCR扩增程序为:94℃预变性10min; 94℃变性1min,49-51℃退火1min,延伸2min,39个循环;72℃终延伸10min。
     二、从100条ISSR引物中筛选出10条扩增条带清晰、多态性高、重复性好的引物。
     三、掌握了黄河三角洲柽柳居群遗传多样性水平和居群结构发展现状
     利用10个ISSR引物对5个柽柳居群共140个个体的扩增,共得到78条带,其中多态性条带为62条,多态位点比率(P)为79.5%,等位基因平均数(4)为1.775±0.420,有效等位基因平均数(AE)为1.398±0.347,Nei遗传多样性指数(H)和Shannon多样性指数(I)分别为0.239±0.187和0.363±0.264。这些结果表明,柽柳居群在物种水平保持中等水平的遗传多样性。而在居群水平上其遗传多样性相对较低,各居群多态位点比率(P)、等位基因平均数(A)、有效等位基因平均数(AE)、Nei遗传多样性指数(H)和Shannon多样性指数(I)的平均值分别为56.3%、1.563±0.497、1.322±0.367、0.190±0.198和0.285±0.283,其中BHZX和YDD居群的遗传多样性相对较高,HHK居群的遗传多样性最低。
     此外,研究发现黄河三角洲柽柳居群的遗传变异主要发生在居群内部,偏低的居群间遗传分化指数(Gst=0.159)表明居群间的遗传变异仅占柽柳总遗传变异的15.9%,而居群内的遗传多样性则占柽柳全部遗传多态的84.1%。AMOVA分析进一步验证了上述结论,同样显示大多数(83.1%)的遗传分化存在于居群内。而居群间高达2.637的基因流(Nm)则说明来自柽柳居群间频繁的基因交流可能是导致居群间分化程度降低的一个原因。
     通过对五个柽柳居群的UPGMA聚类分析,发现可以将其分为三支,其中HHKW和YQE聚为一支、BHZX和YDD聚成一支,而HHK单独聚成第三支。这种聚类方式基本上按所在居群的土壤盐浓度排列,而和五个居群的地理分布格局没有关联性。进一步的相关性分析和Mental检验表明目前黄河三角洲柽柳居群间的遗传距离与地理距离之间没有相关性(r=-0.127,p>0.05),但居群遗传多样性和土壤含盐量却呈现显著的负相关(r=-0.958,p=0.005),这个结果说明土壤盐浓度在黄河三角洲柽柳居群遗传结构形成和进化中扮演着重要角色。
As one of leading constructive species in Yellow River Delta, Tamarix chinensis plays an important role on maintaining wetland ecological balance. To better understand the population genetic structure and evolutionary dynamic of local T. chinensis, five populations of T. chinensis in Yellow River Delta distributing in different habitats with variable soil salinity were investigated using inter-simple sequence repeat (ISSR) markers. The genetic diversity, the genetic differentiation indexes within and among populations, and the correlation between the population genetic structure and soil salinity were further compared and analyzed. The main results are as follows.
     1. Optimization of ISSR-PCR reaction system and amplified procedure
     We optimized the reaction system and amplified procedure for T. chinensis, which was 25μL amplification reactions system containing 10×PCR Buffer 2.5μL,2 mM Mg2+, dNTP 0.2 mM, 0.4 pM primers,10 ng template DNA,1 unit of Taq DNA polymerase. The PCR amplified procedures was as follows:after a pre-denaturing of 5 min at 94℃, then 39 cycles of 1 min at 94℃for denaturation,1 min at a primer-appropriate temperature for annealing,2 min at 72℃for extension, and a final step of 10 min elongation at 72℃.
     2. Ten effective ISSR-PCR primers were selected from 100 ISSR primers.
     3. Obtainment of the information about the genetic diversities and population structure of T. chinensis in the Yellow River Delta
     Using Inter Simple Sequence Repeat (ISSR) markers, five populations of T. chinensis, which consisted of 140 individuals, were analyzed in this study. Seventy-eight polymerase chain reaction fragments were scored, out of which 62 were polymorphic. The mean percentage of polymorphic loci (P) was79.5%, the number of alleles per locus (A) was 1.775±0.420, the effective number of alleles per locus (AE) was 1.398±0.347, and the mean Nei's gene diversity (h) and the mean Shannon's information index (I)were 0.239±0.187and 0.363±0.264, respectively. These indexes indicated that a moderate level of genetic diversities existed in T. chinensis populations of the Yellow River Delta. At the population level, however, a lower level of genetic diversity (P=56.3%;A=1.563±0.497;AE=1.322±0.367;h=0.190±0.198; I=0.285±0.283) was revealed. Among the five populations, the highest genetic diversities were found in both BHZX and YDD populations, and the lowest genetic diversity was obtained in HHK population.
     The genetic differentiation coefficient Gst in present study was 0.159, which demonstrated that 15.9% of genetic variability existed among the T. chinensis populations. The estimated average number of migrants among populations (Nm) deduced by Gst was 2.637, implying a high level of gene flow exchanged among populations, which might be one reason for the less genetic differentiation among populations. Analysis of molecular variance (AMOVA) also revealed that most of the genetic variance (83.1%) of T. chinensis occurred within populations.
     Unweighted pair group method with arithmetic mean (UPGMA) and showed that the populations with similar soil salinity had a close relationship, rather than the populations with a closer geographical distance. The mantel test showed that there was no correlation between genetic distance and geographical distance (r=-0.127, p>0.05), but A significant negative correlation between genetic diversity and soil salinity of 5 populations (r=-0.958, p=0.005) was displayed. This result showed that soil salinity played an important role in shaping the population genetic structure of T. chinensis in the Yellow River Delta.
引文
[1]刘富强,王延平,杨阳,许景伟,王华田.黄河三角洲柽柳种群空间分布格局研究[J].西北林学院学报,2009,24(3):7-11.
    [2]李俊清.植物遗传多样保护及其分子生物学研究方法[J].生态学杂志,1994,13(6):27-33.
    [3]郭永盛等.黄河三角洲土地资源开发对策的探讨[J].自然资源学报,1990,5(3):193-205.
    [4]古奉天.黄河口三角洲的垦殖与生态平衡[J].生态学杂志,1984,2:30-32.
    [5]赵可夫.黄河三角洲盐碱地改良和利用的生物学对策研究[J].中国人口.资源与环境,1992,2:55-58.
    [6]杨林芳.黄河三角洲荒地资源的开发[J].国土与自然资源研究,1993,3:35-39.
    [7]赵延茂,吕卷章,马克斌.黄河三角洲自然保护区植被调查报告[J].山东林业科技,1994,5:11-13.
    [8]邵秋玲,解小丁,李法曾.黄河三角洲国家级自然保护区植物区系研究[J].西北植物学报,,2002,22(4):947-951.
    [9]张德静,东野广成,宋丽丽,韩朝晖.山东黄河三角洲自然保护区现状及保护对策[J].林业科技管理,2004,3:31-32.
    [10]唐娜,崔保山,赵欣胜.黄河三角洲芦苇湿地的恢复[J].生态学报,26(8):2616-2624.
    [11]田家怡,贾文泽,窦洪云,等.黄河三角洲生物多样性研究[M].青岛:青岛出版社,1999,1-524.
    [12]张鹏云,张耀甲.柽柳科[A].中国植物志(50卷2分册)[C].北京:科学出版社,1990.
    [13]王景志,盖文杰,刘岩山,等.怪柳的泽化价伪与栽倍[J].林业实用技术,2002,08:11-12.
    [14]张俊.黄河三角洲自然保护区原生湿地生态系统演化规律研究[J].山东林业科技,2006,3:88-89.
    [15]赵延茂,吕卷章,马克斌.黄河三角洲自然保护区植被调查报告[J].山东林业科技,1994,5:11-13.
    [16]Y. C. Li, T. Fahima, A. Beiles, A. B. Korol and E. Nevo. Microclimatic stress and adaptive DNA differentiation in wild emmer wheat, Triticum dicoccoides [J]. Theor. Appl. Genet.1999, 98,873-883.
    [17]P. K. Gupta, P. K. Sharma, H. S. Balyan, J. K. Roy, S. Sharma, A. Beharav and E. Nevo. Polymorphism at rDNA loci in barley and its relation with climatic variables [J]. Theor. Appl. Genet,2002,104:473-481.
    [18]张淑萍.芦苇分子生态学研究[D].哈尔滨:东北林业大学,2001.
    [19]张林静,岳明,等.新疆阜康地区植物群落物种多样性及其测度指标的比较[J].西北植物学报,2002,22(2):350-358.
    [20]赵桂仿,徐莉,张林静.植物种群分子进化中对生境的适应——对荒漠植物遗传多样性研究结果的初步分析[J].西北植物学报,2003,23(7):1084-1090.
    [21]施立明,贾旭,胡志昂.遗传多样性.见:陈灵芝主编,中国的生物多样性.北京:科学出版社,1993,99.
    [22]葛颂.遗传多样性[A].见:蒋志刚、马克平、韩兴国主编,保护生物学[C].杭州:浙江科学技术出版社,1997,11.
    [23]Bruno Baur, Schmid B. Spatial and temporal patterns of genetic diversity within species. In:Kevin J. Gaston ed. Biodiversity:A Biology of Numbers and difference. London: Blackwell Science Institute,1996,169.
    [24]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.132.
    [25]Solbrig Otto T. From Genes to Ecosystems:A Research Agenda for Biodiversity. IUBS, Cambridge, Massachusetts,1991.
    [26]Moritz, C. and D. M. Hillis. Molecular systematics:context and controversies. In Hillis, D. M. and C. Moritz (2nd ed.). Molecular systematics. Sunderland:Sinauer,1990,1-11.
    [27]Grant, V. The Evolutionary Process:A Critical S tudy of Evolutionary Theory. (2nd ed.) New Y ork:Columbia University Press,1991.
    [28]季维智,宿兵.遗传多样性研究的原理与方法[M].杭州:浙江科学技术出版社,1999,1-10.
    [29]沈浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):4-7.
    [30]Wu KS, Tanksley SD. Abundance polymorphism and genetic mapping of microsatellite in rice [J]. Mol Gen Genet,1993,241:225-235.
    [31]Panaud O, Chen X, McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L) [J]. Mol Gen Genet,1996,252:597-607.
    [32]Susan R. McCouch, Xiuli Chen, Olivier Panaud, Svetlana Temnykh, Yunbi Xu, Yong Gu Cho, Ning Huang, Takashige Ishii and Matthew Blair. Microsatellite marker development, mapping and applications in rice genetics and breeding [J]. Plant Mol Biol,1997,35:89-99.
    [33]Zietkiewicz E, Rafalsk A, Lubuda D. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerasechain reaction amplification [J]. Genome,1994,20:176-183.
    [34]John. G. K. Williams, Anne R. Kubelik, Kenneth J. Livak, J. Antoni. Rafalski, and Scott v. Tingey. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res,1990,18:6531-6535.
    [35]张鹏云,张耀甲.柽柳科[A].中国植物志[C].第52卷.北京:科学出版社,1979.
    [36]刘铭庭.柽柳属植物综合研究及大面积推广应用[M].兰州:兰州大学出版社,1995,46.
    [37]姜岩青,左春旭.柽柳化学成分的研究[J]药学学报,1988,23(10):749-755.
    [38]久保惠子.西河柳及荸荠的抗肝炎作用研究[J].国外医学.中医中药分册,1991,13(2):52.
    [39]国家中医药管理局《中华本草》编委会.中华本草第五册[M].上海:上海科学技术出版社,1999:484-485.
    [40]N. Sultanova, T. Makhmoor, Z. A. Abilov, Z. P, V. B. O, Atta-ur-Rahman and M. Iqbal Choudhary. Antioxidant and antimicrobial activities of Tamarix ramosissima [J]. Journal of Ethnopharmacology,2001,78 (2-3):201~205.
    [41]Sultanova Nurgul, Makhmoor Talat, Yasin Amsha, Abilov ZA, Omurkamzinova VB. Atta-ur-Rahman, Choudhary M. Iqbal. Isotamarixen-a new antioxidant and prolylendopeptidase-inhibit ingtriterpenoid from amarix hispida [J]. Planta Medica,2004,70 (1):65-67.
    [42]王斌,任舒文,李国强等.柽柳抗肿瘤甾体和黄酮类化合物研究[J].中国药学杂志,2006,44(8):576-580.
    [43]王斌,姜登钊,李国强等.柽柳抗肿瘤萜类成分研究[J].中草药,2009,40(5):697-701.
    [44]Adachi Katsuyoshi, Tada Takahiro, Aramaki Kaname. Elastase inhibitors or Maillard reaction inhibitors for antiwrinkle cosmetics:Japan, Jpn. Kokai Tokkyo Koho JP 2006062989 A2 [P],9 Mar2006,11pp.
    [45]Adachi Katsuyoshi, Tada Takahiro, Sakaida Kazunon, et al. Agents for recovery of UV-induced celldamage for antiaging cosmetics:Japan, Jpn. Kokai Tokkyo Koho JP 2006062990 A2 [P],9 Mar2006,11pp.
    [46]梁文杰,王志超,马国平.柽柳水提物对小鼠脾细胞及肿瘤细胞增殖反应的影响[J].时珍国医国药,2010,21(11):3005-3006.
    [47]Myers B. A. W. C. Morgan. Germination of the salt-tolerant grass Diplachne fusca. Ⅱ. Salinity responses [J]. Australian Journal of Botany,1989,37:239-251.
    [48]尹林克,王烨.高浓度氛化钠溶液对三种怪柳插穗的伤害作用[J].干早区研究,1991,2:22-27.
    [49]蔡勤安.渗透胁迫下白花柽柳抑制性消减文库的构建及表达序列标签(EST)分析[D].新疆:新疆农业大学,2005.
    [50]王玉成.柽柳抗逆分子机理研究与相关基因的克隆[D].哈尔滨:东北林业大学,2005.
    [51]董兴红,岳国忠.盐胁迫对刚毛柽柳生长的影响[J].华北农学报,2010,25(增刊):154-155.
    [52]张娟,张道远等.刚毛柽柳基因组DNA提取和RAPD反应条件探索[J],西北植物学报,2003,23(2):253-256.
    [53]赵景奎.黄河三角洲柽柳群体遗传结构的研究[D].南京:南京林业大学,2006.
    [54]李锐.柽柳SSR标记开发及群体遗传结构分析[D].南京:南京林业大学硕士论文,2007.
    [55]王彦芹,罗晓霞,刘陈,等.改进的CTAB法提取盐生植物基因组DNA[J].塔里木大学学报,2007,19(2):60-62.
    [56]Yeh FC, Yang RC, Boyle TBJ, et al.,2000. Popgen ver.1.32:the user-friendly shareware for population genetic analysis [D]. Molecular Biology and Biotechnology Center, Canada, University of Alberta, Edmonton,1997.
    [57]张富明,葛颂.群体遗传学研究中的数据处理方法.I.RAPD数据的AMOVA分析[J].生物多样性,2002,10(4):438-444.
    [58]Excoffier L, Smouse P, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes:Application to human mitochondrial DNA restriction data [J]. Genetics,1992,131:479-491.
    [59]Wright S. The genetical structure of populations [J]. Ann. Eugenics,1951,15:323-354.
    [60]Levesque, R. SPSS Programming and Data Management:A Guide for SPSS and SAS Users. 4th Edn., SPSS Inc., Chicago.2007.
    [61]Mantel N. The detectioln of disease clustering and a generalized regression approach [J]. Cancer Research,1967,27:209-220.
    [62]Amos W, Harwood J. Factors affecting levels of genetic diversity in natural populations [J]. Phil Trans R Soc Lond B,1998,353:177-186.
    [63]Hamrick, J. L., Godt, M. A. W. Allozyme diversity in plant species [J]. Plant Popuimion Genetics, Breeding and Genetics Resourses,1990,43-63.
    [64]Korron JD. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners [J]. Ecology,1987,1:47-58.
    [65]张娟,尹林克,张道远.刚毛柽柳天然居群遗传多样性初探[J].云南植物研究,2003,25(5):557-562.
    [66]Xu L, Wang YL, Wang XM. Genetic Structure of Reaumuria soongorica population in Fukang desert, Xinjiang and its relationship with ecological factors [J]. Acta Botanica Sinica, 2003,45(7):787-794.
    [67]Xuegong XU, Wenzheng LIU. Wetland landscape changes and natural environmental protection in the yellow river estuary region [C]. International Conference on Estuaries and Coasts. November 9-11,2003, Hangzhou, China.
    [68]ZHAO-YIN WANG, SHIXIONG HU, YONGSHENG WU, XUEJUN SHAO. Delta processes and management strategies in China. Int J River Basin Manage,2003,1:173-184.
    [69]Cui BS, Yang QC, Zhang KJ, Zhao XS, You ZY. Responses of saltcedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China [J]. Plant Ecol, 2010,209:279-290.
    [70]Xu L, Wang Y, Wang X, Zhang L, Yue M, Gu F, Pan X, Zhao G. Genetic structure of Reaumuria soongorica population in Fukang Desert, Xinjiang and its relationship with ecological factors [J]. Acta Bot Sin,2003,45:787-794.
    [71]Zhang L, Zhao G, Yue M, et al. Genetic diversity and environmental associations of sacsaoul (Haloxylon ammodendron)[A]. In:Pan X, Gao W, Glantz MH, et al. (eds). Ecosystems Dynamics, Ecosystem-Society Interactions, and Remote Sensing Applications for Semi-Arid and Arid Land [C]. SPIE, China:Hangzhou,2003,453-460.
    [72]王祎玲,毕润成,闫桂琴等.新疆阜康绿洲荒漠过渡带叉毛蓬种群遗传多样性及环境适应性研究[J].西北植物学报,2006,26(6):1133-1141.
    [73]Hamrick J.L, Godt M.J.W. Effects of life history traits on genetic diversity in plant species [J]. Phil. Trans. R. Soc. Lond. B,1996,351:1291-1298.
    [74]王洪新,胡志昂.植物的繁殖系统,遗传结构和遗传多样性保护[J].生物多样性,1996,4(2):92-96.
    [75]王仲礼,刘林德,方炎明.黄河三角洲柽柳的开花特性及传粉生态学研究[J].热带亚热带植物学报,2005,13(4):353-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700