用户名: 密码: 验证码:
半干旱黄土高原区地膜覆盖春小麦土壤微生物特征与养分转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在黄土高原半干旱区,以主要粮食作物春小麦为研究对象,针对地膜覆盖小麦产量不稳定和可能的土壤质量问题,对不覆膜、覆膜30天、覆膜60天、全生育期覆膜等处理的春小麦农田产量和土壤微生物、土壤碳、氮、磷关系进行研究,得到以下主要结论:
     1.地膜覆盖在黄土高原半干旱区具有良好的保持水分和提高温度的效应,主要表现在:减少上层土壤水分的蒸发,调节土壤水分的空间-时间分布,增加土壤水分供应的有效性;克服该地区春小麦生长早期的低温,促进作物的早期发育。但在不同的降水年份具有不同的土壤水分和温度效应,丰水年份的地温提升作用高于旱年的,旱年土壤水分的保持作用在生产中显得更为重要。
     2.地膜覆盖增加了土壤微生物的数量和微生物生物量。在不同降水年份,这些增加与水分和温度的变化相关。在丰水年和旱年,土壤温度与水分均与微生物总数和微生物生物量显著正相关;丰水年份和旱年土壤水分和温度的协同作用有所变化,土壤微生物数量与生物量丰水年份与水分的相关性高于旱年,与温度的相关性低于旱年。丰水年份微生物数量与生物量高峰到达早且持续时间长,与作物生长期配合好;干旱年份高峰来的晚,与作物生长养分需求错位。丰水年后期覆膜使微生物数量减少,但旱年后期覆膜则使之在后期增加。
     3.地膜覆盖引起土壤水分和温度变化,不同类群微生物在不同降雨年份具有不同响应。在丰水年份,各类群微生物数量均与土壤水分显著负相关,与温度显著正相关;在旱年,除硝酸细菌、纤维素分解细菌、放线菌、真菌与土壤水分不相关外,氨化细菌、亚硝酸细菌、反硝化细菌、解磷细菌与土壤水分显著相关,但相关系数低于丰水年。占微生物数量中绝大多数的氨化细菌、解磷细菌以及耐热的放线菌与表层5cm处的地温显著正相关,其余为不相关,真菌与水分、温度均不相关。
     4.在旱年,土壤微生物的生物化学强度与相应的微生物数量显著相关,氨化强度和解磷强度均在小麦生长的前60天中呈现递增的趋势,硝化强度受硝态氮影响的变化规律不明显。
     5.地膜覆盖使土壤有机质分解增快。丰水年份有机质分解消耗多,各种微生物数量与有机质相关性密切;全程覆膜处理后期有机质分解减弱。在干旱年份,微生物数量与有机质的相关性普遍降低(低于丰水年),有机质分解在各处理都比丰水年份相应处理的减少。
     6.土壤氮素的有效性受覆膜的影响在丰水年与旱年不同。覆膜减少了硝态氮的损失。
There are some problems about unstable yield and soil quality under plastic film mulching in semi-arid loess plateau. To reach their causes, four treatments of different mulching period of the main provision, spring wheat, were arranged: for 0 day, for 30 days, for 60 days, and for whole growth period. Biomasses of spring wheat, population numbers and biomasses of total soil microorganisms, soil nutrient, organic matter, nitrogen, phosphorus during different wheat growth period were measured, and corrlelative coefficients between them were analysized. Some results and conclusions were gotton. They are as follows.1. Good effects of soil moisture and temperature were caused by plastic film mulch. The effects showed: soil moisture effect rose higher by decreasing moisture evaporation of top soil layer and regulating the distribution of soil moisture from space to time;development of the crop during early stage was advanced because of low temperature hurt in spring reduced. In different rainfall year, the roles of soil moisture and temperature were different, too, for examples, the higher promotion of soil temperature by film in the rich rainfall year than in the poor;and the conservation of soil moisture by film more important to the crop growth in dry year.2. Soil microorganism population quantities and microbial biomasses were increased by plastic film mulch. There were different correlations between the promotions increased and the changes of soil moisture and temperature in rich and poor rainfall year. The cooperation between soil moisture and soil temperature was changed, and it correlated significantly with soil microorganism population quantities and microbial biomass in two years. In rich rainfall year, the peaks of the quantities and biomasses appeared in the middle growth stage of spring wheat earlier, and lasted to the end, for a long time;the peaks appeared in the end in the poor rainfall year, resulting in the stages that soil could provide a lot of effective nutrients didn't coincide with the stages that spring wheat needed nutrients. The mulch for whole growth period would cause high temperature and decrease the rate of the quantities in rich rainfall year, but
    would conserve more soil water and increase the quantities in poor rainfall year.3. Different microorganism populations showed different behavior to the changes of soil moisture and temperature in rich and poor rainfall year. In brief, they were negative significant correlative between microorganism population quantities and soil moisture, and significant relative between microorganism population quantities and soil temperature in rich rainfall year. In dry year, the quantities of nitrite bacteria, cellulose decomposing bacteria, actinomycetes and fungi were not relative to soil water, and the coefficients of the quantities of ammonibacteria, nitrite bacteria, denitrobacteria, and phosphorus bacteria were decreased;to soil temperature, the quantities of ammonibacteria, phosphorus bacteria and heat-resistant actinomycetes, which quantities were absolute most of total quantities, were significant relative, the others' coefficients were lessened a little, to low relative, even not relative. The quantities of fungi was relative neither soil moisture nor temperature.4. hi poor rainfall year, soil microbial biochemical activities were significant corelative with their microbial populations. Ammonification and phosphorus transformation were increased continuously before 60 days, and the changes of nitrification were not regular affected by nitrate nitrogen.5. Soil organic matter decomposition was increased under mulch. Organic matter was decomposing more in rich rainfall year than dry year;the quantities were close with organic matter in rich rainfall year, and separate in dry year;and organic matter decomposition was lessened during late stage under mulching for whole period in rich rainfall year, increased in dry year.6. Efficiency of soil nitrogen was affected differently by mulch under different precipitation, mulch made nitrate nitrogen decrease. Biological efficient of nitrogen was increased, rate of absorption by the crop was more, but loss by rainfall was more in rich rainfall, so total nitrogen was down more. They were opposite in dry year, nitrate nitrogen was accumulated in soil.7. Efficiency of soil phosphorus was increased, because of the quantity of phosphorus bacteria and phosphorus transformation increased by mulch.8. Efficiency of soil nutrients was increased by mulch. In the rich rainfall year, although the peaks of the biological activities showed in the middle of the spring wheat growth period, the quantities of ammonibacteria, nitrate bacteria and nitrite bacteria increased were restrained under the whole growth mulch treatment during the late days, so, the efficiency of soil nitrogen of the whole growth mulch was not the highest. In poor rainfall year, under whole growth
    mulch treatments, efficiencies of nutrients were highest, resulting in yield increased.
引文
1 李文朝:甘肃中部半干旱区春小麦温度条件的研究.1985.兰州大学生物系硕士论文.
    2 赵松岭主编:集水农业引论.西安:陕西科学技术出版社,1996:1-30.
    3 山仑,陈国良主编:黄土高原旱地农业的理论与实践.北京:科学出版社,1993.
    4 Amir, J., and Sinclair, T. R.: A model of water limitation on spring wheat growth and yield. Field Crops Res., 1991, 28: 59-69.
    5 Sentis, I. E: Soil water constrains for dryland corn and sorghum, production in Venezuela. In: Proceedings of the International Conference on Dryland Farming. August 1-19, 1988. Amarillo/Bushland, Texas, USA.
    6 李凤民,王静,赵松岭:半干旱黄土高原集水高效农业的发展.生态学报,1999,19(2):152-157.
    7 任海,彭少麟:恢复生态学导论.北京,科学出版社,2001,11-14.
    8 Li, Feng-Min, Wang Tong-Chao, and Cao, Jing: Effect of organic matter on total amount and availability of nitrogen and phosphorus in Loess Soil of Northwest China. Commun. Soil Sci. Plant Anal., 29(7&8), 1998, 947-953.
    9 Li, Feng-Min, Cao, Jing, and Wang Tong-Chao: Influence of phosphorus supply pattern in soil on yield of spring wheat. Journal of Plant Nutrition, 1998, 21(9), 1921-1931.
    10 Li Zi-zhen, Lin Hong: Research on the regulation of water and fertilizers and a crop growth model of sprig wheat in farmland of semi-arid regions. Ecological modeling, 1998, 107: 279~287.
    11 Li Feng-Min, Guo An-Hong, and Wei Hong: Effects of plastic film mulch on the yield of spring wheat. Field Crops Research: 1999, 63(1): 79-86.
    12 汪德水:旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995.
    13 李世清,王瑞军,李紫燕,李凤民,邵明安,李生秀:半干旱半湿润农田生态系统不可忽视的土壤氮库——土壤剖面中累积的硝态氮.干旱地区农业研究,2004,22(4),2-13.
    14 李生秀,贺海香,高亚军等:旱地与灌区不同氮肥用量的效果.干旱地区农业研究,1993,11(增刊):50-55.
    15 Bundy L. G., Malone E. S., Effect of residual nitrate on corn response to applied nitrogen. Soil Sci Soc Am J., 1988, 52: 1377-1383.
    16 Schmitt M. A., Randall G. W., Developing a soil nitrogen test for improved recommendations for corn. J. Prod Agric, 1994, 7: 328-334.
    17 康玲玲,朱小勇,王云璋,吴卿,魏义长:不同雨强条件下黄土性土壤养分流失规律研究.土壤学报,36(4).
    18 李文华:可持续发展的生态学思考.《中国生态学学会通讯》2000年特刊,《生态学的新纪元—可 持续发展的理论与实践》:1-5.
    19 包维楷,陈庆恒:生态系统退化的过程及其特点.生态学杂志 1999,18(2):36-42.
    20 包维楷等.退化山地生态系统中生物多样性恢复与重建研究.见:钱迎清,甄仁德主编.生物多样性研究进展.北京:中国科学技术出版社,1994,417~422.
    21 包维楷等:岷江上游山地生态系统的退化及其恢复与重建对策.长江流域资源与环境,1995,4(3):277~282.
    22 任海,彭少麟,陆宏芳:退化生态系统恢复与恢复生态学.生态学报,2004,24(8),1760-1768.
    23 Daily G. C.: Restoring value to the worlds degraded lands. Science, 1995, 269: 350~354.
    24 Ren H., Peng S. L. Restoration and rebuilding of degraded ecosystem. Youth Geography, 1998, 3(3): 7~11.
    25 Chapman G. P. Desertified grassland. London: Academic Press, 1992. 8~12.
    26 Cairns J. Jr.: Restoration Ecology. Encyclopedia of Environmental Biology, 1995, 3:223~235.
    27 Jordan W. R.: Ⅲ "Sunflower Forest": ecological restoration as the basis for a new environmental paradigm. In: Baldw in ADJ, ed. Beyond Preservation: Restoring and Inventing Landscape. Minneapolis: University of Minnesota Press, 1995.17~34.
    28 彭少麟主编:热带亚热带恢复生态学研究与实践.北京:科学出版社,2003.1~25.
    29 周进生,李兰,刁淑丽:澳大利亚恢复废弃矿区走可持续生态矿业之路.国土资源,2004,50-51.
    30 余作岳和彭少麟主编:热带亚热带退化生态系统植被恢复生态学研究,广州:广东科技出版社,1997,12~13.
    31 Bradshaw, A. D,. & M. J., Chadwick: The restoration of land. Blackwell Scientific Publications, 1988.
    32 Diamond, J.: How and why eroded ecosystems should be restored. Nature, 313: 629~630.
    33 白中科,赵京逵,朱荫湄:试论矿区生态重建.自然资源学报,1999,14(1),35~41.
    34 Hoffman, C. A. & C. R. Carroll: Can we sustain the biological basis of agriculture? Annu. Rev. Ecol. Syst, 1995, 26: 69~92.
    35 Gliessman, S. R.: Agroeeology: Ecological Processes in Sustainable Agriculture. Chelsea: Sleeping Bear Press, 1998
    36 陈灵芝和陈伟烈:中国退化生态系统研究.北京:中国科学技术出版社,1995.
    37 Mitsch, W. J. & S. E. Jorgensen: Ecological Engineering. New York: John Wiley & Sons, 1989.
    38 任海和彭少麟:退化生态系统恢复及可持续发展.地理,1998,3(3):5~12
    39 Doran, J. W.: Defining soil quality for sustainable environment. Soil Society of Agronomy, Inc., Madison, Wisconsin, USA, 1994.
    40 黄昌勇主编:土壤学.北京:中国农业出版社,2000.
    41 Li Feng-Min, Song, Q-H., Hao, J-H., Jjemba, P. K. and Shi,. Y-C:. Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid agro-ecosystem. Soil Biology and Biochemistry, 2004, 36: 1893-1902.
    42 宋秋华,李凤民,王俊,刘洪升,李世清:半干旱黄土高原地膜覆盖春小麦农田土壤微生物数量及与N、P动态的关系.生态学报,2002,22(12):2125-2132.
    43 张成娥、刘国彬、陈小利:坡地不同利用方式下土壤微生物和酶活性以及生物量特征.土壤通报,1999,30(3).
    44 李世清,李生秀,张兴昌:不同生态系统土壤微生物体氮的差异.水土保持学报,1999,1.
    45 凌莉,阎湘,李鲁华,李世清:关中地区农田生态系统土壤微生物体氮分异性研究.干旱地区农业研究,2000.
    46 李世清,李生秀:有机物料在维持土壤微生物体氮库中的作用,生态学报,2001,21(1):136-142.
    47 宋秋华,李凤民,刘洪升,王俊,李世清:不同时间地膜覆盖对半干旱区春小麦土壤微生物生物量的影响.应用生态学报,2003,14(9):1512-1516.
    48 李世清,李凤民,宋秋华,王俊:半干旱地区不同地膜覆盖时期对土壤氮素有效性的影响.生态学报,2001,2l(9):152l-1526.
    49 刘洪升,宋秋华,李凤民:根分泌物对根际矿物营养及根际微生物的效应.西北植物学报,2002,(3):693-702.
    50 李世清,李凤民,宋秋华,王俊:半干旱地区不同地膜覆盖时期对作物产量和氮素效率的影响.应用生态学报,2001,12(2):205-209.
    51 陈文新主编:土壤和环境微生物学.北京:北京农业大学出版社,1990.
    52 Atlas, R. M., and Bartha, R.: Microbial Ecology: Fundamentals and Applications. Part Ⅲ. Ecological Parameters. Chapter 4. Determination of Microbial Numbers, Biomass and Activities. Addison-Wesley Publishing Company, Inc. Philippines, 1984.
    53 Zhou, J., Bruns, M. A., Tiedje, J. M.: DNA recovery from soils of diverse composition. Appl. Environ. Microbial., 1996, 62:316-322.
    54 Williams, J. G. K., Kubelik, A. R., Livak, K. J.: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 1990, 18: 6531-6535.
    55 姚健,杨永华,沈晓蓉,陆维忠:农用化学品对土壤微生物群落DNA序列多样性影响研究.生态学报,2000,20(6):1021-1027.
    56 Yin, B., Crowley D., Sparovek, G., De Melo, W. J., and Boreman, J.: Bacterial functional redundancy along a soil reclamation gradient. Applied and Environmental Microbiology, 2000, 66(10): 4361-4365.
    57 Konopka, A., Zakharova, T., Bischoff, M., Oliver, L., Nakatsu, C., and Turco, R. F.: Microbial biomass and activity in Lead-contaminated soil. Applied and Environmental Microbiology, 1999, 65(5): 2256-2259.
    58 陈华癸、李阜棣、陈文新、曹燕珍编著:土壤微生物学.上海:上海科学出版社,1981.
    59 Brown, A. L.: Ecology of Soil Organisms. Heinemann Educational Books Ltd.: 1978, 35-43.
    60 Germida, J. J.: Culture methods for soil microorganisms. In: Soil Sampling and Methods of Analysis, edited by Carter, M. R., Lewis Publishers, 1993: 263-274.
    61 Martin, J. K.: Comparison of agar media for counts of viable soil bacteria. Soil Biol. Biochem., 1975, 7: 401-402.
    62 Metting, F. B. Jr.: Soil Microbial Ecology. Marcel Dekker Inc., 1993.
    63 Jenkinson, D. S.: Studies on the decomposition of plant material in soil—Ⅱ. Partial sterilization of soil and the soil biomass. Journal of Soil Science, 1966, 17: 280-302.
    64 Jenkinson, D. S., and Powlson, D.S.: The effects of biocides treatments on metabolism in soil: V. A method for measuring soil biomass. Soil Biol. Biochem., 1976, 8: 209-213.
    65 Jenkinson, D. S., and Ladd, J. N.: Microbial biomass in soil: measurement and turnover. In Soil Biochemistry (E A Paul and J N Ladd, Eds), 1981. 5: 415-472. Dekker, New York.
    66 Vance, E. D., Brookes, P. C. and Jenkinson, D. S.: An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 1987, 19: 703-707.
    67 Brookes, P. C., Landman, A., Pruden, G., and Jenkinson, D. S.: Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem., 1985, 17, No.6: 837-842.
    68 West, A. W., Sparling, G. P., Spire, T. W., and Wood, J. M.: Dynamics of microbial C, N-flush and ATP, and Enzyme activities of gradually dried soils from a climosequence. Austrilian J. of Soil Research, 1988, 26: 519-530.
    69 Webster, J. J., Hampton, G. J., and Leach, F. R: ATP in soil: a new extractant and extraction procedure. Soil Biol. Biochem., 1984, 16: 335-345.
    70 Tate, K. R., and Jenkinson, D. S.: Adenosine triphosphate measurement in soils: an improved method. Soil Biol. Biochem., 1982, 14: 331-335.
    71 Jenkinson, D. S., Daviidson S. A., and Powlson, D. S.: Adenosine triphosphate and microbial biomass in soil. Soil Biol. Biochem., 1979, 11:521-527.
    72 West, A. W., Sparling, G. P.: Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. Journal of Microbiological Methods, 1986, 5: 177-189.
    73 Badalucoo, L., Nannipieri, P., and Grego, S.: Microbial biomass and anthrone-reactive carbon in soils with different organic matter contents. Soil Biol. Biochem., 1990, 22: 899-904.
    74 Carter, M. R.: Ninhydrin reactive N released by the fumigation -extraction method as a measure of microbial biomass under field condition. Soil Biol. Biochem., 1991, 23(2): 139-143.
    75 Amato, M., and Ladd, J. N.: Assay for microbial biomass based on ninhydrin -reactive nitrogen in extracts of fumigated soils. Soil Biol. Biochem., 1988, 20: 107-114.
    76 Anderson, J. P. E. and Domsch, K. H.: A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem., 1978, 10: 215-221.
    77 Ocio, J. A. and Brookes, P. C: An evaluation of method for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol. Biochem., 1990,22: 685-694.
    78 Voroney, R. P., and Winter, J. P.: Soil microbial biomass C and N. In: Soil Sampling and Method of Analysis, M. R. Carter, Ed. Canadian Society of Soil Science,: 277-286. Lewis Publishers, 1993.
    79 Tate, K. R., Ross, D. J., and Felham, C. W.: A direct extraction method to estimate soil microbial C: effects of experimental variables and some different calibration procedures. Soil Biol. Biochem., 1988, 20: 325-329.
    80 Sparling, G P., and West, A. W: A direct extraction method to estimate soil microbial: calibration in situ using microbial respiration and 14C-labblled cells. Soil Biol. Biochem., 1988, 20: 337-343.
    81 Merckx, R., Van der Linden, A. M. A., and Leuren, K.V.: The extraction of microbial biomass components from soils. Pages 327-339 in D. S. Jenkinson and K.A. Smith, Eds. Nitrogen efficiency in agricultural soils. Elsevier Applied Science, London, 1988.
    82 Chaussod, R., Houot, S., Guiraud, D., and Hetier, J. M.: Size and turnover of the microbial biomass in agricultural soils: Laboratory and field measurements .In and K A Smith (ed), Nitrogen efficiency in agricultural soils: 312-326. Elsevier Applied Science, London and New York, 1988.
    83 Jenkinson, D. S., Hart, P. B. S., Payner, J. H., and Parry, L. C: Modelling the turnover of organic matter in long-term experiments at Rothamsted. In J. I. Cooley (ed.), Soil Organic dynamics and soil productivity. INTECOL Bullitin, 1987, 15: 1-8.
    84 Azam, F., Mulvaney, R. L., and Stevenson, F.: Synthesis of 15N labeled microbial biomass in soil in situ and extraction of biomass N. Biol. Fertil. Soils, 1989, 7: 180-185.
    85 Sparling, G P., and West, A. W.: Modifications to the fumigation-extraction technique to permit simultaneous extraction and estimation of soil microbial biomass C and N. Commun. Soil Sci. Plant Anal., 1988,19: 327-344.
    86 Brookes, P.C., Powlson, D. S., and Jenkinson, D.S.: Phosphorus in the soil microbial biomass. Soil Biol. Biochem., 1984, 16(2): 169-175.
    87 Brookes, P.C. Powlson, D. S., and Jenkinson, D. S.: Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem., 1982, 14: 319-329.
    88 Hedley, M. J., and Stewart, J. W. B.: Method to measure microbial phosphate in sols. Soil Biol. Biochem.,1982,14:377-385.
    89 Sagger, S., Bettany, J. R., and Stewart, J. W. B.: Measurement of microbial sulphur in soil. Soil Biol. Biochem., 1981, 13: 493-498.
    90 Powlson, D. S., Brookes, P. C, and Christenson, B. T.: Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem., 1987, 19:159-164.
    91 Campbell, C. A., and Zentner, R. P.: Soil organic matter as influenced by crop rotation and fertilization. Soil Sci. Am. J., 1993, 57: 1034-1040.
    92 Juma, N. G., and Paul, E. A.: Mineralizable soil nitrogen: Amounts and extractability ratios. Soil Sci. Am. J., 1984,48:76-80.
    93 Carter, M. R., and Rennie, D. A.: Changes in soil quality under zero-tillage farming system: distribution of microbial biomass and mineralization C and N potentials. Can J Soil Sci., 1982, 62: 587-597.
    94 Sparling, G P.: Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst, C. E., Doube, B. M., and Gupta, V. V. S. R., ed. Biological Indicators of Soil Health. CAB INTERNATIONAL, 1997: 97-119.
    95 Bonde, T. A., Schnurer, J., and Rosswall, T.: Microbial biomass as a fraction of potentially mineralization nitrogen in soils from long-term field experiments. Soil Biol. Biochem. 1988, 20: 447-452.
    96 Gupta, V. V. S. R., and Germida, J. J.: Distribution of microbial biomass and its activity in different soil aggregate size fractions as affected by cultivation. Soil Biol. Biochem., 1988, 21: 777-787.
    97 Doran, J.W.: Microbial biomass and mineralizable nitrogen distributions in no-tillage and plowed soils. Biol. Fertil. Soils, 1987, 5: 68-75.
    98 Paukhurst, C. E.: Biological indicators of soil health and sustainable productivity. In Greenland, D. J., Szabolcs, I. ed. Soil Resilience and Sustainable Land Use. 1994: 331-351.
    99 Turco, R. F., Kennedy, A. C, Jawson, M. D.: Microbial indicators of soil quality. In: Doran, J. W. et al. Ed. Defining Soil Quality for a Sustainable Environment. By Madison, Wisconsin, USA. 1994: 73-90.
    100 Patra, D. D., Chand, S. and Anwar, M.: Seasonal changes in soil microbial biomass in soils cropped with palmarosa (Cymbopogon martinii L.) and Japanese mit (Mentha arvensis L.) in subtropical india. Biol.
     Fertil. Soils, 1995, 19:193-196.
    101 Franzluebbcrs, A. J., Hons, F. M., and Zubcrcr, D. A.: Seasonal changes in soil microbial biomass and mineralizable C and N wheat management systems. Soil Biol. Biochem., 1987, 26:1469-1475.
    102 Shan-min, S., Brookes, P. C., and Jenkinson, D. S.: Soil respiration and the measurement of microbial biomass by the fumigation technique in fresh and air-dried soil. Soil Biol. Biochem., 1987, 19: 153-158.
    103 宋建国,林杉,吴文良,毛达如:土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价.生态学报,2001,21(2):290-294.
    104 周礼恺:土壤酶学.北京:科学出版社,1987:152-157.
    105 Marshall, K. C.: Eclogical of microbial cellulose degradation. Advances in Microbial Ecology. New York: Plenum Press, 1985, 8: 237-244, 272.
    106 南京农业大学主编:《土壤农化分析》,第二版.北京:农业出版社,1996.
    107 许光辉,周崇莲:长白山北坡自然保护区森林土壤微生物生态分布及其生化特性的研究.生态学报,1 984,4(3):207-222.
    108 龙章富,刘世贵:川西北退化草地土壤微生物生化活性的初步研究.土壤学报,1995,32(2),221-227.
    109 陈锡时,郭树凡,汪景宽、张键:地膜覆盖栽培对土壤微生物种群和生物活性的影响.应用生态学报,1998,9(4):435-439.
    110 李阜棣等主编:农业微生物学实验技术.北京:中国农业出版社,1996.
    111 俞慎,李振高:稻田生态系统生物硝化-反硝化作用与氮素损失.应用生态学报,1999,10(5).
    112 Jensen, K., Revsbech, N. P., and Nielsen, L. P.: Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl. Environ. Microbio., 1993, 59: 3287-3296.
    113 Katyal, J. C., Xarter, M. F., and Vlek, P. L. G.: Nitrification activity in submerged soils and its relation to denitrification loss. Biol. Fertil. Soils, 1988, 7: 16-22.
    114 Klemedtsson, L., Sevensson, B. H., and Rosswall, T.: Relationships between soil moisture content and nitrous oxide production during nitrification and denitrification. Biol. Fertil. Soils, 1988, 6:106-111.
    115 于克伟,陈冠雄,Sten Struwe,Annelise Kjφller:丹麦森林土壤反硝化作用的动力学分析.应用生态学报,1998,9(2).
    116 Datta, De, S. K., Bruesh, R. J., and Samson, M. I.: Direct measurement of ammonia and denitrification fluxes from urea applied to flee. Soil Sci. Soc. Am. J., 1991, 55: 543-548.
    117 Drury, C. F., McKinney, D, J., and Findlay, W. I.: Relationships between denitrification, microbial biomass and indigenous soil properties. Soil Biol. Biochem., 1991, 23(8): 751-755.
    118 Bruesh, R. J., and De Datta, S. K.: Denitrification Losses from puddled rice soils in the tropics. Bio. Fertil. Soils, 1990, 9: 1-13.
    119 Hauck, R. D.: Field measurement of denitrification-an overview. In: Hauck, R. D. & Weaver, R. W. Eds. Field Measurement of Dinitrogen Fixation and Dinitrification. Spec Publ 18, Soil Sci. Soc. Am., Madison, Wisconisn, 1986: 59-72.
    120 张萍:刀耕火种对土壤微生物和土壤肥力的影响.生态学杂志,1996,15(3):64-67.
    121 张萍,郭辉军,杨世雄,刀志灵:高黎贡山土壤微生物生态分布及其生化特性的研究.应用生态学报,1999,10(1).
    122 陆文静,何振立:石灰性土壤难溶态磷的微生物转化合利用.植物营养的与肥料学报,1999,5(4):377-383.
    123 张福锁,曹一平:根际动态过程与植物营养.土壤学报,1992,29(3):239-250.
    124 张宝贵,李贵桐:土壤微生物在土壤磷有效化中的作用.土壤学报,1998,35(1):104-111.
    125 Nakas, J. P., Gould W. D., and Klein, D. A.: Origin and expression of phosphatease activity in a semi-arid grassland soil. Soil Biol. Biochem., 1987, 19(1): 13-18.
    126 哈兹耶夫:土壤酶活性.郑洪元、周礼恺、张德生译.北京:科学出版社,1980.
    127 许光辉,郑洪元编:土壤微生物分解方法手册.北京:农业出版社,1986.
    128 杨玉盛、杨伦增、俞新妥:杉木取代阔叶林后土壤微生物学活性变化的研究.应用与环境生物学报,1997,3(4):313-318.
    129 杨玉盛,邱仁辉,俞新妥,黄宝龙:杉木连栽土壤微生物及生化特性的研究.生物多样性,1999,7(1).
    130 Brown, M. E.: Rhizophere Microorganisms—Opportunists, Bandits or Benefactors. In: Soil Microbiology—A Critical Review, Eds. By N. Walker: 21-38. Published by Butterworths, London and Boston, 1975.
    131 Marschner, H., Romheld, V., Zhang, F. S.: Mobilization of mineral nutrients in the rhizosphere by root exudates. Transactions 14th Inter. Congress of Soil Sci. Voil. Ⅱ: 158-163, 1990.
    132 Uren, N. C., and Reisenauer, H. M.: The role of root exudates in nutrient acquisition. In: Adv. Plant'Nutr. 3, eds. B. Tinker and Lauchli: 79-114. New York, Praeger Publishers, 1988.
    133 Vaneura, V., and Hanzlikova, A.: Root exudates of plants. Ⅳ. Differences in chemical composition of seed and seeding exudates. Plant and Soil, 1972, 36: 271-282.
    134 Mosse, B., and Hayman, D. S.: Mycorrhiza in Meathop Wood. In Ecosystem Study of Meathop Wood., 1974.
    135 Goring, C. A. I., and Clark, F. E.: Influence of crop growth on mineralizatio of nitrogen in the soil. Proceedings of the Soil Science Society of America, 1949, 13: 261-266.
    136 Arshad, M., and Frankenberger Jr, W. T.: Microbial production of plant hormones. Plant and Soil, 1991,133: 1-8.
    137 Swaby, R. L.: Stimulation of plant growth by organic matter. Journal of the Australian Institute of Agricultural Science, 1942, 8: 156-163.
    138 Brown, M. E.: Plant growth substances produced by micro-organisms of soil rhizosphere. Journal of Applied Bacteriology, 1972, 35: 443-451.
    139 Nieto, K. F., and Frankenberger Jr, W. T.: Biosynthesis of cytokinins produced by Azotobacter chroococcum. Soil Biol.Biochem., 1989,21:967-972.
    140 Hussain, A., Arshad, M., Hussain, A., and Hussain, F.: Response of maize (Zea mays) to Azotobacter inoculation under fertilized and unfertilized conditions. Biol. Fertil. Soils, 1987,4: 73-77.
    141 Hubbell, D. H., Tien, T. M., Gaskin, M, H., and Lee, J.: Physiological interaction in the Azospirillum-grass root association. In CRC associative Symbiosis. Eds.P. B. Vose and A. P. Ruschel, 1979, 1: 1-6.
    142 Hayman, D. S.: Phosphorus Cycling y Soil Micro-organisms and Plant Roots. In Soil Microbiology - A Critical Review. Edited by Walker, N. (1975). Published by Butterworths, London and Boston, 67-92,1975.
    143 Carter, M. R.: Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Tillage Res., 1986, 7: 29-40.
    144 Sparling, G P.: The soil biomass. In: D. Vaughan, and R. E. Malcolm (ed.), Soil organic matter and biological activity. 223-262. Martinus Nijhoft/Dr W. Junk Publishers, Netherlands, 1985.
    145 Collins, H. P., Rasmussen, P. E., and Douglas, C. L.: Crop rotation and residue management effects on soil carbon and microbial dynamics. Soil Sci. Soc. Am J, 1992, 56:783-788.
    146 Ocio, J. A., and Martinez, J.: Contribution of straw-derived N to total microbial biomass N following incorporation of cereal straw to soil. Soil Biol. Biochem., 1991, 23: 655-659.
    147 Brookes P. C, Ocio, J. A., and Wu, J.: The soil microbial biomass: its measurement, properties and role in soil nitrogen and carbon dynamics following substrate incorporation. Soil Microorganisms, 1990, 35:39-51.
    148 Marumoto, T., Anderson, J. P. E., and Domsh, K. H.: Mineralization of nutrients from soil microbial biomass. Soil Biol. Biochem., 1982,14:469-475.
    149 Stevenson, F. J.: Cycles of soil nitrogen, phosphorus, sulfur, and micronutrients. John Wiley and Sons, 1989, New York.
    150 Smith, J. L., and Paul, E. A.: The significance of soil microbial biomass estimation. In: J. M. Bollag, and G. Stotzky, (ed.), Soil Biochem. 6: 357-396. Marcel Dekker, New York, 1990.
    151 Anderson, F., and Domsch, K.. H.: Ratio of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem., 1989, 21: 471-479.
    152 陈国潮,何振立,黄昌勇:菜茶果园红壤微生物量磷与土壤磷以及磷植物有效性之间的关系研究.土壤学报,2001,38(1):75-79.
    153 Bocock, K. L.: Changes in the amounts of dry matter, nitrogen, carbon and energy in decomposing woodland leaf litter in relation to the activities of the soil fauna,, 1964.
    154 Rice, C. W.: Short-term immobilization of fertilizer nitrogen at the surface of no-till and plowed soils. Soil Sci. Soc. Am J., 1984, 48: 295-297.
    155 Gasser, J. K.: Measurement of losses from fertilizer nitrogen during incubation in acid sand and during subsequent growth of rye grass using 15N-labelled fertilizers. J. Soil Sci., 1968, 18: 289-300.
    156 俞慎,李勇,王俊华,车玉萍,潘映华,李振高:土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报,1999,36(3):413-421.
    157 沈宏,徐志红,曹志洪:用土壤生物和养分指标表征土壤肥力的可持续性.土壤与环境,1999,8(1):31-35.
    158 姚槐应,何振立;黄昌勇:红壤微生物量氮的周转期及其研究意义.土壤学报,1999,36(3).388-394.
    159 Lethbridge, G., and Davison, M. S.: Microbial biomass as a source of nitrogen for cereals. Soil Biol. Biochem., 1983, 15: 365-370.
    160 庄铁诚、张瑜斌、林鹏、陈仁华:武夷山森林土壤生化特性的初步研究.应用生态学报,1999,10(3),283-285.
    161 Rovira, A. D., and McDougall, B. M.: Microbiological and biochemical aspects of the rhizosphere. In: Soil Biochemistry, edited by McLaren, A. D. and Peterson, G. H. Published by Edward Arnold, London, 1967: 417-463.
    162 殷士学、宋明芝、封克:免耕法对土壤微生物和生物活性的影响.土壤学报,1992,29(4):370-376.
    163 Zhang, Y. S., Werner, W., Scherer, H. W., and Sun, X.: Effect of organic manure on organic phosphorus fractions in two paddy soils. Biol. Fertil. Soils, 1994, 17: 64-68.
    164 Cosgrove, D. J.: Microbial transformations in the phosphorus cycle. In Advances in Microbial Ecology (M. Alexander, Ed.) 1: 95-135. Plenum Press, New York, 1977.
    165 Sperber, J. I.: Solution of mineral phosphate by soil bacteria. Nature, 1957: 180(4593): 994-995.
    166 Gerretsen, F. C.: The influence of micro-organisms on the phosphate intake by the plant. Plant and Soil, 1948.1:51-81.
    167 尹瑞龄:我国旱地土壤的溶磷微生物.土壤,1988,5:243-246.
    168 Kobus, J.: The distribution of micro-organisms mobilizing phosphorus in different soils. Acta Microbiologic Polonica, 1962, 11: 255-264.
    169 Greaves, S. R., Anderson, G., and Webley, D. M.: A rapid method of determining the phytase activity of soil micro-organisms. Nature, 1963, 200: 1231-1232.
    170 李志洪,陈丹,曹国军:黑土、黑钙土玉米苗期根际无机磷的形态变化.土壤学报,1999:36(1):125-131.
    171 曹一平,崔健宇:石灰性土壤中油菜根际磷的化学动态及生物有效性.植物营养的与肥料学报,1994,1:49-54.
    172 曹一平,李晓林:石灰性土壤上VA菌根强化玉米对水溶性磷肥的吸收,1989.
    173 Dinkelaker, B., Romheld, V., and Marscher, H.: Citric Acid secretion and precipitation of calcium citrate in the rhizosphere of white lupuin (Lupinus albus L.). Plant Cell Environ., 1989, 12: 285-292.
    174 Barber, D. A.: Effect of micro-organisms on nutrient absorption by plants. Nature, 1966, 212(5062): 638-640.
    175 Rajan, S. S. S., O'Connor, M. B., and Sinclair, A. G.: Partially acidulated phosphate rocks: Controlled release phosphorus fertilizers for more sustainable agriculture. Fertilizer Research, 1994, 37: 69-78.
    176 林启美,赵小蓉,孙焱鑫,姚军:四种不同生态系统的土壤解磷细菌数量及种群分布.土壤与环境,2000,9(1):34-37.
    177 Oberson, A., Fardeau, J. C., Besson, J. M., and Sticher, H.: Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol. Fertil. Soils, 1993, 16: 111-117.
    178 Tarafdar, J. C., Claassen, N.: Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphateases produced by plant roots and microorganisms. Biol. Fertil. Soils, 1988, 5: 308-312.
    179 Dala, R. C.: Soil organic phosphorus. Adv. Agron., 1977, 29:83-119.
    180 李世清:西北地区土壤中的微生物体氮.西北农业大学博士毕业论文,1998.
    181 Bremner, E., and Van Kessal, C.: Seasonal microbial biomass dynamics after addition of lentil and wheat residues. Soil Sci. Soc. Am. J., 1992, 56: 1141-1146.
    182 Ross, D. J.: Estimation of soil microbial C by a fumigation-extraction method: influence of seasons, soils and calibration with the fumigation-incubation procedure. Soil Biol. Biochem., 1990, 22: 295-300.
    183 Patra, D. D., Brookes, P. C., Coleman, K., and Jenkinson, D.S.: Seasonal changes of soil microbial biomass in an arable and a grassland soil which have been under uniform management for many years. Soil Biol. Biochem., 1990, 22: 739-742.
    184 Lynch, J. M., and Panting, L. M.: Effects of season, cultivation and nitrogen fertilizer on the size of the soil microbial biomass. J. Sci. Food Agric., 1982, 33: 249-252.
    185 Moyo, C. C., Kissel, D. E., Cabrea, M. L.: Temperature effects in soil urease activity. J. Soil Biol. Biochem., 1989, 21: 935-938.
    186 Singh, T. S., Raghubansh, A. S., Singh, R. S., and Strivastava, S. C.: Microbial biomass acts as a source of plant nutrient in dry tropical forest and savanna. Nature, 1989, 338: 499-500.
    187 Kaiser, K. A., Martens, R., and Heinemeyer, O.: Temporal changes in soil microbial biomass carbon in an arable soil: Consequence for soil sampling. Plant and Soil, 1995, 170: 287-295.
    188 Van Gestel, M., Ladd, J. N., and Amato, M.: Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles. Soil Biol. Biochem., 1992, 24:103-111.
    189 Bottner, E: Response of microbial biomass to alternate moist and dry conditions in soil incubated with 14C and 15N-labeled plant material. Soil Biol. Biochem., 1985, 17: 329-337.
    190 Russell, E. W.: Soil conditions and plant growth. 10thed. Longman, 1973.
    191 史奕、黄国宏:土壤中反硝化酶活性变化与排放的关系.应用生态学报,1999,10(3):329-331.
    192 Rudaz, A.: Production of nitrous oxide immediately after wetting dry soil. FEMS Microbial Ecol., 1991, 85: 117-124.
    193 O'Neill, E. G., Luxmoore, R. J., and Norby, R. J.: Elevated atmospheric CO_2 effects on seeding growth, Nutrient uptake, and rhizosphere bacterial populations of Liriodendron tulipifera L. Plant Soil, 1987, 104, 3-11.
    194 Kornor, C., and Arnone, J. A.: Responses to elevated carbon dioxide in article tropical ecosystems. Science, 1992, 257: 1672-1675.
    195 Conroy, J. P., Milham, P. J., Reed, M. L., and Barlow, E. W. R.: Increases in phosphorus requirements for CO_2-endched pine species. Plant Physiol., 1990, 92: 977-982.
    196 Norby, R. J., O'Neill, E. C., and Luxmoore, R. J.: Effects of atmospheric CO_2 enrichment on the growth and mineral nutrition of Quercus alba seeding in nutrient poor soil. Plant Physiol., 1986, 82: 83-89.
    197 Van de Geijn S. C., and Van Veen J. A.: Implications of increased carbon dioxide levels for carbon input and turnover in soils. Vegetation, 1993, 104/105: 283-292.
    198 汪景宽等:地膜覆盖对土壤肥力影响的研究.沈阳农业大学学报(专刊):1992,32-37.
    199 Moorhead, D. L., and Linkins, D. L.: Elevated Alters belowground exoemzyme activities in tussock tundra. Plant and Soil, 1997, 189: 321-329.
    200 Pettersson, R. McDonald, A. J. S., and Stadenberg, I.: Response of small birth plants (Betula pendula Roth.) to elevated CO_2 and nitrogen supply. Plant Cell Emviron., 1993, 16: 1115-1121.
    201 Silvola, J., and Ahlholm, U.: Effects of CO_2 concentration and nutrient status on growth rhythm and biomass partitioning in a willow, Salix phylicifolia. Oikos, 1993, 67, 227-234.
    202 Conroy, J. P., Milham, E J., and Barlow, E. W. R.: Effect of nitrogen and phosphorus availability on the growth response of Eucalyptus grandis to high CO_2. Plant Cell Emviron., 1992, 15, 843-847.
    203 Comins, H. N., and McMurtrie, R. E.: Long-term response of nutrient-limited forests to CO_2 enrichment-equilibrium behavior of plant-soil models. Ecol. Appl. 1993, 3, 666-681.
    204 Graham, R. L., Turner, M. G., and Dale, V. H.: Hoe increasing CO_2 and climate change affect forests. Bioscience, 1990, 40: 575-587.
    205 李元、杨济龙、王勋陵、胡之德:紫外辐射增加对春小麦根系土壤微生物种群数量的影响.中国环境科学,1999,2.
    206 周礼恺,张志明,曹承锦:土壤的重金属污染与土壤酶活性.环境科学学报,1985,5(2):176-183.
    207 和文祥,朱铭莪,张一平:土壤酶与重金属关系的研究现状.土壤与环境,2000,9(2):139-142.
    208 杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响.土壤与环境,2000,9(1):15-18.
    209 李花粉,张福锁,李春俭:根分泌物对根际重金属动态的影响.环境科学学报,1998,18(3):199-203
    210 Marzadori, C., Ciavatta, D.: Effect of lead pollution on different soil enzyme activities. Biol Fertil Soil, 1996, 23(6): 581-587.
    211 衣海清、刘训理:重金属污染与土壤微生物.世界农业,1996,12:36-37.
    212 Chander, K., and Brookes, P. C.: Plant input of carbon to metal-contaminated soil and effects on the microbial biomass. Soil Biol. Biochem., 1991, 23:1169-1177.
    213 Doelman, P.: Short and long term effects of heavy metals on urease activity in soils. J. Biol. Fertil Soils, 1986, 2: 213-218
    214 Brookes, P. C., Heihen, C. E., McGraph, and Vance, E. D.: Soil microbial biomass estimates in soils contaminated with metals. Soil Biol. Biochem., 1986, 18: 383-388.
    215 林玉锁:土壤对重金属缓冲性能的研究.环境科学学报,1995,15(3):289-293.
    216 朱鲁生,王军:乙草胺和莠去津对土壤微生物的影响及安全性评价.土壤与环境,2000,9(1):71-72.
    217 朱鲁生,张玉凤,樊德方:辛硫磷、甲氰菊酯及其混剂对土壤微生物的影响.农业环境保护,1999, 18(10).
    218 Powlson, D. S.: Effects of biocidal treatments on soil organisms. In: Soil Microbiology-A Critical Review, edited by Walker, N. Published by Butterworths, London and Boston, 1975: 193-224.
    219 刘玉焕,钟长英:真菌的有机磷农药降解酶产酶条件和一般性质.微生物学通报.2000,27(3):162-165.
    220 赵吉,廖仰南,张桂枝,邵玉琴:草原生态系统的土壤微生物生态.中国草地,1999,3.
    221 张成娥、陈小利、郑粉莉:子午岭林区不同环境土壤微生物生物量与肥力关系研究.生态学报,1999,18(2).
    222 高亚军、朱培立、黄东迈、王志明、李生秀:稻麦轮作不同土壤管理对有机质和全氮的影响.土壤与环境,2000,9(1):27-30.
    223 Griffiths, E.: Microorganisms soil structure. Biological Reviews, 1965, 40: 129-142.
    224 Harris, R. F., Chesters, G., Allen, O. N., and Attoe, O. J.: Mechanisms involved in soil aggregate stabilization by fungi and bacteria. Soil Science Soc. of Am. Proceedings, 1964, 28: 529-532.
    225 Carter, M. R., and White, R. P.. Determination of variability in soils physical properties and microbial biomass under continuous direct-planted corn. Can. J. Soil Sci., 1986, 66: 747-750.
    226 Voroney, R. P., Van Veen, J. A., and Paul, E. A.: Organic carbon dynamics in grassland soils: 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Canadian J. Soil Sci., 1981, 61: 211-224.
    227 陈永祥等:地膜覆盖栽培的土壤结构与空气状况研究.沈阳农业大学学报,1995,26(2):146-151.
    228 孙本普等:晚茬麦地地膜覆盖栽培田间小气候的研究.中国农业气象,1990,1.
    229 Unger, P. W.: Role of mulches in dryland agriculture. In: U. S. Gupta(Ed). Physiological aspects of dryland farming. New Delhi: Oxford & IBH Publishing Co., 1975: 237-260.
    230 Chaudhary, T. N., and Chopra, U. K.: Effect of soil covers on growth and yield of irrigated wheat planted at two dates. Field Crops Res., 1983, 7: 293-304.
    231 李默隐:烤烟地膜覆盖栽培试验初报.中国烟草.1984,2.
    232 邓邦权等:珠江三角洲土壤的酶活性及其与环境因子的关系.全国土壤酶学研究文集,85-93.沈阳:辽宁科学出版社,1988.
    233 李凤民,徐进章,孙国钧:半干旱黄土高原退化生态系统的修复与生态农业发展.生态学报,2003,23(9),1901~1909.
    234 Zhan Tao:中国可持续农业发展.产业与环境,2000,22(2-3),68-69.
    235 樊军,郝明德,党廷辉:旱地长期定位施肥对土壤剖面硝态氮分布与累积的影响.土壤与环境,2000,9(1):23-26.
    236 Feng-Min Li, Qiu-Hua Song, Hong-Sheng Liu, Shi-Qing Li: Effects of pre-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions. Agricultural Water Management, 2001, 49(3), 183-193.
    237 仇化民:旱作小麦—玉米地膜带田节水效应研究.干旱地区农业研究,1994,12(4).
    238 孙本普,李秀云,张宝民:地膜覆盖晚播小麦分化的特点及其与露地小麦异同点的分析.中国农业科学,1991,24(1):47-54.
    239 裴步祥:黄土高原冬小麦地膜覆盖的农业气象效应的研究.气象学报,1991,49(4).
    240 秦灿石:盐碱地植棉地膜覆盖水盐动态.中国棉花,1987,1.
    241 冯万忠:蔬菜塑料薄膜地面覆盖田间小气候效应的研究.农业气象,1980,2.
    242 赵聚宝,李克煌主编:干旱与农业.北京:中国农业出版社,1995.
    243 赵聚宝,徐祝龄主编:中国北方早地农田水分开发利用.北京:中国农业出版社,1995.
    244 汪景宽,张旭东,张继宏:覆膜对有机物料的腐解及土壤有机质特性的影响.植物营养与肥料学报,1994,1(3-4):22-27.
    245 Parmar, D. K., and Sharma, P. K.: Phosphorus and mulching effects on nutrient uptake and grain yield of wheat at different growth stages. Tropical Agriculture, 1996, 73(3): 196-200.
    246 Sharma, P. K., and Parmar, D. K.: The effect of and mulching on the efficiency of phosphorus use and productivity of wheat growth on a mountain Alfisol in the Westen Himalayas. Soil use manage., 1998, 14(1): 25-29.
    247 Matitschka, G., Hahndel, R., and Wichmann, W.: Mineral N dynamic, N uptake and growth of lettuce as affected by mulch. Acta Hortieulturae, 1996, 428: 85-94.
    248 王喜庆,李生秀,高亚军:地膜覆盖对旱地春玉米生理生态和产量的影响.作物学报,1998,24(3):348-353.
    249 李凤民,鄢珣,王俊,李世清,王同朝:地膜覆盖导致春小麦产量下降的机理.中国农业科学,2000,33.
    250 王同朝:黄土高原半干旱区不同农艺组合协同调控春小麦生长及其水分利用效率的研究.兰州大学博士生学位论文,1998.
    251 魏虹:有限供水和地膜覆盖对半干旱地区春小麦生长发育的影响.兰州大学博士生学位论文,1997.
    252 李凤民,王俊,王同朝:地膜覆盖导致减产的机理.中国农业科学,2000,33(2).
    253 吕丽红,王俊,凌莉,李凤民,李世清:半干旱地区地膜覆盖、底墒和氮肥对春小麦根系生长的集成效应.西北农林科技大学学报(自然科学版),2003,31(3),102-106.
    254 王谦:甘肃定西县农业气候资源的分析与评价.干旱地区农业研究,1988,2:69-74.
    255 Carter, M. R., eds: Soil Sampling and Methods of Analysis. Lewis Publishers, 1993.
    256 许光辉,郑洪元:土壤微生物分析方法手册.北京:农业出版社,1986.
    257 中国科学院南京土壤研究所微生物室:土壤微生物研究法.北京:科学出版社,1985.
    258 王宏年:生物统计学,184-208.兰州:兰州大学出版社,1988.
    259 杜荣骞:生物统计学,61-83,104-179.北京:高等教育出版社,2003.
    260 王耀林,张志斌:地膜覆盖的抗旱保墒效果及其应用.中国干旱半干旱农业科技资料选集.121-125.1982
    261 王树森,邓根云:地膜覆盖增温机制研究.中国农业科学,1991,24(3):74-78.
    262 王俊:地膜覆盖的生态学效应及对春小麦产量形成的影响.兰州大学硕士学位论文,2000.
    263 王俊,李凤民,宋秋华,李世清:地膜覆盖对土壤水温和春小麦产量形成的影响.应用生态学报,2003,14(2),205~210.
    264 黄义德;张自立;魏凤珍;李金才:水稻覆膜旱作的生态生理效应.应用生态学报,1999,10(3),305-308.
    265 郭天财,王晨阳,朱云集,王化岑,李九星,周继泽:后期高温对冬小麦及地上部衰老的影响.作物学报,1998,24(6):957-962.
    266 肖凯,张荣铣:氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制.植物营养与肥料学报,1998,4(4),371-378.
    267 肖凯,张荣铣:杂种小麦及亲本旗叶老化过程中RubisCO特性的研究.植物学报(英文版),1998,40(4),343-348.
    268 肖凯,张荣铣:小麦叶片老化过程中光合功能衰退的可能机制.作物学报,1998,21(6),805-810.
    269 杜延军,李白珍,李凤民:半干旱黄土高原地区地膜覆盖和底墒对春小麦生长及产量的影响.西北植物学报,2004,24(3),404-411.
    270 Khatibu, A. I., Lal, R., and Jana, R. K.: Effects of tillage methods and mulching on erosion and physical properties of sandy clay loam in an equatorial warm humid region. Field Crops Research, 1984, 8: 239-254.
    271 Akobundu, I. O., and Okigbo, B. N.: Preliminary evaluation of ground covers for use as live mulch in maize production. Field Crops Research, 1984, 8: 177-186.
    272 Zaongo, C. G. L., Wendt, C. W., Lascano, R. J., and Juo, A. S. R.: Interactions of water, mulch and nitrogen on sorghum in Niger. Plant and Soil, 1997, 197: 119-126.
    273 袁新民,同延安,杨学云,李晓林,张福锁:有机肥对土壤NO_3~--N累积的影响.土壤与环境,2000,9(3):197-200.
    274 张兴昌,邵明安:侵蚀条件下土壤氮素流失对土壤和环境的影响.土壤与环境,2000,9(3): 249-252.
    275 朱兆良:农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6.
    276 李凤民:论我国半干旱地区农业生产力与生态系统可持续发展农业.资源科学,1999,21(5),25-30.
    277 宋凤斌.玉米地膜覆盖增产的土壤生态学基础.吉林农业大学学报,1991,13(2),4-7.
    278 汪景宽,须湘成,张旭东:长期地膜覆盖对土壤磷素状况的影响.沈阳农业大学学报.1994,25(3),311-315.
    279 赵其国,吴志东:深入开展:“土壤与环境”问题的研究.土壤与环境,1999,8(1):1-4.
    280 刘家玲,张建军,翟明普:水土保持功能持续提高的指标体系及其评价.朱金兆,松冈广雄主编:《中国黄土高原治山技术研究》,137-150.中国林业出版社,2001.
    281 王俊,李凤民,李世清,宋秋华:地膜覆盖和底墒灌溉对春小麦产量形成的影响.西北植物学报,2003,23(5),735-738.
    282 王俊,李凤民,贾宇,李世清,宋秋华:半干旱地区播前灌溉和地膜覆盖对春小麦产量形成的影响.中国沙漠,2004,24(1),77-82.
    283 曹靖:冬小麦对磷营养胁迫反应的基因型差异及机理.兰州大学博士学位论文,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700