用户名: 密码: 验证码:
水平潜流型人工湿地处理小区雨水径流的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化进程的加快,透水性下垫面在城区内的比例越来越小。由暴雨径流导致的突发性、冲击性和随机性的城市面源污染已成为城市受纳水体水环境污染的主要来源之一。面源引起的水环境污染已成为当前城市水环境综合治理中亟待解决的主要问题之一。然而从另一角度讲,雨水径流同时又是一种宝贵的水资源,若加以适当从处理和利用,不仅能在一定程度上缓解城市水资源的供需矛盾,而且还可有效减少城市地面水径流量,延滞汇流时间,减轻雨水排除设施的压力,减少防洪投资和洪灾损失。因而增加城市雨水资源的利用量,将是节水型城市建设的有效措施。
     论文通过对重庆大学校园内两个监测点的雨水径流水质分析,考察了城市小区雨水水质情况及雨水水质随降雨历时的冲刷规律;根据雨水径流特征设计和构建了水平潜流型人工湿地,并对其进行了流态试验研究,考察了在恒定流和非恒定流情况下,水平潜流型人工湿地的流态特征;同时对该系统雨水径流的处理效果和冲击负荷下的处理效果进行了中试研究,确定出该人工湿地运行的最佳工况参数并对影响处理效果的关键因素进行了分析。部分研究结果在棕榈泉水质保持工程中得到应用和检验。
     ①雨水径流监测结果发现,雨水水径流主要污染物为SS和COD_(cr),NH_3-N和TP平均浓度较低,属于低浓度污水,径流水质与下垫面污染程度、道路交通量、人流量和雨前晴天天数都有一定的关系。屋面雨水和道路雨水水质均具有明显的初始径流冲刷效应,降雨径流污染物冲刷规律基本满足公式C t = C_0e~(-K-t)的模型规律。
     ②流态试验结果显示,水平潜流型人工湿地流态属于弥散流模型。试验II(D/UL=0.109)的流态最接近理想的平推流型,其流态与六级串联CSTR模型流态相当,试验II(ID/UL=1.354)最接近非串联CSTR的完全混合型,试验(ID/UL=0.292)介于理想的平推流型和完全混合型中间,更倾向于平推流型。
     ③通过18个正交试验确定了本次试验的最优组合方案为HRT在36小时、水深为400mm以及运行前间隔天数为8天的组合,出水中COD_(cr)、氨氮、TP、TN以及浊度的平均浓度分别为16.25 mg/L、0.87 mg/L、0.040 mg/L、1.15 mg/L和1.51 NTU,水质清亮,感官效果好,达到《城市污水再生利用城市杂用水水质》(GB/T18920—2002)和《城市污水再生利用景观用水水质》(GB/T18921—2002)的相关标准要求。同时在正交试验的基础上增加了4个针对各因素影响程度的试验发现,三个因素中HRT为水平潜流型人工湿地处理暴雨径流的限制性因素。
     ④分析了3h和5h两种不同强度的冲击负荷试验,试验证明水平潜流型人工湿地对CODcr及TP的处理具有较强的耐冲击负荷能力,但是氨氮的去除效果并不明显,处理率分别仅为14.78%和6.99%,从而也验证了冲击负荷下人工湿地的非串联CSTR弥散流流态的污水处理效果较差的结论。
     ⑤水平潜流型人工湿地优点突出,不仅具有良好的处理效果、工程基建和运行费用低、操作管理简单、维护方便,而且具有良好的景观效应。目前,该技术逐渐尝试应用到住宅小区和公园等项目的水处理环节,这将是一种充满前景的污水处理技术,是水处理未来的发展方向。
With speeding up of the process of urbanization development in China, the proportion of permeable land area becomes increasingly smaller. The paroxysmal, impulsive and randomicity urban non-point source pollution caused by storm runoff has become one of the major sources of receiving water pollution. Consequently, water pollution by non-point source has become one of the main problems to be urgently solved in present comprehensive treatment of urban water pollution. By making use of the valuable rainwater resource, not only can the conflict between supply and demand of urban water resource be relieved to a certain degree, the quantity of urban surface runoff can also be effectively reduced to delay the form of conflux, and consequently to lighten the pressure of rainwater Drainage facilities and to cut down anti-flood investment and flood loss. Increasing the urban rainwater use efficiency is an effective measure of water-saving cities.
     Through the analysis of runoff rainwater quality at two monitoring points at the campus of Chongqing University, this paper aims to explore community rainwater quality and the flush model of rainwater quality as related to the length of rain time. Horizontal subsurface flow wetland is designed and constructed according to rainwater runoff characteristics and its fluidity state is studied to understand the fluidity state of horizontal subsurface flow constructed wetland under steady flow and unsteady flow. Pilot-scale experiment about the rainwater runoff treatment effect and impulsive load treatment effect is carried out to find out the best mode and to analyze the critical factors affecting treatment effect. The part findings have been validated at the Palm Springs water quality maintaining project.
     ①Through rainwater runoff monitoring results, it is found out that the main pollutants of runoff are SS, CODcr, NH3-N and TP. The average concentration of these pollutants is low and causes only low-concentration wastewater. Runoff quality is related to the pollution degree of underlying cushion, road traffic, people flux and sunshine days before rain. Roof rainwater and road rainwater takes on obvious first flush effect, while the flush model of rainwater runoff pollutant basically conforms to the model of formula C t = C_0e~(-K-t).
     ②The fluidity state experiments indicate that the fluidity state of the horizontal subsurface flow wetland is dispersing model. The fluidity state of experiment II (D/UL=0.109) is closest to the ideal horizontal flow, and its fluidity state is equivalent to the one of CSTR model with six levels in series. The fluidity state of experiment III(D/UL=1.354) is closest to complete mixing model which is not in series of CSTR. The fluidity state of experiment I(D/UL=0.292) is situated between the ideal horizontal flow and the complete mixing model, but is more closer to the former.
     ③The optimal combined plan is definited after 18 orthogonal experiments, the HRT is 36 hours, the depth is 400 mm, and the days before last operating is 8 days. After treatment, the outflow is clean and its average concentration of COD_(cr)r、NH_3-N、TP、TN and turbidity are16.25 mg/L、0.87 mg/L、0.040 mg/L、1.15 mg/L &1.51 NTU, and satisfies the requirements of (GB/T18921—2002) and (GB/T18920-2002). Meanwhile through the additional 4 experiments about the influence level, we find that HRT is the restrictive element of the treatment of the horizontal subsurface flow wetland.
     ④Through the two different impact load experiments under 3 hours and 5 hours, we find that the horizontal subsurface flow wetland has stronger ability to bear the impact load of CODcr and TP, but the removal effect of NH3-N is not obvious, and its treatment effect are 14.78% & 6.99% respectively. So we can draw the conclusion that the treatment effect of complete mixing model which is not in series of CSTR in the artificial wetland under impact load.⑤The advantages of horizontal subsurface flow constructed wetland are outstanding. It has favorable treatment effect, low construction and operation cost, easy management and maintenance, and also nice landscape effect. At present, this technology has gradually been applied to water treatment of residential communities and parks. This will be a prosperous wastewater treatment technology and the development orientation of future water treatment.
引文
[1]王世和著.人工湿地污水处理理论与技术[M].北京:科学出版社, 2007.
    [2]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护, 2000, 19(5), 320-封三.
    [3]王爱萍,周琪.人工湿地处理污水的研究[J].四川环境, 2005, 24(2), 76-80.
    [4] Green M. Enhancing nitrification in vertical flow constructed wetlands utilizing a passive air[J]. Water Research, 1998, 32 (12): 3513-3520.
    [5] Drizo A , et al. Physical chemical screening of phosphate removing substrate for use in constructed wetland systems[J] . Wat Res, 1999, 33 (7): 3595-3602.
    [6] Zhu T. Phosphate sorption and chemical characteristics of lightweight aggregates (LWA) -Potential filter media in treatment wetlands [J]. Water Science and Technology, 1997, 35(3): 103-108.
    [7] Geller G. Horizontal subsurface flow systems in the German Speaking countries: Summary of long-term scientific and practical experience; recommendations[J]. Water Science and Technology, 1997, 35 (5): 157-166.
    [8] Sakadevan K, H J Bavor. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems[J]. Water Research, 1998, 32 (2): 393-398.
    [9] Reed S C, D Brown. Subsurface flow wetlands-performance evaluation[J ]. Water Environment Research, 1995, 67 (2): 244-248.
    [10] Hiley P D. The reality of sewage treatment using wetland [C]. ICWS, 94 Pro, 1994, 68-83.
    [11]冯培勇等.人工湿地及其去污机理研究进展[J].生态科学, 2002, 21(3): 264-268.
    [12] Brix H. Use of construced wetland on water pollution control : historical development , present status and future perspectives [J] . Water Science and Technology, 1997, 30 (8): 209-223.
    [13] Paul Cooper. UK experience with reed bed and constructed wetland systems 1985 to 2003, the first international seminar on the use of aquatic macrophytes for wastewater treatment in constructed wetlands, edited by Werissmo Dias Jan Vymazal, 2003: 414.
    [14] Catherine Boutin, Alain lienard. Constructed wetlands for wastewater treatment: the French use of aquatic macrophytes for wastewater treatment in constructed wetlands, edited by Werissmo Dias Jan Vymazal, 2003:439.
    [15]陈颖译,谢峥校.人造湿地处理防止废水.摘译自美国《AATCC评述》[J], 2001, 15(5): 31-33.
    [16]陈长太,王雪.国外人工湿地技术的应用及研究进展[J].中国给水排水, 2003, 19(12), 105-106.
    [17] Heather L Sheoherd, Mark E Grismer, George Tchobanoglous. Treatment of high - strength winery wastewater using a subsurface flow constructed wetland[J] . Water Environment Research , 2001,73(4): 394 -403.
    [18] Werker A G, Dougherty J M, Mchenry J L , et al. Treatment variability for wetland wastewater treatment design in cold climates[J]. Ecological Engineering, 2002, (19): 1-11.
    [19]王建军.人工湿地在污水处理中的应用初探[J].辽宁城乡环境科技, 2004, 24(3), 1-2.
    [20]李科德,胡正嘉.人工模拟芦苇床系统处理污水的效能[J].华中农业大学学报, 1994, 13(5):511-517.
    [21]成水平,夏宜铮.香蒲、灯心草人工湿地的研究——净化污水的空间[J].湖泊科学, 1998, 10(1): 62-66.
    [22]吴振斌,任明讯,付贵萍等.垂直流人工湿地水力学特点对污水净化效果的影响[J].环科学学报, 2001, 22(5): 45- 49.
    [23]候允.组合人工湿地处理小规模生活污水的研究[D].北京:中国农业大学水利与土木工程学院, 2003.
    [24]王锋德,董仁杰.利用人工湿地处理我国小城镇生活污水[J].水利发展研究. 2006, 02: 39-44.
    [25]吴荣芳.城市雨水径流污染控制技术[J].工业安全与环保, 2006, 32(2),41-42.
    [26] Deletic A B, Maksimovic C T. Evaluation of water quality factors in storm runoff from paved areas. J Envirn Eng, ASCE, 1998, 124(9): 869-879.
    [27] Lee J H, Bang KW. First flush analysis of urban storm runoff. The Science of the Total Environment, 2002, 293: 163-175.
    [28]车伍,刘燕.国内外城市雨水水质及污染控制[J].给水排水, 2003, 29(10), 38-42.
    [29]奕永庆.雨水利用的历史现状和前景[J].中国农村水利水电, 2004, 9, 48-50.
    [30]车武.我国缺水城市雨水利用技术的探讨[J] .中国给水排水, 1999, 15(3): 22 -23.
    [31]车武,刘红,孟光辉.雨水利用与城市环境[J] .北京节能,1999, (3) :13-14.
    [32]卢观彬,邓荣森,肖海文,金龙等.暴雨径流人工湿地处理新技术[J].市政技术, 2007, 25(4): 275-278.
    [33]王和意,刘敏,刘巧梅等.城市暴雨径流初始冲刷效应和径流污染管理[J].水科学进展.2006.17(2): 181-185.
    [34] Deletic A. The first flush load of urban surface runoff [J]. Water Res. 1998.32: 2462-2470.
    [35] Bertrand J L, Chebbo G, Sager A. Distribution of pollutant mass vs volume in stromwater discharges and the first flush phenomenon [J]. Water Res. 1998.32:2341-2356.
    [36] Kickuth R. Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under hmnic conditions[A]. in Utilization of Manure by Land Spreading[C].London : Comm. Of the Euro, Communities, EUR 5672c, 1997,335.
    [37]车伍,李俊奇著.城市雨水利用技术与管理[M].北京:中国建筑工业出版社, 2006.
    [38]江帆.新型人工湿地处理小区雨水径流的效果和应用研究[D].重庆:重庆大学城市建设与环境工程学院环境工程系, 2007.
    [39]李欣.屋面雨水和小区中水处理处理及回用试验研究[D].重庆:重庆大学城市建设与环境工程学院环境工程系, 2006.
    [40]杨立君,雷志红.“高效垂直流人工湿地水质净化技术”与“水生生态系统修复技术”研究与应用介绍. http://www.szies.org/page/index7.htm, 2004-12-20/2007-06-25.
    [41]张荣社,周琪.潜流构造湿地去除农田排水中磷的效果[J].环境科学, 2003, 24(4): 105-108.
    [42]高廷耀,顾国维主编.水污染控制工程下册.第二版.北京.高等教育出版社.1999, 5.
    [43]祝清荣,姚雨霖,均质滤料滤池过滤理论分析.给水排水. 1996, 22(1): 19-20.
    [44]常冠钦,宋存义,汪莉.沸石生态床系统处理城市污泥的性能研究.非金属矿. 2004, 27(2): 8~10.
    [45]金晓云.微污染原水预处理填料选型及在工程中应用前景分析[D].上海:同济大学, 2002
    [46]孔新军.水处理用纤维素基可降解填料的研究[D].天津:天津大学, 2004.
    [47]傅伟军,唐亚,植物在人工湿地中的作用及物种选择平[J].四川环境. 2005.24(6): 45-49.
    [48]许航,陈焕壮,熊启权等.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报, 1999, 32(4) : 69-73.
    [49]单丹.人工湿地水生植物对氮磷吸收及对重金属镉去除效果的研究[D].浙江:浙江大学, 2006:12-13.
    [50]崔保山,刘兴土.湿地生态系统设计的一些基本问题探讨[J].应用生态学报, 2001, 12(1): 145-150.
    [51]成水平,夏宜.香蒲、灯心草人工湿地的研究Ⅲ净化污水的机理[J].湖泊科学. 1998. 10(2): 66-71.
    [52]刘衍君.人工湿地在污水处理中作用极其展望[J].云南环境科学, 2003, 22(4): 42-45.
    [53]陈飞星,朱斌.利用水生植物改北京动物园水环境的研究初探[J].上海环境科学. 2002. 21(8): 469-472.
    [54]王庆安等.成都活水公园人工湿地塘床系统的生物群落.重庆环境科学. 2001, 23(2): 52-55.
    [55]陈长太,阮晓红,王雪.人工湿地植物的选择原则[J].中国给水排水. 2003. 23(19): 65.
    [56]王佳,舒新前.人工湿地植物的作用和选择[J].环境与可持续发展. 2007. 4: 62-64.
    [57] Sczepanska W. AIlelopathy among the aquatic plants[J]. Pol ArchHydrobiol. 1971, 18(1): 17-30.
    [58]邓荣森著.氧化沟污水处理理论与技术[M].北京:化学工业出版社. 2006.
    [59]许保玖,龙腾锐著,当代给水与废水处理原理[M].北京:高等教育出版社. 2000.
    [60]田胜元,萧曰嵘编著.试验设计与数据处理[M].北京.中国建筑工业出版社. 1988, 11.
    [61]尹军,崔玉波著.人工湿地污水处理技术[M].北京:化学工业出版社. 2006.
    [62]张荣社,李广贺,周琪等.潜流湿地控制暴雨径流中氮磷冲击负荷中试研究[J].中国给水排水. 2007.23(1):64~68.
    [63]魏复盛.水和废水监测分析方法[M].北京:中国环境科学出版社. 2002, 12.
    [64]黄莉.生态滤沟处理城市降雨径流的中试研究[D].重庆:重庆大学城市建设与环境工程学院环境工程系, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700