用户名: 密码: 验证码:
土壤胶体和优势流对镉环境行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通常认为,强吸附性污染物的迁移风险是很低的,但关于它们在土壤和沉积物中长距离迁移的报道却屡见不鲜。这种现象激发了关于促进运输(facilitated transport)和优势流(preferential flow)的研究,目前普遍认为这是提高污染物在地下环境中运移速度的两种主要机制。胶体(包括矿质胶体、有机胶体、生物胶体等)与优势流对污染物环境行为影响的研究起源于胶体促进的放射性核素的迁移,进而发现胶体亦能影响其它污染物的迁移。围绕这一命题国内外已展开了大量对地下环境中胶体的来源、胶体对污染物的吸附、胶体促进的污染物迁移、胶体的固定的研究。然而,胶体对污染物在土壤中环境行为的影响是多方面的。关于胶体对土壤吸附污染物的贡献、胶体对污染物生物有效性的影响的研究还不多见。另外,对于在生命活动旺盛的土壤中普遍存在的优势流研究也仅停留在室内小型土柱或肉眼可见的几种示踪剂上,并且鲜有关于污染物在土壤剖面中究竟如何分布及优势流对污染物迁移的直接影响的报道。因此有必要开展对模拟大孔隙和自然条件下优势流的研究。为此,本文选取Cd作为供试污染物,采用等温吸附试验、动力学试验、生物盆栽试验、模拟大孔隙土柱淋洗试验、田间淋洗试验等方法,系统研究了土壤胶体和优势流对镉在土壤环境中的吸附、迁移和生物有效性等环境行为的影响及其可能机制。主要结果如下:
     1、黑土、黄棕壤、水稻土、红壤不同粒级组分(粘粒<2μm,粉粒2~20μm,细砂粒20~200μm,粗砂粒200~2000μm)对镉的吸附均表现为:粘粒>粉粒>粗砂粒>细砂粒,且粒级间的差异都达到显著水平;各粒级组分对镉的吸附均符合Langmiur方程和Frendlich方程,吸附量最大的粘粒组分对镉的平均最大吸附量为202.8±64.6 mmol·kg~(-1),粉粒、细砂粒、粗砂粒对镉的最大吸附量分别为135.0±39.2mmol·kg~(-1)、47.0±9.4 mmol·kg~(-1)、81.3±33.7 mmol·kg~(-1),粘粒分别平均是粉粒、细砂粒、粗砂粒的1.53±0.30倍、4.23±0.67倍、2.57±0.55倍;各组分对镉的吸附量之间的差异随着镉的浓度增大而增大。各组分对土壤吸附镉的贡献率为:粉粒(52.2±15.3)>粘粒(32.3±14.9)>细砂粒(13.8±3.4)>粗砂粒(1.7±1.4)(只有红壤中粘粒>粉粒),土壤80%~90%的镉吸附在<20μm的组分上,粗砂粒的贡献基本可以忽略不计。各因素对吸附的影响大小为:粒级>有机质>平衡pH,而游离氧化铁无显著影响。建立了最大吸附量和分配系数与各影响因子的多元回归方程:
     最大吸附量=-239.098+54.935×粒级赋值+34.261×平衡pH-2.844×游离氧化铁含量+2.215×有机质含量
     分配系数=-174.182+26.332×粒级赋值+29.795×平衡pH+1.675×游离氧化铁含量+1.604×有机质含量
     2、黄棕壤不同粒级组分(粘粒、粉粒、细砂粒、粗砂粒)对镉的吸附动力学与热力学研究表明,两种温度下(25℃和45℃)各粒级组分对镉的吸附均可分为快反应和慢反应两个阶段,0-15min内为快反应阶段,吸附量达到饱和吸附量的95%以上,此后为慢反应阶段;随着温度由25℃升高到45℃,各组分对镉的饱和吸附量增加了4.86%~25.3%;各组分对镉的吸附动力学符合拉格朗日假二级动力学方程,吸附过程以化学吸附为主;二级动力学吸附速率常数表明,随着各组分粒级增大,吸附速率降低;在试验温度范围内随着温度升高,吸附速率加快;吸附过程的限速步骤为颗粒间扩散;各粒级组分对镉的吸附为吸热反应,反应能自发进行。
     3、盆栽试验结果表明:(1)各处理黑麦草株高、地上部干重、根干重、总生物量都表现为胶体>原土>去胶组分,胶体上总生物量分别平均是原土和去胶组分的1.31±0.02倍和1.82±0.21倍。(2)黑麦草地上部与根中Cd浓度、地上部与根对Cd的富集系数都表现为胶体<原土<去胶组分,表明Cd的生物有效性胶体<原土<去胶组分,这主要是各组分的表面性质、有机质含量、pH等的差异引起的。(3)加入EDTA增加了Cd的解吸,导致黑麦草地上部与根中Cd浓度显著增加,黑麦草地上部干重、根干重、总生物量降低,但植株Cd总量与CK相比还是有所上升。EDTA对Cd的活化作用受到各处理pH的强烈影响,表现为去胶组分>原土>胶体,黄棕壤>红壤,EDTA对各处理植株Cd总量的影响与此吻合。至于地上部与根部Cd浓度对EDTA的响应与上述顺序不完全一致则反映了EDTA对不同组分上黑麦草Cd的迁移系数的影响差异:EDTA使黄棕壤胶体和原土Cd的迁移系数显著增加,而对黄棕壤去胶组分和红壤三种基质Cd的迁移系数无显著影响。(4)两种土壤在各方面差异显著,一次平衡试验表明,EDTA浓度为0时,黄棕壤各组分Cd的解吸率分别表现为胶体和原土约为0,去胶组分组分为10.5±3.5%,红壤各组分平均为20.8±1.9%。可以推测这是各处理黑麦草长势及体内Cd浓度差异的直接原因。
     4、室内人工大孔隙土柱试验结果表明,大孔隙的存在使Cd的迁移量增加了75%,在10个孔隙体积内大孔隙.对照处理淋滤液中镉的浓度平均是对照处理的106倍。淋洗液中加入胶体和DOM使大孔隙土柱Cd的迁移量分别增加了16%和50%。胶体和DOM对Cd迁移的促进作用在3个孔隙体积内表现得特别明显,淋出液中镉的浓度平均分别是不加胶体或DOM的大孔隙处理的2.47(胶体)和2.66倍(DOM)。
     5、田间试验结果表明:土壤剖面具有很大空间变异性,优势流对Cd的迁移起主导作用;Cd在土壤基质中的扩散被限制在几厘米范围内,大孔隙的存在使亮蓝和Cd的迁移距离增加了数十倍;胶体通过在土壤基质毛细管中的堵塞效应和在优势流区域大孔隙壁上的沉积抑制了Cd在土壤中的迁移(约10 cm),而DOM与对照相比使Cd的向下迁移增加了约10-20 cm;三个剖面中亮蓝浓度与交换性镉和全镉浓度间有强烈正相关关系,表明亮蓝与Cd在剖面中迁移的优势流路径非常相似。
     总之,胶体对Cd的强烈吸附作用能在一定程度上控制Cd的生物有效性,进而制约Cd进入生物圈,从而降低Cd的环境风险。优势流对Cd的迁移起主导作用,而胶体的不稳定性使得其在真实环境中对Cd的促进迁移作用具有很大的偶然性和瞬时性,特别是不饱和多孔介质中的复杂环境条件对预测胶体及污染物的环境行为将是一巨大挑战。
The risk of leaching of strongly adsorbing contaminants had been assumed to be low, but such compounds have been reported to move large distances in soils and sediments. This has motivated research towards facilitated transport and preferential flow, two mechanisms that could enhance transport rates. Laboratory column studies have demonstrated co-transport of contaminants sorbed to suspended colloids, or simultaneous leaching of in situ colloids and contaminants, while field studies have revealed the association of contaminants with colloids in drain or groundwater. Facilitated transport and preferential flow are interrelated because colloid transport velocities are higher in macropores, where preferential flow occurs. While the direct effect of preferential flow on the transport of colloid and the colloid-facilitated contaminiants transport is unavailable. The objectives of this research were:
     1.To determine the general contribution of colloid on the adsorption of Cadmium in different soils;
     2.To determine the effect of colloid on the bioavailability of Cadmium to plant;
     3.To determine the effect of colloid on the transport of Cadmium in a repacked soil column with quartz veins;
     4.To determine the effect of colloid on the transport of Cadmium in field soil monolith and the extent to which the distribution of Cadmium in the profile were associated with the observed preferential flow paths.
     To meet these objectives, batch experiments and pot experiments and soil column experiments and a field experiment were conducted. The main results are as follows:
     1. Batch experiments were conducted to investigate the equilibrium sorption isotherms for Cd~(2+) onto particle-sized fractions(2000-200μm, 200-20μm, 20-2μm and 2-0μm, which were named coarse sand, fine sand, silt and clay according to international system respectively) derived from four typical soils(black soil, yellow brown soil, huangnitu paddy soil, and red soil) in China by the use of a novel technology combined with wet sieving, sedimentation-siphoning and centrifugation method. The results showed that adsorption of Cd~(2+) by these fractions could be described by the Langmiur equation Ce=Xm·Ce/X-k~(-1) and Frendlich equation X=Kd·Ce~n. The maximum adsorption of Cd~(2+) (Xm) and distribution coefficient (Kd) decreased in an order: clay>silt>coarse sand>fine sand in the four soils. The average maximum adsorption of Cd~(2+)by the clays of the four soils was 202.8±64.6mmol·kg~(-1), and the maximum adsorption of Cd~(2+) by silt and fine sand and coarse sand were 135.0±39.2 mmol·kg~(-1), 47.0±9.4 mmol·kg~(-1) and 81.3±33.7 mmol·kg~(-1) respectively. Accounting to the contents of the fractions in the soils, the contribution of each fraction followed by the order: silt (52.2±15.3%)> clay (32.3±14.9%) > fine sand (13.8±3.4%)> coarse sand (1.7±1.4%). The percent of Cd~(2+) adsorbed by silt and clay of the four soils exceeded 80%. By choosing particle size, organic matter, iron oxide and equilibrium pH value as parameters, SPSS software and Multivariate Statistical Analysis were employed to build the regression model of adsorption of Cd~(2+) and to evaluate the effect of these factors on it. The results showed that particle size, organic matter and equilibrium pH value significantly affected the adsorption of Cd~(2+). But iron oxide had no significant effect on the adsorption.
     2. A batch method was used to investigate the kinetics and thermodynamics of cadmium adsorption onto different particle-sized fractions derived from yellow brown soil by using the same method as described above. The results showed that the reaction of adsorption can be divided into two types: a fast reaction in the first 15min and a slow reaction in the later reaction course. The amounts of Cd~(2+) adsorbed by the fast reaction exceed 95% of the adsorption capacity. As the temperature increased from 25℃to 45℃, the adsorption capacities of the four fractions increase by 4.86%-25.3%. First-order rate equation and pseudo second-order rate equations were applied to express adsorption kinetics. Adsorption processes for Cd~(2+) onto the four fractions are found to follow pseudo-second order type adsorption kinetics. The pseudo second-order rate constants exhibited that adsorption speed to reach equilibrium decreased with the increase of particle size. Intra-particle diffusion might be the major rate-limiting step. Thermodynamic parameters including△H°、△S°and△G°were also calculated from graphical interpretation of the experimental data. Positive△H°values indicated the adsorption processes to be endothermic. Negative△G°values implied that adsorption reaction was a spontaneous process.
     3. A greenhouse pot experiment was conducted to investigate the bioavailability of Cd of different soil matrix (colloid, raw soil and de-colloid soil, derived from yellow brown soil and red soil and artificially contaminated by Cd with a concentration of 10.91mg·kg~(-1)) to ryegrass and the effect of EDTA on it. A laboratory batch experiment was also conducted to study the potential mechanism involved it. The results showed that: (1) the mean shoot height, shoot dry weight, root weight and the total biomass were in the same order of colloid > raw soil > de-colloid soil. The total biomass in the colloid treatment was 1.31±0.02 and 1.82±0.21 times over that in raw soil and de-colloid soil respectively. (2) Cd concentration and bioaccumulation factor of shoot and root were followed by colloid < raw soil < de-colloid soil, indicating the bioavailability of Cd to ryegrass was colloid < raw soil < de-colloid soil. (3) EDTA addition (disodium salt, 27.27 mg·kg~(-1)) led to significant increase in Cd concentration of shoot and root and decrease in biomass of ryegrass. (4) Batch experiment revealed that the activation effect magnitude of EDTA on Cd was followed by de-colloid soil > raw soil > colloid, and this effect was influenced intensively by the initial pH value.
     4. A laboratory soil column experiment was conducted to investigate the artificial macropore on the colloid and DOM mediated Cd transport. Compared with the control treatment with no macropore in the soil column, macropore treatment enhanced leaching by 75%. The addition of colloid and DOM increased the loading of Cd by 16% and 50% respectively.
     5. The potential role of soil colloids and DOM in transporting Cd was investigated through in situ undisturbed paddy soil monoliths. In addition, Brilliant Blue FCF was used as a tracer to assess the effect of preferential flow on Cd down migration. Soil colloid fractionated from the paddy soil and DOM from rice straw were spiked with 5 mg·L~(-1) of Cd, and then applied onto the surface of two soil plots (1m×1m) to maintain 150 mm water depth after 72 hour equilibration for Cd~(2+) with soil colloid or DOM. The solution containing Cd but without the addition of soil colloid and DOM was also applied as control treatment. One day later 100 L of dye solution (1g·L~(-1)) and sequent 100 L of tap water were applied to the plot. After the infiltration was completed, the vertical profiles excavated in the plot were observed for dye movement or preferential flow. Soil samples collected from homogeneously stained and unstained areas with different dye intensities at the various depths were determined for Brilliant Blue, water soluble Cd, exchangeable Cd, and total Cd. The results obtained from classic statistical and geostatistical analyses showed that deep penetration of Cd and Brilliant Blue into the soil profile took place due to preferential flow through macropores, mainly earthworm channels, with much of the chemicals thus bypassing the soil matrix. Dye tracer and Cd distribution within the soil matrix was fairly restricted to several centimeters. Colloid restrained the migration of dye and Cd both in the matrix and preferential flow area. DOM facilitated the transport of Cd and Brilliant Blue in matrix and macropores by about 10 cm over that of the control. Pearson correlation analysis revealed strong associations between Brilliant Blue concentrations and exchangeable and total Cd concentrations in the three plots indicating that they had taken the same preferential flow pathway.
引文
Albrecht A, Schultze U, Bugallo P B, et al, 2003. Behavior of a surface applied radionuclide and a dye tracer in structured and repacked soil monoliths[J]. Journal of Environmental Radioactivity, 68(1): 47-64.
    Allaire S E, Gupta S C, Moncrief J F, 2000a. Water and solute movement in soil as influenced by macropore characteristics: 1. Macropore continuity[J]. Journal of Contaminant Hydrology, 41(3-4): 283-301.
    Allaire S E, Gupta S C, Moncrief J F, 2000b. Water and solute movement in soil as influenced by macropore characteristics: 2. Macropore tortuosity [J]. Journal of Contaminant Hydrology, 41(3-4): 303-315.
    Allaire S E, Gupta S C, Nieber J, et al, 2002a. Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions [J]. Journal of Contaminant Hydrology, 58(3-4): 299-321.
    Allaire S E, Gupta S C, Nieber J, et al, 2002b. Role of macropore continuity and tortuosity on solutetransport in soils: 2. Interactions with model assumptions for macropore description[J]. Journal of Contaminant Hydrology, 58(3-4): 283-298.
    Assem A S, Constantinos V C, 1995. Modeling of colloid and colloid-facilitated contaminant transport in a two-dimensional fracture with spatially variable aperture[J]. Transport in Porous Media, 20(3): 197-221.
    Atteia O, Couture C, Perret D, 1998. Factors controlling colloidal transport in a karst aquifer[J]. Physics and Chemistry of The Earth, 23(2): 163-169.
    Barton C D, Karathanasis A D, 2003. Colloid-enhanced desorption of zinc in soil monoliths[J]. International Journal of Environmental Studies, 60(4): 395-409.
    Bates J K, Bradley J P, Teetsov A, et al, 1992. Colloid formation during waste form reaction: implications for nuclear waste disposal[J]. Science, 256: 649-651.
    Bekhit H M, Hassan A E, Harris-Burr R, et al, 2006. Experimental and numerical investigations of effects of silica colloids on transport of strontium in saturated sand columns[J]. Environmental Science and Technology, 40(17): 5402-5408.
    Bergendahl J, 2005. Batch leaching testsxolloid release and pah leachability[J]. Soil and Sediment Contamination, 14(6): 527-543.
    Bradford S A, Bettahar M, Simunek J, et al, 2004. Straining and attachment of colloids in physically heterogeneous porous media[J]. Vadose Zone Journal, 3(3): 384-394.
    Citeau L, Lamy I, Oort van F, et al, 2003. Colloidal facilitated transfer of metals in soils under different land use[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217:11-19.
    Contardi J S, Turner D R, Ahn, T M, 2001. Modeling colloid transport for performance assessment[J]. Journal of Contaminant Hydrology, 47: 323-333.
    Corapcioglu M Y, Jiang S, Kim S, 1999. Comparison of kinetic and hybrid-equilibrium models simulating colloid-facilitated contaminant transport in porous media[J]. Transport in Porous Media,36(3): 373-390.
    Cote C M, Bristow K L, Ross P J, 2000. Increasing the efficiency of solute leaching: impacts of flow interruption with drainage of the "preferential flow paths"[J]. Journal of Contaminant Hydrology, 43: 191-209.
     Couture C, Mavrocordatos D, Atteia O, et al, 1998. The genesis and transformation of organo-mineral colloids in a drained peatland area[J]. Physics and Chemistry of The Earth, 23(2): 153-157.
    Crist J T, Zevi Y, McCarthy J F, et al, 2005. Transport and retention mechanisms of colloids in partially saturated porous media[J]. Vadose Zone Journal, 4(1): 184-195.
    Davis C J, Eschenazi E, Papadopoulos K D, 2002. Combined effects of Ca~(2+) and humic acid on colloid transport through porous media[J]. Colloid Polym Science, 280: 52-58.
    de Jonge H, Jacobsen O H, de Jonge L W, et al, 1998. Colloid-facilitated transport of pesticide in undisturbed soil columns[J]. Physics and Chemistry of The Earth, 23(2): 187-191.
    de Jonge L W, Kjaergaard C, Moldrup P, 2004. Colloids and colloid-facilitated transport of contaminants in soils: an introduction[J]. Vadose Zone Journal, 3(2): 321-325.
    de Jonge L W, Moldrup P, Rubaek G H, et al, 2004. Particle leaching and particle-facilitated transport of phosphorus at field scale[J]. Vadose Zone Journal, 3(2): 462-470.
    Denaix L, Semlali R M, Douay F, 2001. Dissolved and colloidal transport of Cd, Pb, and Zn in a siltloam soil affected by atmospheric industrial deposition[J]. Environmental Pollution, 114(1): 29-38.
    DeNovio N M, Saiers J E, Ryan J N, 2004. Colloid movement in unsaturated porous media:recent advances and future directions[J]. Vadose Zone Journal, 3(3): 338-351.
    Elimelech M, O'Meilat C R, 1990. Kinetics of deposition of colloidal particles in porous media[J]. Environmental Science and Technology, (24): 1528-1536.
    Elliott H A, Liberati M R, Huang C P, 1986. Competitive adsorption of heavy metals by soils[J]. Journal of Environmental Quality, 15(3): 214-219.
    Eriksson N, Gupta A, Destouni G, 1997. Comparative analysis of laboratory and field tracer tests for investigating preferential flow and transport in mining waste rock[J]. Journal of Hydrology, 194: 143-163.
    Evangelou M W, Ebel M, Schaeffer A, 2006. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco nicotiana tabacum[J]. Chemosphere, 63(6): 996-1004.
    Faure H M, Sardin M, Vitorge P, 1996. Transport of clay particles and radioelements in a salinity gradient: experiments and simulations[J]. Journal of Contaminant Hydrology, 21(1-4): 255-267.
    Grolimund D, Borkovec M, 2006. Release of colloidal particles in natural porous media by monovalent and divalent cations[J]. Journal of Contaminant Hydrology, 87(3-4): 155-175.
    Grolimund D, Elimelech M, Borkovec M, 2001. Aggregation and deposition kinetics of mobile colloidal particles in natural porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(1-2): 179-188.
    Gupta A, Destouni G, Jensen M B, 1999. Modelling tritium and phosphorus transport by preferential flow in structured soil[J]. Journal of Contaminant Hydrology, (35): 389-407.
    Han J, Jin Y, Willson C S, 2006. Virus retention and transport in chemically heterogeneous porous media under saturated and unsaturated flow conditions[J]. Environmental Science & Technology,40(5): 1547-1555.
    Hangen E, Gerke H H, Schaaf W, et al, 2004. Flow path visualization in a lignitic mine soil using iodine-starch staining[J]. Geoderma, 120(1-2): 121-135.
    Heijs A W J, Ritsema C J, Dekker L W, 1996. Three-dimensional visualization of preferential flow patterns in two soils[J]. Geoderma, (70): 101-116.
    Jacobsen O H, Moldrup P, de J H, et al, 1998. Mobilization and transport of natural colloids in a macroporous soil[J]. Physics and Chemistry of The Earth, 23(2): 159-162.
    Johnson C R, Hellerich L A, Nikolaidis N P, et al, 2001. Colloid mobilization in the field using citrate to remediate chromium[J]. Ground Water, 39(6): 895-903.
    Kaiser K, Guggenberger G, Zech W, 1998. Organic colloids in forest soils: 2. Abiotic immobilization inthe mineral soil[J]. Physics and Chemistry of The Earth, 23(2): 147-151.
    Kaminski M D, Dimitrijevic N M, Mertz C J, et al, 2005. Colloids from the aqueous corrosion of uranium nuclear fuel[J]. Journal of Nuclear Materials, 347: 77-87.
    Kaminski M D, Goldberg M M, Mertz C J, 2005. Colloids from the aqueous corrosion of aluminium-based nuclear fuel[J]. Journal of Nuclear Materials, 347: 88-93.
    Kaplan D, Bertsch P M, Adriano D C, 1995. Facilitated transport of contaminant metals through an acidified aquifer[J]. Ground Water, 33(5): 708-721.
    Karathanasis A D, 2000. Colloid-mediated transport of Pb through soil porous media[J]. International Journal of Environmental Studies, 57(5): 579-596.
    Karathanasis A D, 1999. Subsurface migration of copper and zinc mediated by soil colloids[J]. Soil Science Society of America Journal, 63: 830-838.
    Karathanasis A D, Johnson D M, 2006a. Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids[J]. Science of The Total Environment, 354(2-3): 157-169.
    Karathanasis A D, Johnson D M, 2006b. Stability and transportability of biosolid colloids through undisturbed soil monoliths[J]. Geoderma, 130(34): 334-345.
    Karathanasis A D, Johnson D M, Matocha C J, 2005. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils[J]. Journal of Environmental Quality, 34(4): 1153-1164.
    Karathanasis A, Johnson C, Matocha C, Subsurface transport of heavy metals mediated by biosolid colloids in waste-amended soils. In Colloidal Transport in Porous Media, 2007; p 175-201
    Kasteel R, Gamier P, Vachier P, et al, 2007. Dye tracer infiltration in the plough layer after straw incorporation[J]. Geoderma, 137(3-4): 360-369.
    Kersting A B, Efurd, Da W, Finnegan D L, Rokop D J, et al, 1999. Migration of plutonium in ground water at the nevada test site[J]. Nature, 397: 56-59.
    Kjaergaard C, de Jonge L, Moldrup P, et al, 2004. Water-dispersible colloids: effects of measurement method, clay content, initial soil matric potential, and wetting rate[J]. Vadose Zone Journal, 3(2): 403-412.
    Kjaergaard C, Moldrup P, de Jonge L W, et al, 2004. Colloid mobilization and transport in undisturbed soil columns.ii. The role of colloid dispersibility and preferential flow[J]. Vadose Zone Journal, 3(3): 424-433.
    Laegdsmand M, Villholth K G, Ullum M, et al, 1999. Processes of colloid mobilization and transport in macroporous soil monoliths[J]. Geoderma, 93(1-2): 33-59.
    Li J Y, Xu R K, Tiwari D, et al, 2006. Mechanism of aluminum release from variable charge soils induced by low-molecular-weight organic acids: kinetic study [J]. Geochimica et Cosmochimica Acta, 70(11): 2755-2764.
    Lippold H, Mansel A, Kupsch H, 2005. Influence of trivalent electrolytes on the humic colloid-borne transport of contaminant metals: competition and flocculation effects[J]. Journal of Contaminant Hydrology, 76(3-4): 337-352.
    Liu X, Zhang S, Wu W, et al, 2007. Metal sorption on soils as affected by the dissolved organic matter in sewage sludge and the relative calculation of sewage sludge application[J]. Journal of Hazardous Materials,: In Press.
    Makris K C, Grove J H, Matocha C J, 2006. Colloid-mediated vertical phosphorus transport in a waste-amended soil[J]. Geoderma, 136(1-2): 174-183.
    McCarthy J F, Zachara J M, 1989. Subsurface transport of contaminants[J]. Environmental Science and Technology, 23:496-502.
    McCarthy J F, McKay L D, 2004. Colloid transport in the subsurface: past, present, and future challenges[J]. Vadose Zone Journal, 3(2): 326-337.
    McCarthy J F, McKay L D, Bruner D D, 2002. Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite[J]. Environmental Science and Technology, 36(17):3735-3743.
    McCarthy J F, Shevenell L, 1998. Processes controlling colloid composition in a fractured and karstic aquifer in eastern Tennessee, USA[J]. Journal of Hydrology, 206(3-4): 191-218.
    McGechan M B, Lewis D R, 2002. Transport of particulate and colloid-sorbed contaminants through soil, part1: general principles[J]. Biosystems Engineering, 83(3): 255-273.
    Moradi A, Abbaspour K C, Afyuni M, 2005. Modelling field-scale cadmium transport below the root zone of a sewage sludge amended soil in an arid region in central iran[J]. Journal of Contaminant Hydrology, 79(3-4): 187-206.
    Mori A, Alexander W R, Geckeis H, et al, 2003. The colloid and radionuclide retardation experiment at the grimsel test site: influence of bentonite colloids on radionuclide migration in a fractured rock[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1-3): 33-47.
    Morris C, Mooney S J, 2004. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers[J]. Geoderma, 118(1-2): 133-143.
    Norrstrom A C, Jacks G, 1998. Concentration and fractionation of heavy metals in roadside soils receiving de-icing salts[J]. The Science of The Total Environment, 218(2-3): 161-174.
    Novikov A P, Kalmykov S N, Utsunomiya S, et al, 2006. Colloid transport of plutonium in the far-field of the mayak production association, Russia[J]. Science, 314(5799): 638-641.
    Ohrstrom P, Hamed Y, Persson M, et al, 2004. Characterizing unsaturated solute transport by simultaneous use of dye and bromide[J]. Journal of Hydrology, 289(1-4): 23-35.
    Ohrstrom P, Persson M, Albergel J, et al, 2002. Field-scale variation of preferential flow as indicated from dye coverage[J]. Journal of Hydrology, 257(1-4): 164-173.
    Oostindie K, Bronswijk J J B, 1995. Consequences of preferential flow in cracking clay soils for contamination-risk of shallow aquifers[J]. Journal of Environmental Management, (43): 359-373.
    Ozverdi A, Erdem M, Cu~(2+), Cd~(2+) and Pb~(2+) adsorption from aqueous solutions by pyrite and synthetic iron sulphide[J]. Journal of Hazardous Materials, In Press, Corrected Proof: Pierret A, Capowiez Y, Belzunces L, et al, 2002. 3d reconstruction and quantification of macropores using x-ray computed tomography and image analysis[J]. Geoderma, 106(3-4): 247-271.
    Posadas DAN, Tannus A, Panepucci H, et al, 1996. Magnetic resonance imaging as a non-invasive technique for investigating 3-d preferential flow occurring within stratified soil samples[J]. Computers and Electronics in Agriculture, 14: 255-267.
    Qin F, Wen B, Shan X Q, et al, Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat[J]. Environmental Pollution, In Press, Corrected Proof:
    Rosenbom A E, Jakobsen P R, 2005. Infrared thermography and fracture analysis of preferential flow in chalk[J]. Vadose Zone Journal, 4(4): 271-280.
     Rousseau M, Di Pietro L, Angulo J R, et al, 2004. Preferential transport of soil colloidal particles:physicochemical effects on particle mobilization[J]. Vadose Zone Journal, 3(3): 247-261.
    Roy S B, Dzombak D A, 1997. Chemical factors influencing colloid-facilitated transport of contaminants in porous media[J]. Environmental Science and Technology, 31: 656-664.
    Ryan J N, Elimelech M, 1996. Colloid mobilization and transport in groundwater J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107:1-56.
     Saiers J E, Hornberger G M, 1996. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns[J]. Water Resources Research, 32: 33-41.
    Sandra G G, Jonsson M, Wold S, 2006. Temperature effect on the stability of bentonite colloids in water[J]. Journal of Colloid and Interface Science, (298): 694-705.
    Schelde K, Moldrup P, Jacobsen O H, et al, 2002. Diffusion-limited mobilization and transport of natural colloids in macroporous soil[J]. Vadose Zone Journal, 1(1): 125-136.
    Schoen R, Gaudet J P, Bariac T, 1999. Preferential flow and solute transport in a large lysimeter, under controlled boundary conditions[J]. Journal of Hydrology, 215: 70-81.
    Schoen R, Gaudet J P, Elrick D E, 1999. Modeling of solute transport in a large undisturbed lysimeter, during steady-state water flux[J]. Journal of Hydrology, 215: 82 - 93.
    Sen T K, Khilar K C, 2006. Review on subsurface colloids and colloid-associated contaminant transportin saturated porous media[J]. Advances in Colloid and Interface Science, (119): 71-96.
    Seta A K, Karathanasis A D, 1996a. Water dispersible colloids and factors influencing their dispersibility from soil aggregates[J]. Geoderma, 74(3-4): 255-266.
    Seta A K, Karathanasis A D, 1996b. Colloid-facilitated transport of metolachlor through intact soil columns[J]. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes, B31(5): 949-968.
    Simunek J, Jarvis N J, van Genuchten M T, et al, 2003. Review and comparison of models for describingnon-equilibrium and preferential flow and transport in the vadose zone[J]. Journal of Hydrology, (272): 14-35.
    Slater L, Binley A, Versteeg R, et al, 2002. A 3d ERT study of solute transport in a large experimental tank[J]. Journal of Applied Geophysics, 49(4): 211-229.
     Solovitch-Vella N, Gamier J M, Philippe C, 2006. Influence of the colloid type on the transfer of ~(60)Co and Sr in silica sand column under varying physicochemical conditions [J]. Chemosphere, 65(2): 324-331.
    Sprague L A, Herman J S, Hornberger G M, et al, 2000. Atrazine adsorption and colloid-facilitated transport through the unsaturated zone[J]. Journal of Environmental Quality, 29(5): 1632-1641.
     Till S, Horst H G, 2007. Preferential flow patterns in paddy fields using a dye tracer[J]. Vadose Zone Journal, 6(6): 105-115.
     Trolimund D, Borkovec M, Barmettler K, et al, 1996. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:a laboratory column study[J]. Environmental Science and Technology, 30: 3118-3123.
    Tulve N S, Young T C, 2001. Interactions of natural colloidal material and phenanthrene in the aquatic environment[J]. Remediation Journal, 11(3): 35-47.
    Tumer K, Stoffregen H, Wessolek G, 2006. Seasonal dynamics of preferential flow in a water repellent soil[J]. Vadose Zone Journal, 5(5): 405-411.
    Um W, Papelis C, 2002. Geochemical effects on colloid-facilitated metal transport through zeolitized tuffs from the Nevada Test Site[J]. Environmental Geology, 43(1): 209-218.
    Violante A, Ricciardella M, Pigna M, 2003. Adsorption of heavy metals on mixed Fe-Al oxides in the absence or presence of organic ligands[J]. Water, Air, and Soil Pollution, 145: 289-306.
    Wan J, Tokunaga T K, 1997. Film straining of colloids in unsaturated porous media: conceptual model and experimental testing[J]. Environmental Science and Technology, 31(8): 2413-2420.
    Wieland E, Tits J, Bradbury M H, 2004. The potential effect of cementitious colloids on radionuclide mobilisation in a repository for radioactive waste[J]. Applied Geochemistry, 19(1): 119-135.
    Wong J W, Li K L, Zhou L X, et al, 2007. The sorption of Cd and Zn by different soils in the presence of dissolved organic matter from sludge[J]. Geoderma, 137(3-4): 310-317.
    Xu R K, Zhao A Z, Ji G L, 2003. Effect of low-molecular-weight organic anions on surface charge of variable charge soils[J]. Journal of Colloid and Interface Science, 264(2): 322-326.
    Zevi Y, Dathe A, McCarthy J F, et al, 2005. Distribution of colloid particles onto interfaces in partially saturated sand[J]. Environmental Science and Technology, 39(18): 7055-7064.
    Zhou L X, Wong J W, 2001. Effect of dissolved organic matter from sludge and sludge compost on soilcopper sorption[J]. Journal of Environmental Quality, 30(3): 878-883.
    
    
    
    陈风琴,石辉,2006.岷江上游三种典型植被下土壤优势流现象的染色法研究[J].生态科学,5(1):69-73.
    
    程竹华,张佳宝,徐绍辉,1999.黄淮海平原三种土壤中优势流现象的试验研究[J].土壤学报,36(2):154-161.
    
    冯杰,张佳宝,朱安宁,2003.论分形几何在土壤大孔隙研究中的应用[J].灌溉排水学报, 22(5):6-9.
    
    冯杰,张佳宝,郝振纯等,2004.水及溶质在有大孔隙的土壤中运移的研究Ⅱ数值模拟[J].水 文地质工程地质,31(4):77-82.
    
    郭飞,徐绍辉,刘建立,2005.土壤图像孔隙轮廓线分形特征及其应用[J].农业工程学报, 21(7):6-10.
    
    郭观林,周启星,2005.镉在黑土和棕壤中吸附行为比较研究[J].应用生态学报,16(12): 2403-2408.
    
    黄昌勇,2000.土壤学[M],中国农业出版社,北京.
    
    金相灿,1992.沉积物污染化学[M],中国环境科学出版社,北京.
    
    李程峰,刘云国,曾光明等,2005.pH值影响Cd在红壤中吸附行为的实验研究[J].农业环境科学 学报,24(1):84-88.
    
    李学垣,1997.土壤化学及实验指导[M],中国农业出版社,北京.
    
    廖敏,谢正苗,黄昌勇,1998.镉在红壤中的吸附特征[J].浙江大学学报(农业与生命科学 版),24(2):199-202.
    
    宁丽丹,石辉,周海军等,2005.岷江上游不同植被下土壤团聚体特征分析[J].应用生态学报, 16(8):1405-1410.
    
    牛健植,余新晓,2005.优先流问题研究及其科学意义[J].中国水土保持科学,3(3):110-116.
    
    牛健植,余新晓,张志强,2006.优先流研究现状及发展趋势[J].生态学报,26(1):23 1-243.
    
    秦耀东,胡克林,1998.大孔隙对农田耕作层饱和导水率的影响[J].水科学进展,9(2): 107-111.
    
    秦耀东,任理,王济,2000.土壤中大孔隙流研究进展与现状[J].水科学进展,11(2): 203-207.
    
    区自清,贾良清,金海燕等,1999.大孔隙和优先水流及其对污染物在土壤中迁移行为的影响 [J].土壤学报,36(3):341-347.
    
    任俊,沈健,卢寿慈,2005.颗粒分散科学与技术[M],化学工业出版社,北京.
    
    石辉,刘世荣,2005.森林土壤大孔隙特征及其生态水文学意义[J].山地学报,23(5):533-539.
    
    徐仁扣,肖双成,季国亮,2005.低分子量有机酸影响可变电荷土壤吸附铜的机制[J].中国环??境科学,25(3):334-338.
    
    徐仁扣,赵安珍,季国亮,2003.低分子量有机酸对砖红壤表面电荷的影响[J].土壤通报,34(6):510-512.
    
    杨亚提,白锦鳞,曹翠兰等,1993.陕西三种土壤对铅、镉吸附特性的研究[J].西北农林科技大学学报(自然科学版),21(1):81-85.
    
    杨亚提,王旭东,张一平等,2003.小分子有机酸对恒电荷土壤胶体铅吸附-解吸的影响[J].应用生态学报,11(11):1921-1924.
    
    于天仁,季国亮,丁昌璞,1996.可变电荷土壤的电化学[M],科学出版社,北京.
    
    张洪江,程金花,何凡等,2006.长江三峡花岗岩地区优先流运动及其模拟[M],科学出版社, 北京.
    
    邹献中,徐建民,赵安珍等,2003.离子强度和pH对可变电荷土壤与铜离子相互作用的影响[J].土壤学报,40(6):845-851.
    
    Agrawal A, Sahu K K, 2006. Kinetic and isotherm studies of cadmium adsorption on manganese noduleresidue[J]. Journal of Hazardous Materials, 137(2): 915-924.
    
    Amacher M C, Amacher J K, Selim H M, et al, 1986. Retention and release of metals by soils-evaluation of several models[J]. Geoderma, 38: 131-154.
    
    Barton C D, Karathanasis A D, 2003. Influence of soil colloids on the migration of atrazine and zincthrough large soil monoliths[J]. Water, Air, and Soil Pollution, 143(1 - 4): 3-21.
    
    Karathanasis A D, Johnson D M, Matocha C J, 2005. Biosolid colloid-mediated transport of copper, zinc,and lead in waste-amended soils[J]. Journal of Environmental Quality, 34(4): 1153-1164.
    
    Li Y, Yang F, Dong D, et al, 2006. Study on fractions of adsorbed Pb and Cd onto natural surfacecoatings[J]. Chemosphere, 62(10): 1709-1717.
    
    Lion L W, Altmann R S, Leckle J O,1982. Trace metal adsorption characteristics of estuarine particulatematter evaluation of contributions of Fe/ Mn oxide and organic surface coatings[J]. EnvironmentalScience & Technology, 16: 660-666.
    
    McCarthy J F, Zachara J M, 1989. Subsurface transport of contaminants[J]. Environmental Science andTechnology, 23: 496-502.
    
    Trolimund D, Borkovec M, Barmettler K, et al, 1996. Colloid-facilitated transport of strongly sorbingcontaminants in natural porous media:a laboratory column study[J]. Environmental Science andTechnology, 30: 3118-3123.
    
    陈家煌,李丽,2003.粘性土颗粒分析技术改进初探[J].合肥工业大学学报(自然科学版),26(2): 311-314.
    
    邓时琴,徐梦熊,1982.中国土壤颗粒研究Ⅰ.太湖地区白土型水稻土中白土层土壤及其各级颗 粒的理化特性[J].土壤学报,19(1):22-34.
    
    邓时琴,徐梦熊,1990.中国土壤颗粒研究Ⅲ.赣中丘陵旱地红壤及其各级颗粒的理化特性[J].土
    
    壤学报,27(4):368-376.
    
    邓时琴,徐梦熊,1986.中国土壤颗粒研究Ⅱ.太湖地区黄泥土型水稻土及其各级颗粒的理化特 性[J].土壤学报,23(1):57-69.
    
    郭观林,周启星,2006.重金属镉在黑土和棕壤中的解吸行为比较[J].环境科学,27(5):1013-1019.
    
    黄昌勇,2000.土壤学[M],中国农业出版社,北京.
    
    李程峰,刘云国,曾光明等,2005.pH值影响Cd在红壤中吸附行为的实验研究[J].农业环境科学学 报,24(1):84-88.
    
    李学垣,1997.土壤化学及实验指导[M],中国农业出版社,北京.
    
    李志辉,罗平,2005.SPSS for Windows统计分析教程(第2版)[M],电子工业出版社,北京.
    
    廖敏,黄昌勇,谢正苗,1999.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,19(1): 81-86.
    
    林克惠,赵平,祖艳群,2002.微量元素对作物和人体的毒害作用及其控制[J].云南农业大学学报, 17(1):94-98.
    
    南京农业大学,1986.土壤农化分析[M],中国农业出版社,北京.
    
    倪吾钟,龙新宪,杨肖娥,2000.菜园土壤镉吸附-解吸特性的研究[J].广东微量元素科学,7(10): 11-15.
    
    邱山,2000.Cd(Ⅱ)在Fe_2O_3·nH_2O(am)上的特性吸附及其固一液界面电性的研究[J].贵州化工,25(1): 10-15.
    
    任俊,沈健,卢寿慈,2005.颗粒分散科学与技术[M],化学工业出版社,北京.
    
    王英英,温华,史小云等,2006.土壤矿质胶体对镉的吸附-解吸热力学与动力学研究[J].安全与环境学报,6(3):72-76.
    
    魏世强,木志坚,青长乐,2003.几种有机物对紫色土镉的溶出效应与吸附-解吸行为影响的研究 [J].土壤学报,40(1):110-117.
    
    武天云,Schoenau J J,李凤民等,2004.利用离心法进行土壤颗粒分级[J].应用生态学报,15(3):477-481.
    
    熊毅,许翼泉,陈家坊,1983.土壤胶体[M],科学出版社,北京.
    
    徐明岗,张青,李菊梅,2004.不同pH下黄棕壤镉的吸附-解吸特征[J].土壤肥料,(5):3-5.
    
    杨亚提,白锦鳞,曹翠兰等,1993.陕西三种土壤对铅、镉吸附特性的研究[J].西北农林科技大学学报(自然科学版),21(1):81-85.
    
    张会民,徐明岗,吕家珑等,2005.pH对土壤及其组分吸附和解吸镉的影响研究进展[J].农业环境科学学报,24(1):320-324.
    
    张增强,张一平,全林安等,2000.镉在土壤中吸持等温线及模拟研究[J].西北农业大学学报,28(5):88-94.
    
    张增强,张一平,朱兆华,2000.镉在土壤中吸持的动力学特征研究[J].环境科学学报,20(3):370-375
    
    中国环境优先监测研究课题组编,1989.环境优先污染物[M],中国环境科学出版社,北京.
    
    邹献中,赵安珍,季国亮,2002.可变电荷土壤吸附铜离子时氢离子的释放[J].土壤学报,39(3): 308-317.
    
    Agrawal A, Sahu K K, 2006. Kinetic and isotherm studies of cadmium adsorption on manganese noduleresidue[J]. Journal of Hazardous Materials, 137(2): 915-924.
    
    Rakhshaee R, Khosravi M, Ganji M T, 2006. Kinetic modeling and thermodynamic study to removePb(ii), Cd(ii), ni(ii) and Zn(ii) from aqueous solution using dead and living azolla filiculoides[J].Journal of Hazardous Materials, 134(1-3): 120-129.
    
    Srivastava V C, Mall I D, Mishra I M, 2006. Characterization of mesoporous rice husk ash (rha) andadsorption kinetics of metal ions from aqueous solution onto rha[J]. Journal of Hazardous Materials,134(1-3): 257-267.
    
    Urdu N, Ersoz M, 2006. Adsorption characteristics of heavy metal ions onto a low cost biopolymericsorbent from aqueous solutions[J]. Journal of Hazardous Materials, 136(2): 272-280.
    
    陈怀满,2002.土壤中化学物质的行为与环境质量[M],科学出版社,北京.
    
    陈家煌,李丽,2003.粘性土颗粒分析技术改进初探[J].合肥工业大学学报(自然科学版),26(2): 311-314.
    
    郭观林,周启星,2005.镉在黑土和棕壤中吸附行为比较研究[J].应用生态学报,16(12): 2403-2408.
    
    胡振琪,杨秀红,高爱林,2004.粘土矿物对重金属镉的吸附研究[J].金属矿山,(6):53-55.
    
    黄昌勇,2000.土壤学[M],中国农业出版社,北京.
    
    焦文涛,蒋新,余贵芬等,2005.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学, 24(5):545-549.
    
    李九玉,徐仁扣,2004.柠檬酸存在下酸性土壤中铝溶解动力学的初步研究[J].生态环境,13(4): 641-642.
    
    李学垣,1997.土壤化学及实验指导[M],中国农业出版社,北京.
    
    廖敏,谢正苗,黄昌勇,1998.镉在红壤中的吸附特征[J].浙江大学学报(农业与生命科学版),24(2):199-202.
    
    林智信,安从俊,刘义等,2003.物理化学[M],武汉大学出版社,武汉.
    
    南京农业大学,1986.土壤农化分析[M],中国农业出版社,北京.
    
    魏运洋,李健,2004.化学反应机理导论[M],科学出版社,北京.
    
    武天云,Schoenau J J,李凤民等,2004.利用离心法进行土壤颗粒分级[J].应用生态学报,15(3):477-481.
    
    熊毅,许翼泉,陈家坊,1983.土壤胶体[M],科学出版社,北京.
    
    杨亚提,白锦鳞,曹翠兰等,1993.陕西三种土壤对铅、镉吸附特性的研究[J].西北农林科技大学学报(自然科学版),21(1):81-85.
    
    张增强,张一平,朱兆华,2000.镉在土壤中吸持的动力学特征研究[J].环境科学学报,20(3): 371-376.
    
    周启星,2005.健康土壤学:土壤健康质量与农产品安全[M],科学出版社,北京
    
    Campbell C D, Hird M, Lumsdon D G, et al, 2000. The effect of edta and fulvic acid on Cd, Zn, and Cutoxicity to a bioluminescent construct (pucd607) of Escherichia coli[J]. Chemosphere, 40(3): 319-325.
    
    Chen Y, Shen Z, Li X, 2004. The use of vetiver grass (vetiveria zizanioides) in the phytoremediation ofsoils contaminated with heavy metals[J]. Applied Geochemistry, 19(10): 1553-1565.
    
    Davis C J, Eschenazi E, Papadopoulos K D, 2002. Combined effects of Ca~(2+) and humic acid on colloidtransport through porous media[J]. Colloid Polym Science, 280: 52-58.
    
    Evangelou M W, Ebel M, Schaeffer A, 2006. Evaluation of the effect of small organic acids onphytoextraction of Cu and Pb from soil with tobacco nicotiana tabacum[J]. Chemosphere, 63(6):996-1004.
    
    Inaba S, Takenaka C, 2005. Effects of dissolved organic matter on toxicity and bioavailability of copperfor lettuce sprouts[J]. Environment International, 31(4): 603-608.
    
    Makino T, Sugahara K, Sakurai Y, et al, 2006. Remediation of cadmium contamination in paddy soils bywashing with chemicals: selection of washing chemicals[J]. Environmental Pollution, 144(1): 2-20.
    
    Sawalha M F, Peralta-Videa J R, Romero-Gonzalez J, et al, 2006. Biosorption of Cd(Ⅱ), Cr(Ⅲ), andCr(Ⅵ) by saltbush (atriplex canescens) biomass: thermodynamic and isotherm studies [J]. Journal ofColloid and Interface Science, 300(1): 100-104.
    
    Turgut C, Katie P M, Cutright T J, 2005. The effect of EDTA on helianthus annuus uptake, selectivity,and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils[J].Chemosphere, 58(8): 1087-1095.
    
    Wong J W, Li K L, Zhou L X, et al, 2007. The sorption of Cd and Zn by different soils in the presenceof dissolved organic matter from sludge[J]. Geoderma, 137(3-4): 310-317.
    
    Xu R K, Coventry D R, 2003. Soil pH changes associated with lupin and wheat plant materialsincorporated in a red-brown earth soil[J]. Plant and Soil, 250: 113-119.
    
    陈其蓉,武玫玲,陈家坊,1988.土壤矿质胶体对铜离子的专性吸附[J].环境科学学报,8(4): 411-419.
    
    邓时琴,徐梦熊,1982.中国土壤颗粒研究Ⅰ.太湖地区白土型水稻土中白土层土壤及其各级颗 粒的理化特性[J].土壤学报,19(1):22-34.
    
    邓时琴,徐梦熊,1986.中国土壤颗粒研究Ⅱ.太湖地区黄泥土型水稻土及其各级颗粒的理化特 性[J].土壤学报,23(1):57-69.
    
    邓时琴,徐梦熊,1990.中国土壤颗粒研究Ⅲ.赣中丘陵旱地红壤及其各级颗粒的理化特性[J].土??壤学报,21(4):368-376.
    
    丁园,宗良纲,2003.不同土壤重金属复合污染的有效态离子冲量表征[J].环境污染与防治,25(3): 173-175,178.
    
    黄巧云,吴剑媚,付永清等,1998.根瘤菌与土壤胶体、氧化铁对重金属的吸附:Ⅰ.铜的吸附[J]. 华中农业大学学报,(1):29-34.
    
    蒋先军,骆永明,赵其国,2001a.镉污染土壤的植物修复及其EDTA调控研究Ⅱ.EDTA对镉的形态 及其生物毒性的影响[J].土壤,33(4):202-204.
    
    蒋先军,骆永明,赵其国,2001b.镉污染土壤的植物修复及其EDTA调控研究Ⅰ.镉对富集植物印 度芥菜的毒性[J].土壤,33(4):197-201.
    
    焦文涛,蒋新,余贵芬等,2005.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,24(5):545-549.
    
    李朝丽,周立祥,2007.我国几种典型土壤不同粒级组分对镉吸附行为影响的研究[J].农业环境科学学报,26(2):516-520.
    
    李学垣,1997.土壤化学及实验指导[M],中国农业出版社,北京.
    
    李仰锐,徐卫红,刘吉振等,2005.有机酸对土壤中镉形态及其生物有效性影响的研究进展[J].广东微量元素科学,12(4):12-17.
    
    李玉红,卫冬燕,孙方民等,2004.有机酸施用对印度芥菜吸收Pb,Cd的影响[J].河南农业大学学报,28(3):275-278.
    
    李玉红,宗良纲,黄耀等,2002.不同有机酸对水稻吸收铅的影响[J].南京农业大学学报,25(3): 45-48.
    
    李志辉,罗平,2005.SPSS for Windows统计分析教程(第2版)[M],电子工业出版社,北京.
    
    梁彦秋,潘伟,刘婷婷等,2006.有机酸在修复Cd污染土壤中的作用研究[J].环境科学与管理,31(8):76-78.
    
    卢纹岱,2006.SPSS for Windows统计分析(第三版)[M],电子工业出版社,北京.
    
    南京农业大学,1986.土壤农化分析[M],中国农业出版社,北京.
    
    曲金潭,庄杰,1997.黑土及棕壤<2μm胶体表面电化学特性的研究[J].土壤通报,28(2):16-18.
    
    孙本华,胡正义,吕家珑等,2006.模拟氮沉降下南方针叶林红壤的养分淋溶和酸化[J].应用生态学报,17(10):1 820-1 826.
    
    孙约兵,周启星,任丽萍,2007.镉超富集植物球果薄菜对镉-砷复合污染的反应及其吸收积累特征[J].环境科学,28(6):1355-1360.
    
    铁梅,梁彦秋,臧树良等,2006.工业污染土壤中镉的化学形态及植物修复研究[J].应用生态学报,17(2):348-350.
    
    王芳,郑瑞伦,何刃等,2006.氯离子和乙二胺四乙酸对镉的植物有效性的影响[J].应用生态学报,??17(10):1953-1957.
    
    王兴祥,李清曼,曹慧等,2004.关于植物对红壤的酸化作用及其致酸机理[J].土壤通报,35(1): 73-77.
    
    王英英,温华,史小云等,2006.土壤矿质胶体对镉的吸附-解吸热力学与动力学研究[J].安全与环境学报,6(3):72-76.
    
    熊毅,许翼泉,陈家坊,1983.土壤胶体[M],科学出版社,北京.
    
    徐仁扣,Coventry D.R.,2002.某些农业措施对土壤酸化的影响[J].农业环境保护,21(5):385-388.
    
    于天仁,季国亮,丁昌璞,1996.可变电荷土壤的电化学[M],科学出版社,北京.
    
    周东美,郑春荣,陈怀满,2002.镉与柠檬酸、EDTA在几种典型土壤中交互作用的研究[J].土壤学 报,39(1):29-36.
    
    Albrecht A, Schultze U, Bugallo P B, et al, 2003. Behavior of a surface applied radionuclide and a dyetracer in structured and repacked soil monoliths[J]. Journal of Environmental Radioactivity, 68(1):47-64.
    
    Allaire S E, Gupta S C, Nieber J, et al, 2002a. Role of macropore continuity and tortuosity on solutetransport in soils: 2. Interactions with model assumptions for macropore description[J]. Journal ofContaminant Hydrology, 58(3-4): 283-298.
    
    Allaire S E, Gupta S C, Nieber J, et al, 2002b. Role of macropore continuity and tortuosity on solutetransport in soils: 1. Effects of initial and boundary conditions [J]. Journal of Contaminant Hydrology,58(3-4): 299-321.
    
    Atteia O, Couture C, Perret D, 1998. Factors controlling colloidal transport in a karst aquifer[J]. Physicsand Chemistry of The Earth, 23(2): 163-169.
    
    Barton C D, Karathanasis A D, 2003. Influence of soil colloids on the migration of atrazine and zincthrough large soil monoliths[J]. Water, Air, and Soil Pollution, 143(1-4): 3-21.
    
    Benedetti M F, 2006. Metal ion binding to colloids from database to field systems[J]. Journal ofGeochemical Exploration, (88): 81-85.
    
    Chen G, Flury M, 2005. Retention of mineral colloids in unsaturated porous media as related to theirsurface properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 256:207-216.
    
    de Jonge L W, Kjaergaard C, Moldrup P, 2004. Colloids and colloid-facilitated transport of contaminants in soils: an introduction[J]. Vadose Zone Journal, 3(2): 321-325.
    DeNovio N M, Saiers J E, Ryan J N, 2004. Colloid movement in unsaturated porous media: recent advances and future directions[J]. Vadose Zone Journal, 3(3): 338-351.
    Eriksson N, Gupta A, Destouni G, 1997. Comparative analysis of laboratory and field tracer tests for investigating preferential flow and transport in mining waste rock[J]. Journal of Hydrology, 194: 143-163.
    Gjettermann B, Nielsen K L, Petersen C T, et al, 1997. Preferential flow in sandy loam soils as affected by irrigation intensity[J]. Soil Technology, 11(2): 139-152.
    Grolimund D, Borkovec M, 2005. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments [J]. EnvironmentalScience and Technology, 39(17): 6378-6386.
     Grolimund D, Borkovec M, Barmettler K, et al, 1996. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study[J]. Environmental Science and Technology, 30(10): 3118-3123.
    Grolimund D, Borkovec M, 2006. Release of colloidal particles in natural porous media by monovalent and divalent cations[J]. Journal of Contaminant Hydrology, 87(3-4): 155-175.
    Grolimund D, Elimelech M, Borkovec M, 2001. Aggregation and deposition kinetics of mobile colloidal particles in natural porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(1-2): 179-188.
    Gupta A, Destouni G, Jensen M B, 1999. Modelling tritium and phosphorus transport by preferential flow in structured soil[J]. Journal of Contaminant Hydrology, (35): 389-407.
    Hangen E, Gerke H H, Schaaf W, et al, 2004. Flow path visualization in a lignitic mine soil using iodine-starch staining[J]. Geoderma, 120(1-2): 121-135.
    Heijs A W, Ritsema C J, Dekker L W, 1996. Three-dimensional visualization of preferential flow patterns in two soils[J]. Geoderma, 70(2-4): 101-116.
    Hoffmann S R, Shafer M M, Armstrong D E, 2007. Strong colloidal and dissolved organic ligands binding copper and zinc in rivers[J]. Environmental Science and Technology, 41(20): 6996-7002.
    Jacobsen O H, Moldrup P, de J H, et al, 1998. Mobilization and transport of natural colloids in a macroporous soil[J]. Physics and Chemistry of The Earth, 23(2): 159-162.
    Karathanasis A D, 2000. Colloid-mediated transport of pb through soil porous media[J]. International Journal of Environmental Studies, 57(5): 579-596.
    Karathanasis A D, 1999. Subsurface migration of copper and zinc mediated by soil colloids[J]. Soil Science Society of America Journal, 63: 830-838.
    Karathanasis A D, Johnson D M, 2006a. Stability and transportability of biosolid colloids through undisturbed soil monoliths[J]. Geoderma, 130(34): 334-345.
    Karathanasis A D, Johnson D M, 2006b. Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids[J]. Science of The Total Environment, 354(2-3): 157-169.
    Karathanasis A D, Johnson D M, Matocha C J, 2005. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils[J]. Journal of Environmental Quality, 34(4): 1153-1164.
    Kasteel R, Gamier P, Vachier P, et al, 2007. Dye tracer infiltration in the plough layer after straw incorporation[J]. Geoderma, 137(3-4): 360-369.
    Kersting A B, Efurd, Da W, Finnegan D L, Rokop D J, et al, 1999. Migration of plutonium in ground water at the nevada test site[J]. Nature, 397: 56-59.
    Kjaergaard C, Moldrup P, de Jonge L W, 2004. Colloid mobilization and transport in undisturbed soil columns.i. Pore structure characterization and tritium transport[J]. Vadose Zone Journal, 3(3): 413-423.
    Kjaergaard C, Moldrup P, de Jonge L W, et al, 2004. Colloid mobilization and transport in undisturbed soil columns.ii. The role of colloid dispersibility and preferential flow[J]. Vadose Zone Journal, 3(3): 424-433.
    Lachnicht S L, Parmelee R W, Mccartney D, et al, 1997. Characteristics of macroporosity in a reduced tillage agroecosystem with manipulated earthworm populations: implications for infiltration and nutrient transport[J]. Soil Biology and Biochemistry, 29(3-4): 493-498.
    Liao B, Guo Z, Zeng Q, et al, 2007. Effects of acid rain on competitive releases of Cd, Cu, and Zn from two natural soils and two contaminated soils in hunan, china[J]. Water, Air, & Soil Pollution: Focus, 7(1): 151-161.
    Liu C L, Chang T W, Wang M K, et al, 2006. Transport of cadmium, nickel, and zinc in taoyuan red soil using one-dimensional convective-dispersive model[J]. Geoderma, 131(1-2): 181-189.
    McCarthy J F, McKay L D, Bruner D D, 2002. Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite[J]. Environmental Science and Technology, 36(17):3735-3743.
    McCarthy J F, Zachara J M, 1989. Subsurface transport of contaminants [J]. Environmental Science and Technology, 23: 496-502.
    McCarthy J F, McKay L D, Bruner D D, 2002. Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite[J]. Environmental Science and Technology, 36(17): 3735-3743.
    McGechan M B, 2002. Transport of particulate and colloid-sorbed contaminants through soil, part2: trapping processes and soil pore geometry[J]. Biosystems Engineering, 83(4): 387-395.
    Novikov A P, Kalmykov S N, Utsunomiya S, et al, 2006. Colloid transport of plutonium in the far-field of the mayak production association, russia[J]. Science, 314(5799): 638-641.
    Ohrstrom P, Persson M, Albergel J, et al, 2002. Field-scale variation of preferential flow as indicated from dye coverage[J]. Journal of Hydrology, 257(1-4): 164-173.
    Pierret A, Capowiez Y, Belzunces L, et al, 2002. 3d reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J]. Geoderma, 106(3-4): 247-271.
    Posadas DAN, Tannus A, Panepucci H, et al, 1996. Magnetic resonance imaging as a non-invasive technique for investigating 3-d preferential flow occurring within stratified soil samples[J]. Computers and Electronics in Agriculture, 14: 255-267.
    Puls R W, Powell R M, 1992. Transport of inorganic colloids through natural aquifer material: implications for contaminant transport[J]. Environmental Science and Technology, 26(3): 614-621.
    Rosenbom A E, Jakobsen P R, 2005. Infrared thermography and fracture analysis of preferential flow in chalk[J]. Vadose Zone Journal, 4(4): 271-280.
    Rousseau M, Di Pietro L, Angulo J R, et al, 2004. Preferential transport of soil colloidal particles: physicochemical effects on particle mobilization[J]. Vadose Zone Journal, 3(3): 247-261.
    Roy S B, Dzombak D A, 1997. Chemical factors influencing colloid-facilitated transport of contaminants in porous media[J]. Environmental Science and Technology, 31: 656-664.
     Ryan J N, Elimelech M, 1996. Colloid mobilization and transport in groundwater [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107: 1-56.
    Saiers J E, Hornberger G M, 1996. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns[J]. Water Resources Research, 32: 33-41.
     Sandra G G, Jonsson M, Wold S, 2006. Temperature effect on the stability of bentonite colloids inwater[J]. Journal of Colloid and Interface Science, (298): 694-705.
     Schoen R, Gaudet J P, Bariac T, 1999. Preferential flow and solute transport in a large lysimeter, under controlled boundary conditions[J]. Journal of Hydrology, 215: 70-81.
     Sen T K, Mahajan S P, Khilar K C, 2002. Adsorption of Cu~(2+) and Ni~(2+) on iron oxide and kaolin and its importance on Ni2+ transport in porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211:91-102.
    Seta A K, Karathanasis A D, 1996a. Colloid-facilitated transport of metolachlor through intact soil columns[J]. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes, B31(5): 949-968.
    Seta A K, Karathanasis A D, 1996b. Water dispersible colloids and factors influencing their
    
    ??dispersibility from soil aggregates[J]. Geoderma, 74(3-4): 255-266.
    
    Simunek J, Jarvis N J, van Genuchten M T, et al, 2003. Review and comparison of models for describingnon-equilibrium and preferential flow and transport in the vadose zone[J]. Journal of Hydrology, (272):14-35.
    
    Slater L, Binley A, Versteeg R, et al, 2002. A 3d ERT study of solute transport in a large experimentaltank[J]. Journal of Applied Geophysics, 49(4): 211-229.
    
    Slowey A J, Johnson S B, Rytuba J J, et al, 2005. Role of organic acids in promoting colloidal transportof mercury from mine tailings[J]. Environmental Science and Technology, 39(20): 7869-7874.
    
    Solovitch-Vella N, Gamier J M, Philippe C, 2006. Influence of the colloid type on the transfer of ~(60)Coand Sr in silica sand column under varying physicochemical conditions [J]. Chemosphere, 65(2):324-331.
    
    Urn W, Papelis C, 2002. Geochemical effects on colloid-facilitated metal transport through zeolitizedtuffs from the nevada test site[J]. Environmental Geology, 43(1): 209-218.
    
    Wang Z, Lu J, Wu L, et al, 2002. Visualizing preferential flow paths using ammonium carbonate and aph indicator[J]. Soil Science Society of America Journal, 66(2): 347-351.
    
    Weng L, Fest E P, Fillius J, et al, 2002. Transport of humic and fulvic acids in relation to metal mobilityin a copper-contaminated acid sandy soil[J]. Environmental Science and Technology, 36(8):1699-1704.
    
    Zhang M, Li W, Yang Y, et al, 2005. Effects of readily dispersible colloid on adsorption and transport ofZn, Cu, and Pb in soils[J]. Environment International, (31): 840-844.
    
    Zhou L X, Wong J W, 2000. Microbial decomposition of dissolved organic matter and its control duringa sorption experiment[J]. Journal of Environmental Quality, 29(6): 1852-1856.
    
    Zhou L X, Wong J W, 2001. Effect of dissolved organic matter from sludge and sludge compost on soilcopper sorption[J]. Journal of Environmental Quality, 30(3): 878-883.
    
    陈风琴,石辉,2006.岷江上游三种典型植被下土壤优势流现象的染色法研究[J].生态科学, 5(1):69-73.
    
    程竹华,张佳宝,1998.土壤中优势流现象的研究进展[J].土壤,30(6):315-340.
    
    冯杰,张佳宝,朱安宁,2003.论分形几何在土壤大孔隙研究中的应用[J].灌溉排水学报, 22(5): 6-9.
    
    郭飞,徐绍辉,刘建立,2005.土壤图像孔隙轮廓线分形特征及其应用[J].农业工程学报, 21(7):6-10.
    
    胡红青,刘华良,贺纪正,2005.几种有机酸对恒电荷和可变电荷土壤吸附Cu~(2+)的影响[J].土壤学报,42(2):232-237.
    
    金相灿,1992.沉积物污染化学[M],中国环境科学出版社,北京.
    
    李学垣,1997.土壤化学及实验指导[M],中国农业出版社,北京.
    
    南京农业大学,1986.土壤农化分析[M],中国农业出版社,北京.
    
    宁丽丹,石辉,周海军等,2005.岷江上游不同植被下土壤团聚体特征分析[J].应用生态学报,16(8):1405-1410.
    
    任俊,沈健,卢寿慈,2005.颗粒分散科学与技术[M],化学工业出版社,北京.
    
    王艮梅,周立祥,2003.陆地生态系统中水溶性有机物动态及其环境学意义[J].应用生态学报,14(11):2019-2025.
    
    王艮梅,周立祥,2006.水溶性有机物在土壤剖面中的分馏及对Cu迁移的作用[J].环境科学,27(6):1229-1234.
    
    肖双成,徐仁扣,2005.邻苯二甲酸和水杨酸在可变电荷土壤中的吸附行为[J].土壤学报,42(6):1006-1011.
    
    熊毅,许翼泉,陈家坊,1983.土壤胶体[M],科学出版社,北京.
    
    杨亚提,张一平,2003.恒电荷土壤胶体对Cu~(2+)、Pb~(2+)的静电吸附[J].土壤学报,40(1):102-109.
    
    张洪江,程金花,何凡等,2006.长江三峡花岗岩地区优先流运动及其模拟[M],科学出版社, 北京.
    
    Albrecht A, Schultze U, Bugallo P B, et al, 2003. Behavior of a surface applied radionuclide and a dye tracer in structured and repacked soil monoliths[J]. Journal of Environmental Radioactivity, 68(1): 47-64.
    
    Allaire S E, Gupta S C, Nieber J, et al, 2002a. Role of macropore continuity and tortuosity on solute transport in soils: 2. Interactions with model assumptions for macropore description[J]. Journal of Contaminant Hydrology, 58(3-4): 283-298.
    Allaire S E, Gupta S C, Nieber J, et al, 2002b. Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions[J]. Journal of Contaminant Hydrology, 58(3-4): 299-321.
    Atteia O, Couture C, Perret D, 1998. Factors controlling colloidal transport in a karstic aquifer[J]. Physics and Chemistry of The Earth, 23(2): 163-169.
    Barton C D, Karathanasis A D, 2003. Influence of soil colloids on the migration of atrazine and zinc through large soil monoliths[J]. Water, Air, and Soil Pollution, 143(1-4): 3-21.
    Benedetti M F, 2006. Metal ion binding to colloids from database to field systems[J]. Journal of Geochemical Exploration, (88): 81-85.
    
    Chen G, Flury M, 2005. Retention of mineral colloids in unsaturated porous media as related to their surface properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 256: 207-216.
    de Jonge L W, Kjaergaard C, Moldrup P, 2004. Colloids and colloid-facilitated transport of contaminants in soils: an introduction[J]. Vadose Zone Journal, 3(2): 321-325.
    DeNovio N M, Saiers J E, Ryan J N, 2004. Colloid movement in unsaturated porous media: recent advances and future directions[J]. Vadose Zone Journal, 3(3): 338-351.
    Eriksson N, Gupta A, Destouni G, 1997. Comparative analysis of laboratory and field tracer tests for investigating preferential flow and transport in mining waste rock[J]. Journal of Hydrology, 194: 143-163.
    Gjettermann B, Nielsen K L, Petersen C T, et al, 1997. Preferential flow in sandy loam soils as affected by irrigation intensity[J]. Soil Technology, 11(2): 139-152.
    Grolimund D, Borkovec M, 2005. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments[J]. Environmental Science and Technology, 39(17): 6378-6386.
    Grolimund D, Borkovec M, Barmettler K, et al, 1996. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: a laboratory column study [J]. Environmental Science and Technology, 30(10): 3118-3123.
    Grolimund D, Borkovec M, 2006. Release of colloidal particles in natural porous media by monovalent and divalent cations[J]. Journal of Contaminant Hydrology, 87(3-4): 155-175.
    Grolimund D, Elimelech M, Borkovec M, 2001. Aggregation and deposition kinetics of mobile colloidal particles in natural porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(1-2): 179-188.
    Gupta A, Destouni G, Jensen M B, 1999. Modelling tritium and phosphorus transport by preferential flow in structured soil[J]. Journal of Contaminant Hydrology, (35): 389-407.
    Hangen E, Gerke H H, Schaaf W, et al, 2004. Flow path visualization in a lignitic mine soil using iodine-starch staining[J]. Geoderma, 120(1-2): 121-135.
    Heijs A W, Ritsema C J, Dekker L W, 1996. Three-dimensional visualization of preferential flow patterns in two soils[J]. Geoderma, 70(2-4): 101-116.
    Hoffmann S R, Shafer M M, Armstrong D E, 2007. Strong colloidal and dissolved organic ligands binding copper and zinc in rivers[J]. Environmental Science and Technology, 41(20): 6996-7002.
    Jacobsen O H, Moldrup P, de J H, et al, 1998. Mobilization and transport of natural colloids in a macroporous soil[J]. Physics and Chemistry of The Earth, 23(2): 159-162.
    Karathanasis A D, 2000. Colloid-mediated transport of Pb through soil porous media[J]. International Journal of Environmental Studies, 57(5): 579-596.
    Karathanasis A D, 1999. Subsurface migration of copper and zinc mediated by soil colloids[J]. Soil Science Society of America Journal, 63: 830-838.
    Karathanasis A D, Johnson D M, 2006a. Stability and transportability of biosolid colloids through undisturbed soil monoliths[J]. Geoderma, 130(34): 334-345.
    Karathanasis A D, Johnson D M, 2006b. Subsurface transport of Cd, Cr, and Mo mediated by biosolid colloids[J]. Science of The Total Environment, 354(2-3): 157-169.
    Karathanasis A D, Johnson D M, Matocha C J, 2005. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils[J]. Journal of Environmental Quality, 34(4): 1153-1164.
    Kasteel R, Gamier P, Vachier P, et al, 2007. Dye tracer infiltration in the plough layer after straw incorporation[J]. Geoderma, 137(3-4): 360-369.
    Kersting A B, Efurd, Da W, Finnegan D L, Rokop D J, et al, 1999. Migration of plutonium in ground water at the nevada test site[J]. Nature, 397: 56-59.
    Kjaergaard C, Moldrup P, de Jonge L W, 2004. Colloid mobilization and transport in undisturbed soilcolumns.i. Pore structure characterization and tritium transport[J]. Vadose Zone Journal, 3(3): 413-423.
    Kjaergaard C, Moldrup P, de Jonge L W, et al, 2004. Colloid mobilization and transport in undisturbed soil columns.ii. The role of colloid dispersibility and preferential flow[J]. Vadose Zone Journal, 3(3): 424-433.
    Lachnicht S L, Parmelee R W, Mccartney D, et al, 1997. Characteristics of macroporosity in a reduced tillage agroecosystem with manipulated earthworm populations: implications for infiltration and nutrient transport[J]. Soil Biology and Biochemistry, 29(3-4): 493-498.
    Liao B, Guo Z, Zeng Q, et al, 2007. Effects of acid rain on competitive releases of Cd, Cu, and Zn from two natural soils and two contaminated soils in Hunan, China[J]. Water, Air, & Soil Pollution: Focus, 7(1): 151-161.
    Liu C L, Chang T W, Wang M K, et al, 2006. Transport of cadmium, nickel, and zinc in Taoyuan red soil using one-dimensional convective-dispersive model[J]. Geoderma, 131(1-2): 181-189.
    McCarthy J F, McKay L D, Bruner D D, 2002. Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite[J]. Environmental Science and Technology, 36(17): 3735-3743.
    McCarthy J F, Zachara J M, 1989. Subsurface transport of contaminants[J]. Environmental Science and Technology, 23: 496-502.
    McCarthy J F, McKay L D, Bruner D D, 2002. Influence of ionic strength and cation charge on transport of colloidal particles in fractured shale saprolite[J]. Environmental Science and Technology, 36(17): 3735-3743.
    McGechan M B, 2002. Transport of particulate and colloid-sorbed contaminants through soil, part2: trapping processes and soil pore geometry[J]. Biosystems Engineering, 83(4): 387-395.
    Novikov A P, Kalmykov S N, Utsunomiya S, et al, 2006. Colloid transport of plutonium in the far-field of the mayak production association, Russia[J]. Science, 314(5799): 638-641.
    Ohrstrom P, Persson M, Albergel J, et al, 2002. Field-scale variation of preferential flow as indicated from dye coverage[J]. Journal of Hydrology, 257(1-4): 164-173.
    Pierret A, Capowiez Y, Belzunces L, et al, 2002. 3d reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J]. Geoderma, 106(3-4): 247-271.
    Posadas D A N, Tannus A, Panepucci H, et al, 1996. Magnetic resonance imaging as a non-invasive technique for investigating 3-d preferential flow occurring within stratified soil samples[J]. Computers and Electronics in Agriculture, 14: 255-267.
    Puls R W, Powell R M, 1992. Transport of inorganic colloids through natural aquifer material: implications for contaminant transport[J]. Environmental Science and Technology, 26(3): 614-621.
    Rosenbom A E, Jakobsen P R, 2005. Infrared thermography and fracture analysis of preferential flow in chalk[J]. Vadose Zone Journal, 4(4): 271-280.
    Rousseau M, Di Pietro L, Angulo J R, et al, 2004. Preferential transport of soil colloidal particles: physicochemical effects on particle mobilization[J]. Vadose Zone Journal, 3(3): 247-261.
    Roy S B, Dzombak D A, 1997. Chemical factors influencing colloid-facilitated transport of contaminants in porous media[J]. Environmental Science and Technology, 31: 656-664.
    Ryan J N, Elimelech M, 1996. Colloid mobilization and transport in groundwater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107: 1-56.
    Saiers J E, Hornberger G M, 1996. The role of colloidal kaolinite in the transport of cesium through laboratory sand columns[J]. Water Resources Research, 32: 3341.
    Sandra G G, Jonsson M, Wold S, 2006. Temperature effect on the stability of bentonite colloids in water[J]. Journal of Colloid and Interface Science, (298): 694-705.
    Schoen R, Gaudet J P, Bariac T, 1999. Preferential flow and solute transport in a large lysimeter, under controlled boundary conditions[J]. Journal of Hydrology, 215: 70-81.
    Sen T K, Mahajan S P, Khilar K C, 2002. Adsorption of Cu~(2+) and Ni~(2+) on iron oxide and kaolin and its importance on Ni~(2+) transport in porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211: 91-102.
    Seta A K, Karathanasis A D, 1996a. Colloid-facilitated transport of metolachlor through intact soil columns[J]. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes, B31(5): 949-968.
    Seta A K, Karathanasis A D, 1996b. Water dispersible colloids and factors influencing their dispersibility from soil aggregates[J]. Geoderma, 74(3-4): 255-266.
    Simunek J, Jarvis N J, van Genuchten M T, et al, 2003. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone[J]. Journal of Hydrology, (272): 14-35.
    Slater L, Binley A, Versteeg R, et al, 2002. A 3d ERT study of solute transport in a large experimental tank[J]. Journal of Applied Geophysics, 49(4): 211-229.
    Slowey A J, Johnson S B, Rytuba J J, et al, 2005. Role of organic acids in promoting colloidal transport of mercury from mine tailings[J]. Environmental Science and Technology, 39(20): 7869-7874.
    
    Solovitch-Vella N, Gamier J M, Philippe C, 2006. Influence of the colloid type on the transfer of ~(60)Coand Sr in silica sand column under varying physicochemical conditions[J]. Chemosphere, 65(2): 324-331.
    Um W, Papelis C, 2002. Geochemical effects on colloid-facilitated metal transport through zeolitized tuffs from the Nevada test site[J]. Environmental Geology, 43(1): 209-218.
    Wang Z, Lu J, Wu L, et al, 2002. Visualizing preferential flow paths using ammonium carbonate and a pH indicator[J]. Soil Science Society of America Journal, 66(2): 347-351.
    Weng L, Fest E P, Fillius J, et al, 2002. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil[J]. Environmental Science and Technology, 36(8): 1699-1704.
    Zhang M, Li W, Yang Y, et al, 2005. Effects of readily dispersible colloid on adsorption and transport of
    
    ??Zn, Cu, and Pb in soils[J]. Environment International, (31): 840-844.
    
    Zhou L X, Wong J W, 2000. Microbial decomposition of dissolved organic matter and its control duringa sorption experiment[J]. Journal of Environmental Quality, 29(6): 1852-1856.
    
    Zhou L X, Wong J W, 2001. Effect of dissolved organic matter from sludge and sludge compost on soilcopper sorption[J]. Journal of Environmental Quality, 30(3): 878-883.
    
    陈风琴,石辉,2006.岷江上游三种典型植被下土壤优势流现象的染色法研究[J].生态科学,5(1):69-73.
    
    李学垣,1997.土壤化学及实验指导[M],中国农业出版社,北京.
    
    刘付程,史学正,于东升等,2004.基于地统计学和GIS的太湖典型地区土壤属性制图研究[J].土壤学报,41(1):20-27.
    
    卢纹岱,2006.SPSS for Windows统计分析(第三版)[M],电子工业出版社,北京.
    
    吕连宏,张征,迟志淼等,2006.地质统计学在环境科学领域的应用进展[J].地球科学与环境 学报,28(1):101-105.
    
    南京农业大学,1986.土壤农化分析[M],中国农业出版社,北京.
    
    孙英君,王劲峰,柏延臣,2004.地统计学方法进展研究[J].地球科学进展,19(2):268-274.
    
    王艮梅,周立祥,2003.陆地生态系统中水溶性有机物动态及其环境学意义[J].应用生态学报, 14(11):2019-2025.
    
    王艮梅,周立祥,2006.水溶性有机物在土壤剖面中的分馏及对Cu迁移的作用[J].环境科学, 27(6):1229-1234.
    
    王铁宇,罗维,吕永龙等,2007.官厅水库周边土壤重金属空间变异特征及风险分析[J].环境 科学,28(2):227-231.
    
    谢正苗,李静,王碧玲等,2006.基于地统计学和GIS的土壤和蔬菜重金属的环境质量评价[J]. 环境科学,27(10):2110-2116.
    
    熊毅,许翼泉,陈家坊,1983.土壤胶体[M],科学出版社,北京.
    
    张伟,陈洪松,王克林等,2006.喀斯特地区典型峰丛洼地旱季表层土壤水分空间变异性初探 [J].土壤学报,43(4):554-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700