用户名: 密码: 验证码:
崇明前卫村微污染水体的生态修复与基质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项目是上海市科委“崇明岛水资源保障与水体生态修复技术与示范”课题的子课题,项目编号:05dz12009。
     作为崇明县乃至上海市的生态科技示范基地、“全球生态村500佳”之一的前卫村,其绿色辐射功能已经日趋突出,而随着旅游人数的日益增多,前卫村的景观湖——中心湖正逐渐呈现出可承载能力下降、受污染日益严重的问题,水质日益变坏。
     针对这种情况,本文提出了用生态塘/人工湿地相结合的工艺对中心湖湖水进行处理的方案。这种复合工艺在国内外应用较少,作为一种新的尝试,我们进行了近一年的小试试验研究,初步掌握了有关塘/人工湿地系统的维护和管理措施。同时,有针对性地研究了崇明地区特定的气候、土壤条件下,复合生态系统对微污染湖泊水的处理效果与特性,分析了温度、进水浓度、水力负荷等因素对污染物去除效果的影响,为中试工程的正常运转提供了必不可少的经验。
     长期的试验数据分析结果表明,水力停留时间为3天时,系统对微污染水体污染物的去除率较高,时间延长对去除效果并没有较大的影响。综合考虑水平流人工湿地、潜流人工湿地、生态塘/水平流人工湿地复合处理系统和生态塘/潜流人工湿地复合处理系统四种不同流态对中心湖湖水污染物的去除效果:对CODCr的去除率为10%~50%左右,对浊度的去处率在35%~90%之间,TN的浓度去除率为35%~55%,NH4+-N的浓度去除率为38%~44.2%,NO3--N的浓度去除率为25%~37%,TP的浓度去除率为56%~81%,TDP的浓度去除率为30%~44%。结果表明,四种处理单元对所测试项目的去除效果差别不大,说明四种处理系统对中心湖水的污染治理均能发挥有效的作用,为中试工程的设计提供了帮助。
     小试试验模型中应用的陶粒是用河道底泥自己制备的,这一举措对减小环境污染、增加社会经济效益具有较好的作用,并且开辟了一条河道底泥处理、处置和资源化利用的新途径。
     经过对河道底泥的主要化学成分、粒径分布、矿物成分以及重金属含量分析后结果表明:河道底泥的主要化学成分同粘土类原料比较接近,这为河道底泥制备陶粒提供了有利的依据;河道底泥中重金属含量和浸出液浓度均较高,但对其Cu2+、Zn2+、Pb2+、Cd2+、Cr6+、Hg+的分析结果表明底泥样品还不属于危险废物的范畴。
     在综合考虑原料的化学组成及烧制陶粒对原料化学组成的要求的基础上,确定以河道底泥、生活污泥、广西白泥和水玻璃为原料制备底泥陶粒。通过正交试验确定制备底泥陶粒的最佳工艺条件和配比,即河道底泥:生活污泥:广西白泥:粘结剂=100:20:15:6,烧成温度为1140℃,保温时间为9Min。按照试验确定的最佳工艺条件进行试验所制备的底泥陶粒其比表面积为3.67m2/g,堆积密度为710 kg/m3,表观密度1517 kg/m3,孔隙率53%,耐冲刷强度在3MPa以上,与同类产品相比具有比表面积大,堆积密度低,孔隙率高的优点,是较好的生物膜载体,对有机物和氨氮有较强的吸附性能。
     通过参考小试试验积累的经验和教训,并依据节约、高效的原则,中心湖水质处理采用生态塘/人工湿地复合处理系统,处理构筑物由中心湖北侧已经废弃的前卫村热带鱼养殖鱼塘改造而成,采用水平流与潜流相结合的方式构建,拟通过建立微污染水体的土地生态净化系统,实现对分散型微污染水体的净化和资源化,为应用土地处理系统建设“生态崇明”起到示范作用。
     生态塘/人工湿地系统自2006年2月运行起至2008年3月运行2年多的时间来看,系统对浊度的去除为70%~94%,对CODCr的去除率为20%~47.6%,对总磷的去除率为50%~90%,对总氮的平均去除率为21.2%,系统出水浊度在8度以内,出水CODCr为20~36mg/L,出水总磷维持在0.10mg/L以内(达到地面水Ⅱ类水水平),总氮含量降至0.98~1.641mg/L,以上出水指标除总氮外均接近国家地表水Ⅲ类水质水平。由于硝化菌等世代周期长的微生物需要长期培养,且冬季运行,微生物受温度限制生长活性差,随着运行的进一步稳定,最佳运行条件的摸索、运行参数的控制,出水水质可望进一步提高。
     本文创新点主要有以下五点:
     1)首次将生态纤维作为“人工水草”应用于人工湿地的前处理;
     2)将人工湿地与生态塘结合在一起作为一种新型的复合生态处理系统进行尝试,氧化塘系统作为人工湿地的前处理系统,通过对该系统小试及中试对中心湖水质处理情况的跟踪试验测定,探讨了温度、进水浓度,水力负荷等因素对污染物去除率的影响;
     3)首次进行河道底泥制作轻质生态陶粒,并应用于人工湿地进行河道生态修复的循环经济研究;
     利用崇明前卫村实验培训基地前中心河道受污染的底泥制备轻质陶粒,由于底泥主要受到生活污水和渔业养殖废水的影响,有机物含量较高,充分利用其本身有机物作发泡剂产生多孔,并将其应用于潜流式人工湿地,配合生态纤维的使用,去除NH4+-N及CODCr,净化水体,实现“以污治污”的目的。
     4)首次研究人工湿地用多孔陶粒对潜质水流的影响;
     研究将多孔陶粒应用于人工湿地,对传统湿地水流产生的影响。
     5)零能耗水循环驱动系统与复合式人工湿地河水净化系统集成技术。
     采用风车作为动力实现受污染水的提升。风车提供足够的动力,为生物接触氧化提供充足的氧。实现水域生态的合理布局,水产养殖鱼类的合理分层,保证鱼类与水生植物的合理共生。
The projects come form the Shanghai Science and Technology Commission that "Water resource protection and water ecological restoration technology and demonstration of Chongming Island". Item No.:05dz 12009.
     The Qianwei village which is famous as one of the "One of the five hundred best ecological villages in the world" is Shanghai's ecological base in Chongming County. Its green radiation functions have become increasingly prominent, and with the growing number of tourists increased, the biggest landscape lake--The Center Lake, has shown the characteristic of bad carrying capacity by pollution with increasingly serious problem, the water quality is worse and worse.
     Based on this case, we put forward the technology of oxidation pond/constructed wetland treatment system to control the pollution of The Center Lake. This technology was applied very little in domestic and abroad, as a new attempt, we had nearly a year of small-scale test studies and master of the maintenance and management measures of oxidation pond/constructed wetland system. At the same time, study the treatment effect and characteristic of micro-polluted lake water by complex ecological system in specific climate and soil conditions of Chongming, analyze effect of temperature, influent concentration, and hydraulic load factors on the removal of contamination, all of these afford absolutely necessarily experience for working order of medium-sized test project.
     Test results showed that HRT for three days, the system has high removal rate toward micro-polluted water and no significant influence toward removal effect if extend HRT. Think over the treatment effect of The Center Lake by four different flow patterns that subsurface flow constructed wetland, undercurrent constructed wetland, oxidation pond/subsurface flow constructed wetland and oxidation pond/undercurrent constructed wetland:CODCr removal of 10% to 50%, turbidity place the rate at 35% to 90%, the concentration of TN removal rate of 35% to 55%, NH4+-N concentration in the removal of 38% to 44.2%, NO3--N concentrations removal rate of 25% to 37%, TP concentration of the removal of 56% to 81%, the concentration of TDP removal rate of 30% to 44%. The results showed that four processing units have not very different to removal effect of test items, and account for four treatment system can play an effective role to pollution control of The Center Lake water and provide help for designed of medium-sized test project.
     The ceramic used in small-scale test system made by river sediment ourselves, the move has better effect to reduce pollution and increase social economic benefit, and opened up a new ways toward river sediment processing, disposal and reutilization.
     The main chemical composition, particle size distribution, mineral component and heavy metals in river sediment has been analyzed; the results indicate that the main chemical compositions are similar to the clay raw materials, which provide possibility of reutilization river sediment. River sediment contains heavy metals and lixivium concentration higher, but analysis of the results of Cu2+, Zn2+, Pb2+, Cd2+, Cr6+, Hg+ showed that sediment samples is not reaching the level of hazard waste.
     Consideration of chemical composition of the raw materials, to determine the river sediment, sewage sludge, Guangxi Baini and water glass are chosen to be the raw materials of ceramic. Orthogonal Test Preparation of sediment ceramic optimum conditions and formulas, that the river sediment:sewage sludge:Guangxi Baini:water glass=100:20:15:6, sintering temperature of 1140 centigrade, the heat preservation time of 9 minutes. The test to determine optimum conditions for the prepared ceramic that its surface of 3.67m2/g, packing density is 710kg/m3, the apparent density of 1517kg/m3,53% porosity, high strength 3MPa washed over. Comparable with the same kind of products, the sediment ceramic have some strongpoint of a large surface area, low packing density and high porosity. The sediment ceramic is better bio-film carrier and strong adsorption capability toward organic matter and NH4+-N.
     By reference the experience gained and lessons learned from small-scale test system, in accordance with conservation and efficient principles, water treatment of The Center Lake used oxidation pond/constructed wetland complex processing system, the structure rebuild by tropical fish breeding ponds of Qianwei village lie north of The Center Lake. Adopt subsurface flow combined with undercurrent construction way, plan to be through the land purification ecological system of micro-polluted water to realize purification and resources of decentralized micro-polluted water, and for adopt land treatment system building "Ecological Chongming" play an demonstration.
     Oxidation pond/constructed wetland system since February 2006 run until March 2008 running more than two years, the system for the removal of turbidity of 70%~94%, the CODCr removal rate of 20%~47.6%, the TP removal rate of 50%~90%, the TN average removal rate of 21.2%, the effluent turbidity 8NTU within, CODCr 20~36mg/L and the TP at 0.10mg/L within (reach surface water classⅡlevel), TN content of 0.98~1.641mg/L and above effluent index have close to the classⅢof State except TN. Because microorganism need long-term training that its long generation cycle, for example nitrobacteria. And the system operations in winter, temperature limit microbial growth and activity worse, with the further stabilization operations, the best operating conditions of exploration, operating parameter control, the effluent water quality can be further improved.
     The five innovations bring out in thesis:
     1) The first time take the ecosystem fiber as "artificial water grass" to apply pretreatment of constructed wetland;
     2) Constructed wetland and oxidation pond combine together is a new complex ecosystem and the oxidation pond system as pretreatment system of constructed wetland. By experiment mensurate of small-scale test system and medium-sized test project toward The Center Lake, analyze effect of temperature, influent concentration, and hydraulic load factors on the removal of contamination;
     3) The first time that makes light quality ceramic by river sediment and applies to circulation economy research of riverway ecological repair in constructed wetland;
     Make use of river sediment polluted in The Center Lake before experiment base in Qianwei village, Chongming County. The river sediment pollution by living sewage and fishery breed aquatics waste water, so the organic matter content is higher, making use of its organic matter as vesicant and applied it with ecological fibre in undercurrent constructed wetland can get rid of NH4+-N and CODCr, clean the water and curry out the purpose of "with dirty cure dirty".
     4) Study the influence of water current that use of ceramic in constructed wetland for the first time;
     Study the variety of water current that use of ceramic in constructed wetland.
     5) Zero energy water circle drive system and mulriple constructed wetland river water cleanse system an integration a technique.
     Adopt windmill as power to realize the step up of polluted water. The windmill can provide enough power in order to provide ample oxygen for the biology contact oxygenation. To realize the reasonable layout of water area ecology, the delamination of acuiculture fish and accrete of fish and hydrophyte.
引文
[1]吴晴.了解我们的国情[N].光明日报,1999.04.27(5)
    [2]蒋展鹏,尤作亮,师绍琪等.城市污水强化一级处理水工艺-活性污泥法[J].中国给水排水,1999,15(12):12~16
    [3]王凯军,贾立敏.城市污水生物处理新技术开发和应用[M].北京:化工出版社,2001
    [4]高前兆,李小雁,苏德荣.水资源危机[M].北京:化学工业出版社,2002.98~99
    [5]缪应祺.水污染控制工程[M].南京:东南大学出版社,2002.1
    [6]周光召,郎一环,王礼茂,李岱.全球资源态势与中国对策[M].武汉:湖北科学技术出版社,2000.405
    [7]UNESCO and WMO. Water Resources Assessment Activities:Handbook for National Evaluation [M]. Geneva:WMO Secretariat,1998.100~101
    [8]Stephenson D.. Developments in Water Science [M]. Elservier Science publicshing company Inc..1998.68~69
    [9]陈家琦,王浩.水资源学概论[M].北京:中国水利水电出版社,1996
    [10]刘永懋.21世纪人类面临最严重的危机[J].水资源保护,1995,(4):22~25
    [11]顾润南.我国城市生活污水处理方法述评[J].环境保护,2001
    [12]杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):3~5
    [13]张光斗.对中国可持续发展水资源的新认识[R],中国水资源论坛,2002.9
    [14]王薇等.人工湿地污水处理工艺与设计[J],城市环境与城市生态,2001,14(1):59~62
    [15]丁疆华,舒强.人工湿地在处理污水中的应用[J],农业环境保护,2000,19.(5)
    [16]上海市环保局.废水生化处理[M].上海:同济大学出版社,1999:5
    [17]株洲日报编辑部.我国水污染状况不容乐观[N].株洲日报,1999-06-22(4)
    [18]张公武.论城市生活污水资源化治理[J].株洲工学院学报,2000,14(2):55~56
    [19]国家环保总局.中国环境状况公报[N].2008
    [20]杨鲁豫等.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):95
    [21]俞庭康,杨键.城镇污水最佳实用技术新近展[J].环境污染治理技术与设备,2000,1(5):54~59
    [22]高拯民,李宪法.城市污水土地处理手册[M].北京:中国标准出版社,1990
    [23]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社
    [24]J. W. Clark, W. Viessman, Jr., and M. J. Hammer. Water Surpply and Pollution control [M]. Harper & Row-Pullishers,1977
    [25]诸惠吕等.新型废水处理工艺—人工湿地的设计方法[J].环境科学,1993,14(2):39~43
    [26]Habel, R., et al., Constructed wetlands in Europe. Kadiec, R.H., et al., (eds), selected proceedings, the 4TH international conference on wetland system to water pollution control [J]. Water sci. technol.,1995.306~315,32 (3)
    [27]Brown, D.S., et al., Inventory of constructed wetland, the united states, in:Bavor, H.J., et al., (eds), wetland system in water pollution control [J]. water sci. Technol.,1994.309~318,29 (4)
    [28]Juwarkar, A.S., et al., Domestic wastewater treatment through constructed wetland in India, in:Kadiec, R. H. et al., (eds), Selected proceedings for the 4TH international conference on wetland systems for water pollution control [J]. Water sic. Technol.,1995.291~294.32 (3)
    [29]Kickkuth R. Degradation and incorporation of matrient from rural wastewaters by plant rhizos phere under limic conditions [A].In:Utilization of Manure by landSpreading, Commission of the Europe Communities [M]. London,1997,243~335
    [30]Reed S C, Brown DS, Constructed wetland design the first generation [J]. Wat.Res.1992,64 (6):776~781
    [31]Andrew P Knuzic, Natural treatment systems [J]. Wat. Env. Res.1994,66 (4):357~361
    [32]朱彤,许振成,胡康萍等.人工湿地污水处理系统应用研究[J].环境科学研究,1991,4(5):17~22
    [33]白晓慧等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88~92
    [34]赵丽囡.中国的湿地保护[J].科学中国人,1999,10
    [35]Mark Coleman. Phosphate recycling from saline sediments in constructed ponds [J].
    [36]杨朝飞.中国湿地现状及其保护[J].1995,(6):407~411
    [37]许春华等.人工湿地在农业面源污染控制方面的应用[J].重庆环境科学,3001,23(3):70~72
    [38]白晓慧,王宝贞等.人工湿地水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):8
    [39]高拯民、李宪法.城市污水土地处理利用手册[M].北京:中国标准出版社 1991.8~28,225~248
    [40]Shen yao liang. New Technologies for Biological Wastewater Treatment-Theory and Application [M]. Beijing:China Environmental Science Press (in Chinese) 1999
    [41]籍国东等.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224~228
    [42]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83~86
    [43]李万庆等.污水湿地处理工艺优化组合设计[J].城市环境与城市生态,2000,13(6)
    [44]Aimee Matthy, G Parkin. S. Wallace. A Comparison of Constructed Wetlands Used to Treat Domesitc Wastes:Conventional, Drawdown, and Aerated [J].2001
    [45]United States Office of Water EPA 832-R-93-008 Environmental Protection (4204) July 1993 Agency. Subsurface Flow Constructed Wetlands for Wastewater Treatment [A]
    [46]R.Haberl, G. Langergraber. Constructed Wetland Technology [J]. University of Agricltural Sciences Vienna (BOKU),2000
    [47]梁威,吴振斌.人工湿地对污水中氮磷的去除机理研究进展[J].环境科学动态,2002,3:32~35
    [48]Renee Lorion. Constructed Wetlands:Passive Systems for Wastewater Treatment [R],2001
    [49]G.Sun.K.R.Gray, A.J.Biddlestone and D.J.Cooper. Treatment of Agriclutural Wastewater in a Combined Tidal Flow-Down Flow Reed Bed System. Wat. Sci. Tech.1999,40 (3):139~146
    [50]Brij Gopal. Natural and Constructed Wetlands for Wastewater Treatment:Potentials and Problems. Wat. Sci. Tech,1999,40 (3):27~35
    [51]胡焕斌等.人工湿地处理矿山炸药污水[J].环境科学与技术,1997,(3):17~26
    [52]李科得,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140~144
    [53]吴献花等.人工湿地处理污水的机理[J].玉溪师范学院学报,2002,18(1):103~105
    [54]成水平等.香蒲、灯心草人工湿地的研究——Ⅱ,净化污水的空间[J].湖泊科学,1998,10(1):62~66
    [55]杨桂芳等.慢速渗透土地处理系统生存效应研究[M].国家环境保护局编;水污染防治及城市污水资源化技术.科学出版社,91~304
    [56]李科得,胡正嘉.人工模拟芦苇床系统处理污水的效能[J].华中农业大学学报,1994,13(5):511~517
    [57]王立彬,赵承.人均淡水资源量2300立方米相当于世界人均的1/4我国是13个最贫水 国之一[N].《北京青年报》,2000年6月12日
    [58]尹连庆等.粉煤灰基质人工湿地系统净化污水的研究[J].华北电力大学学报,1999,26(4):76~79
    [59]徐丽华等.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603~605
    [60]聂发辉.人工湿地中新型填料净化污水能力的研究[J].中南林学院硕士学位论文,2003
    [61]C.D.Barton·A.D.Karathanasis, Renovation of a failed constructed wetland treating acid mine drainge [J]. Environmental Geology,1999,39 (1):39~50
    [62]K.R.Reddy, Fate of Nitrogen and Phosphorus in a wastewater Retention Reservior Containing Aquatic Macrophytes, J Environ Qual,1983,12 (1):137~141
    [63]Cooper.P.F. and Boon.A.G. The use of phragmites for wastewater treatment by the root zone method. The DK. approach. In Reddy.K.R. and Smith.W.H (eds.) Aquatic plants for water treatment and resource recovery [J]. Magnolia Publishing Oriando,1987.153~174
    [64]Seidel, K.. AbbauvonGewassemdurchhoherewasserpflanzen [J], Naturwiss,1964,51,395
    [65]Seides, K.. ReingungvonGewasserndurchhoherepflanzen [J].Naturwiss,1996,53,289~297
    [66]Seidel, K..Happel, H. and Graue, GCcntributions to revitalization of waters 2nd edn, Stiftung Limnllogische Aebeitsgruppe Dr.Seidel e.V.Krefeld (Germany),1978,1-62
    [67]K night, R.L., R.W., Kadlec, R.H. and Reed, S.Wetlands for wastewater treatment: performance database in Moshiri, GA. (ed.) Construted wetlands for waterquality improvement [J]. lewis Pubishers, Boca RATON,1993:35~58
    [68]Scott Wallace. Advanced designs for constructed wetlands [J]. Biocycle,2001,42 (6):40-43
    [69]唐述虞.铁矿废水的人工湿地处理[J],环境工程,1996,(4):3~7
    [70]Sinclair Knight Merz. Guidelines for Using Free Water Surface Constructed Wetlands to Treat Municipal Sewage [M], Sept.2000. www.env.qld.gov.au/environment/environment/ suswater/pdf/wetland_guidelines.pdf
    [71]Breen, P F 1990:"A mass balance method for assessing the potential of artificial wetlands for wastewater treatment", Water Research 24 (6):689~697
    [72]IWA Specialist Group on Use of Macrophytes in Water Pollution Control (2000), "Constructed Wetlands for Pollution Control:Processes, Performance, Design and Operation". Scientific and Technical Report No.8, IWA Publishing, London,156p."Flooding on Soil", In Flooding and Plant Growth (ed T Kozlowski), Academic Press, pp 10-45
    [73]Kadlec, R H & Knight, R L 1996:"Treatment Wetlands", Lewis Publishers
    [74]Rogers, F E J, Rogers, K H & Buzer, J S 1985:"Wetlands for Wastewater Treatment:With Special Reference to Municipal Wastewaters", Olifantsvle Working Group, Botant Department, University of the Witswatersrand, South Africa,122p.
    [75]Gerberg, R.M., B.V. Elkins, S.R. Lyons, C.R. Goldman, Role of Aquatic Plants in Wastewater Treatment by Artificial Wetlands. Water Research,1985,20:363~367
    [76]Reed, S.C., E.J, Middlebrooks, R.W. Crites, Natural Systems for Waste Management & Treatment. McGraw Hill, New York, NY,1988
    [77]WPCF. Natural Systems for Wastewater Treatment. Manual of Practice FD-16, Reed, S.C., ed., Water Pollution Control Federation, Alexandria, VA.1990
    [78]Reddy, K R & Patrick, W H 1984:"Nitrogen trans formations and its loss in flooded soil and sediments", CRCCritical Reviews in Environmental Control 13 (4):273~309
    [79]Bowden, W B 1987:"The biogeochemistry of nitrogen in freshwater wetlands", Biogeochemistry 4:313~348
    [80]Rysgaard, S, Risgaard-Petersen, N, Nielsen, L P & Revsbech, N P 1993:"Nitrification and denitrification lake andestuarine sediments measured by the 15 Ndilution technique and isotope pairing", Applied & Environmental Microbiology 59 (7):2093~2098
    [81]Tiedie, J M 1988:"Ecology of denitrification and dissimilatory nitrate reduction to ammonium". In:Zehnder, AJ B (Ed.) Biology of Anaerobic Organisms, John Wiley & Sons, NY, pp.179-244
    [82]Hingston et al, Anion Adsorption by Goethite and Gibbsite I. The Role of the Proton in Determining Adsorption Envelopes, J.Soil.Sci.,1972,23;177
    [83]Breeuws ma, A., and Lykle ma, Physical and Chemical Adsorption of Inos in the Electrical Double Layer on He matite, J.Coll.Interface.Sci.,1973,43;437
    [84]Rajan, Adsorption of Diavlent Phosphate on Hydrous Aluminum Oxide, Nature,1975,253; 434
    [85]Rajan et al, Phosphate Adsorption by Soils, I I. Reactions in Tropical Acid Soils. Soil Sci.Soc.Am.Proc,1975,39; 846
    [86]Parfit et al, The Mechanism of Phosphate Fixation by Iron Oxides. Soil Sci.Am.Pron., 1975,39;837
    [87]Ryden et al.,The Mechanism of Phosphate Sorption by Soil and Hydrous Ferric Oxide Gel.,J.Soil.Sci.,1977,28;172
    [88]Taylor et al, A Mechanism of Phosphate Adsorption on Soil and Anion Exchange Resin Surface, Soil.Sci.An.J.,1978,42;434
    [89]Syers et al, Phosphate chemistry in Lake Sediments, J.Environ. Qual.,1973,2; 1
    [90]Harter, R.D., Adsorption of Phosphorus by Lake Sediments, Soil Sci.Am.Proc.1968,32; 514
    [91]Williams et al, Adsorption and Desorption of Inorganic Phosphorus by Lake Sediments in a 0.1Mnacl System, Environ.Sci.Technol.,1970,4;517
    [92]Flaig, E G & Reddy, K R 1995:"Fate of phosphorus in the Lake Okeechobee watershed, Florida, USA:overview and recomendations", Ecological Engineering 5:127~142
    [93]Qui S & McComb A J 1994:"Effects of Oxygen Concentration on Phosphorus Release from Re-flooded Air Dried Wetland Sediments", Australian Journal of Marine and Freshwater Research 45 (7):13~19
    [94]黄立南.湿地处理污水的研究[J].生态科学,1996,15(2):117~120
    [95]Drizo A, Frost CA, Grace J. Physico-chemical screening of phosphate removing substrates for use in constructed wetlands systems. Wat.Res,1999,33 (7):3595~3602
    [96]孙铁珩,周思毅.城市污水土地处理技术手册[M],中国环境科学出版社,北京.1997
    [97]王宜明.人工湿地净化机理和影响因素探讨[J].昆明冶金高等专科学校学报,2000,16(2):3~4
    [98]徐国兴.天然沸石用于蒸馏水生产中出氟[J].水处理技术,1990,16(6):456
    [99]姚凤云.水处理技术,1987,13(4):224
    [100]孙家寿,刘科星,等CTMAB交联系累托石吸附苯胺废水的研究[J].离子交换与吸附,2002,24(1):51~53
    [101]成水平,况琪军,等.香蒲、灯心草人工湿地的研究[J].湖泊科学,1997,9(4):352~356
    [102]权新军,金为群,李群,等.改性天然沸石处理富营养化公园湖水样的实验研究[J].非金属矿,2002,21(1):48~49
    [103]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603~605
    [104]徐丽花,周琪.人工湿地控制暴雨径流污染的实验研究[J].上海环境科学,200221 (5):275~277
    [105]尹连庆,张建平,董树军,等.粉煤灰基质人工湿地系统净化污水的研究[J].华北电力大学学报,1999,26(4):76~79
    [106]崔理华,朱夕珍,骆世明,等.垂直流人工湿地系统对污水磷的净化效果[J].环境污染治理技术与设备,2002,3(7):13~17
    [107]刘远金,张新明,李华兴,等.天然沸石对鱼塘水及生活污水的氮磷去除效应[J].农业环境保护,2002,21(4):331~333
    [108]赵小蓉,杜冬云,陆晓华,等.累托石处理氨氮废水的试验研究[J].工业水处理,2003,23(2):37~41
    [109]蒋建国,陈嫣,邓舟,等.沸石吸附法去除垃圾渗滤液中氨氮的研究[J].给水排水,29(3):6~8
    [110]Koon,J.H.; Kauirnan,W.J.; J.Wat. PULL. Cont. Fed.[M]; 1974,47:443
    [111]Ciambelli, P.; Zeolites:Syntinesis, Structure, Technology and Application [M]. Elsevier Science Publishers,1985.539
    [112]Gaspard, M,; Neveu, A.; Martin, G.;Wat.Res.[M].1983.270
    [113]王宝贞,王琳.水污染治理新技术.科学出版社,2004:159~168
    [114]R.J. Craggs, C. Davies, C.C.TamNner. Advanced Pond System:Performance with High Rate Ponds of Diferent Depths and Areas. Water Science Technology.2003,48 (2):259~267
    [115]zeeman G, Lens P, Lettiga G. Decentralised sanitations and reuse. Water 21,April2001, 24~25
    [116]B.Z.W ang, L.Wang. A Twin Approach to Wastewater Treatment. IWA Year book.2001: 28~31.
    [117]R. V. Chalapati, S. B. Lakhe, S. V. Waghmare. Virus Removal in Waste Stabilization Ponds in India.Water Research.1981, (15):773-778
    [118]D. D. Mara, S. W. Mills, H. W. Pearson, G P. Alabaster. Waste Stabilization Ponds:A Viable Alternative for Small Community Treatment Systems. Institu tion of Water Environment Management.1992,6 (1):72~78
    [119]A. W. Mayo. BOD5Removal in Facultative Ponds:Experience in TamNzania. Water Science Technology.1996,34 (11):107~117
    [120]Y. S. Rao, K. B. Shankha. Phosphate Removal in Ponds. Water Science Technology.1995,12 (31):331-339
    [121]I.P. To ms, M.O wens, J. A.Hall. Observations on the Performance of Polishing Lagoons at a Large Regional Works. Water Pollution Control.1975, (74):383~401
    [122]Brooks A S, Rozenwald M N,Geohring L D et al.2000.Phosphorus removal by wollastonite: A constructed wetland substrate.Ecological Engineering. p121~132
    [123]S.A.Silva, R.D.Oliverira, J. Soares. Nitrogen Removal in Pond Systems with Different Configurations and Geometries. Water Science Technology.1995,12 (32):321~330
    [124]A. H. John. Notrogen Biogeochemistry of Aquaculture Ponds. Aquaculture.1998, (166): 181~212
    [125]K. R. Reddy. Fate of Nitrogen and Phosphorus in a Wastewater Retention Reservoir Containing Aquatic Macrophytes. Environmental Quality.1983, (12):137~141
    [126]O. R. Zimmo, D. Scale Algae and S. Van, H. J. Gijzenb. Nitrogen Mass Balance across Pilot-Duckweed-based Wastewater Stabilization Ponds. Water Research.2004, (38):913~920
    [127]W. J.Oswald. Use of Wastewater Effluent in Agriculture. Desalination.1989, (72):67~80
    [128]W. J. Oswald, C. G.Golueke, R. W. Tyler. Integrated Pond Systems for Subdivisions.W PCP.1967, (g):1289~1304
    [129]唐峰.塘湿地生态系统对微污染水体的去除机制研究[A].东华大学.2007:19~26
    [130]M. Suhdaravadivel, S. Vigneswaran.2001. Constructed Wetland for Waste water Treatment [J]. Critical Review in Environmental Science and Technology;31 (4):371~376
    [131]USA EPA,Ofice of water. EPA's contaminated sediment management strategy.1998
    [132]唐迎洲,阮晓红.城区河道底泥修复技术探讨[J].北方环境.2003,28(2):39~41.
    [133]中国建筑材料科学研究院混凝土研究所等译.国外轻骨料混凝土应用.1982年,北京:中国建筑工业出版社,1~54
    [134]黄德志,何少先,江映翔.污水处理厂脱水污泥制作轻质陶粒添加剂的研究.环境科学学报,2000,20(9):129~132
    [135]高礼雄,胡曙光,丁庆军.高强粉煤灰陶粒的研制及其混凝土试配.桂林工学院学报,2002,22(2):171~173
    [136]奕军.试验设计的技术与方法.1987年,上海:上海交通大学出版社,45~103
    [137]辛益军.方差分析与试验设计.2002年,北京:中国财政经济出版社,257~298
    [138]蔡显鄂,项一非等.物理化学实验(第二版).高等教育出版社,北京,1993,56~94
    [139]董祜嵩.颗粒粒度与比表面测定原理.上海科学技术文献出版社.上海,1986,45~98
    [140]Liu Gui-yun, Xi Dan-li.Measurement of specific surface area of ceramisite made from river sediment [J].Journal of Dong Hua University (Eng. Ed.),2002.19 (3):123~126
    [141]刘贵云.河道底泥资源化—新型陶粒滤料的研制及其应用研究[A].东华大学.2002:97~99
    [142]国家标准总局.中华人民共和国国家标准.《轻集料及其试验方法》(GB/T 17431-1998)北京:中国标准出版社,1998
    [143]刘诗铮,黄吉慧.无烟煤单层滤料的应用.给水排水,2001,27(7):1~4
    [144]徐旭,谷月玲.污泥硫化床焚烧产物的重金属排放特性研究.环境工程,1999,(6):56~60
    [145]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989.5
    [146]宋春霞.人工湿地处理城市生活污水的应用与机理研究[A].大连交通大学.2004:27
    [147]Focht D.D, Chang A.C.Nitrification and denitrification processes related to waste water treatment[J].Adv Appl Microbiol 1975,19:153~186.
    [148]Ying—Feng Lin et al.Nutrient removal from aquaculture wastewater using a constructed wetlands system[J].Aquaculture,2002,209:169-184.
    [149]曹向东等.强化塘 人工湿地复合生态塘系统中氮和磷的去除规律[J].环境科学研究.2000,13(2):15~19
    [150]顾夏声.废水生物处理数学模式(第二版)[M].北京,清华大学出版社,1993.
    [151]张荣社等.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备,2002,3(12):9-11
    [152]Vymazal, J.Nitrogen removal in constructed wetlands with horizontal sub-surface flow-can we determine the key processing In:Vy—mazal, J. (Eds.), Nutrient Cycling and Retention in Natural and Constructed Wetlands.Backhuys Publishers, Leiden, The Netherlands,1999a, PP. 1-17.
    [153]U.S.Environmental Proctection Agency, Design Manual:Constructed Wetlands and Aquatic Plant Systems for Municipal Wastewater Treatment[M].EPA/625/1-88/022.Environmental Protection Agency, Cincinnati, OH,1988.
    [154]U.S.Environmental Proctection Agency, Manual:Nitrogen Contro1.EPA/625/R-93/010. Environmental Protection Agency.Cincinnati.OH.1993.
    [155]M.Robert Hamersley et al.Nitrogen balance and cycling in an ecologically engineered septage treatment system[J].Ecological Engineering,2001,18:61~75.
    [156]高拯民,李宪法等.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1991.
    [157]籍国东等.自由表面流人工湿地处理超稠油废水[J].环境科学,2001.22(4):95-99
    [158]张忠祥,钱易.废水生物处理新技术[M].北京:清华大学出版社,2004.2,648
    [159]张甲耀,夏盛林,熊凯,金显春.潜流型人工湿地污水处理系统的研究[J].环境科学,1998.7(4):36~39
    [160]Rogers K. H et al.. Nitrogen removal in experimental wetlands treatment system:Evidence for the role of aquatic plants. Research Journal WPCF,1991,63 (7):934
    [161]王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004
    [162]Gao Zhengmin, Li Xianfa. The Design Manual of Land Treatment for Urban Wastewater [M]. Beijing:Standards Press of Cjina,1990:132-135 (in Chinese).
    [163]VYMAZAL J, BRIX H, COOPER P F. Removal Mechanisms and Types of Constructed Wetlands [M]. Leiden:Backhuys Publishers,1998:35,41~43.
    [164]宋铁红,尹军,崔玉波.不同进水方式人工湿地除污效率对比分析[J].安全与环境工程,2005.9,12(3).16~18,51
    [165]Cooper P, Smith M,Maynard H.1997. The design and performance of a nitrifying vertical-flow reed bed treatment system. Water Science and Technology.35 (5):215-221
    [166]李明锐,沙丽清.云南保山西庄河流域森林土壤磷吸附特性[J].山地学报,2002,20(3):313~318
    [167]沈耀良,王宝贞.废水生物处理新技术——理论与应用.北京:中国环境科学出版社,1999.165~292
    [168]宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用.生态学杂志.2003,22(2):74~78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700