用户名: 密码: 验证码:
小城镇污水A/O/A工艺同步脱氮除磷特性及盐度影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国城镇化进程的加快使中小城镇在我国环境保护和确保经济可持续发展中的作用越来越大。小城镇含盐生活污水脱氮除磷工艺的选择由于其污水间歇非稳定流等特点,不能照搬大型污水厂处理工艺。本研究针对小城镇含盐污水生物脱氮除磷的研究空白,研究不同除磷工艺相互转换时反硝化除磷工艺特性;采用正交试验确定了影响系统运行的主要因素及优化条件,研究了A/O/A-SBR工艺处理实际生活污水的能力特性;利用实际生活污水模拟改变盐度,通过对普通活性污泥的耐盐驯化,以及盐度对耐盐污泥的间歇冲击和连续冲击试验,揭示A/O/A工艺污染物降解规律和去除特性,研究盐度对生物处理脱氮除磷工艺的影响及演变规律;利用matlab和ASM2d模型对A/O/A-SBR工艺降解污染物进行了数值模拟,并依据盐度对微生物的抑制作用,首次提出了基于ASM2d模型的吸磷过程、释磷过程以及硝化过程反应速率的盐度修正项,建立了含盐生活污水脱氮除磷活性污泥数学模型。
     研究结果表明:除磷工艺的相互转换对于聚磷菌利用其它形式电子受体的能力没有影响,A/O/A-SBR比传统工艺更利于反硝化除磷菌的富集。A/O/A-SBR工艺以实际生活污水为处理对象,对COD的去除率为84.1%~94.8%;磷的去除率为82.9%~92.2%;氨氮的去除率为89.7%~98.3%;TN去除率为75.6%~85.8%。出水达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准。
     从盐度对普通活性污泥的影响分析,盐度升高,则系统释磷速率及聚磷速率降低;盐度对于缺氧聚磷速率的影响大于好氧聚磷速率;对聚磷速率的影响大于对释磷速率的影响;缺氧聚磷速率下降大于反硝化速率的下降。盐度越高,污泥的适应期相应越长。
     当盐度大于7g/L后,硝化过程中系统出现亚硝酸盐累积,表明盐度对硝酸菌(NOB)比对亚硝酸菌(AOB)有更强的抑制作用。加入4g/L、7g/L和10g/L系列盐度,亚硝酸盐累积率分别为0~2.94%、41.6~52.2%和58.7~69.6%。显示随盐度增加,短程反硝化成为系统缺氧段主要的反应过程。综合考虑硝酸盐及亚硝酸盐反硝化速率之和,各系列盐度条件下反硝化速率差别不明显。
     盐度对耐盐污泥的间歇冲击试验表明:低盐冲击与高盐冲击时盐度对磷的去除影响最大,对氨氮的去除影响最小。系统从低盐冲击恢复至正常稳定水平需要约72小时,高盐冲击恢复则需耗130小时左右。系统对低盐度的抗冲击能力较高盐度抗冲击能力强。
     对耐盐活性污泥的盐度连续冲击试验表明:当系统盐度由10g/L分别提高为15g/L、20g/L以及25g/L后,随盐度升高,厌氧释磷速率、好氧聚磷速率以及缺氧聚磷速率均呈下降趋势,其中厌氧释磷速率与好氧聚磷速率受盐度影响变化基本一致,缺氧聚磷速率受影响较大。
     在污泥盐度驯化期以及受间歇冲击时,硝化速率受盐度影响相对较小;而盐度连续冲击时硝化速率有较大幅度下降,当盐度为15g/L时,与无盐条件相比,仅为后者的52.3%;当盐度为20g/L时,硝化速率为无盐条件的21.6%;盐度25g/L时,好氧段硝化完全受抑制。亚硝化率在盐度为15g/L时最大,为80.1%。。
     碳氧化异养菌比硝化菌及聚磷菌有更强的抗盐度冲击能力。在污泥盐度驯化期以及受间歇冲击时,聚磷菌相比硝化菌对盐度更敏感;经驯化后,在盐度连续冲击条件下,聚磷菌对盐度的耐受能力略强于硝化菌。采用A/O/A-SBR系统,在厌氧/好氧/缺氧时间控制为1.5h/3h/2.5h的运行方式下,生物除磷连续冲击耐盐极限浓度为20g/L;硝化菌的连续冲击耐盐极限浓度为15g/L。
     在ASM2d模型的基础上,引入盐度抑制项对模型生化过程进行修正,通过对含盐污水污染物处理实测结果进行数值模拟来确定引入抑制系数值,从而提出了适用于模拟含盐污水处理系统的活性污泥数学模型。该模型中好氧吸磷过程抑制系数KsalXPH、缺氧吸磷过程抑制系数KsalXPQ、释磷过程抑制系数KsalSP和硝化过程抑制系数KsalXH的推荐值分别为:12.0g/m~3、10.8g/m~3、14.6g/m~3、15.3g/m~3。
With the accelerating of China's urbanization process, small towns are playing animportant role in environment protection and sustainable economic development in China.The salinity wastewater nutrient removal process of small towns is different from large cityWWTP process because of its intermittent and non-steady flow of sewage. In this study,characteristics of different denitrifying phosphorus removal process are investigated; thekey operating conditions and optimizations of AOA-SBR are found by orthogonal test.Biodegradable characteristics of domestic sewage are studied in A/O/A-SBR process. Aftersludge salinity acclimation with domestic sewage, degradation of pollutants is revealed onthe condition of the shock of intermittent and continuous test. Effects of salinity on thebiological nutrient removal process are investigated. Degradation of pollutants is simulatedusing matlab and ASM2d model in A/O/A-SBR. The first proposed salinity correction termabout the phosphorus uptake/release process and the nitrification process based on ASM2d,nutrient removal activated sludge mathematical model on saline wastewater is established.
     The experimental results showed that phosphate accumulating organisms utilizedelectron acceptor according to its occurrence sequence. This ability is stable and feasible.The ratio of anoxic phosphorus uptake rate and aerobic phosphorus uptake rate (PUR) isdistinguished between phosphorus-accumulating and denitrifying phosphorusaccumulating organisms (DNPAOs) in biological nutrient removal (BNR) process. Resultshows that A/O/A-SBR is more beneficial than the traditional process of BNR.
     In the anaerobic(1.5h)/aerobic(3h)/anoxic(2.5h)-SBR process, removal efficiency ofCOD, phosphorus, ammonia nitrogen and TN are84.1%~94.8%,82.9%~92.2%,89.7%~98.3%and75.6%~85.8%,respectively.Effluent concentration are lower than "urbansewage treatment plant emission standards"(GB18918-2002) primary B standard.
     With an adequate adaption period and gradually increased salt concentration, effect ofsalinity on the conventional activated sludge are showed that the higher the concentrationof salinity, the lower the phosphorus release rate and phosphorus uptake rate; effects ofsalinity on the decrease of anoxic phosphorus uptake rate is greater than the decrease ofaerobic phosphorus uptake rate and denitrification rate. Meanwhile, the decrease ofphosphorus uptake rate is greater than the decrease of aerobic phosphorus release rate.
     When salinity is higher than7g/L, nitrite accumulation is found during the course ofnitrification. This showed that Nitrobacter is more sensitive to high salinity thanNitrosomonas. And as salinity increased, the inhibitory effect further enhances. In the SBR, the addition of4g/L,7g/L and10g/L series of salinity, nitrite accumulation is0to2.94%,41.6~52.2%and58.7~69.6%,respectively. Short-cut denitrification could be realized bythe increase of salinity; in the system integrated nitrate and nitrite, and denitrification rateof each series has no significant change.
     The experiment investigates the effects of intermittent shock of salinity on thebiological treatment, impact of low salinity was similar to high salinity, significant effect ofsalinity on the phosphorus removal, ammonia-nitrogen removal with minimal impact.System from low salinity shock return to normal level takes about72hours, the impact ofhigh salinity is required to restore about130hours. It has the tolerant ability of low-salinitymore than high salinity in the system.
     The experiment investigated the effects of continuous shock of salinity on thebiological treatment, the experiment showed that when the salinity from the10g/L,respectively, increases to15g/L,20g/L and25g/L. The higher the salinity, the lower theanaerobic phosphorus release rate. The aerobic and anoxic phosphorus uptake rate, inwhich the rate of anaerobic phosphorus release and aerobic phosphorus uptake rate effectsaffects by salinity changes are basically the same, the anoxic phosphorus uptake rate hassignificant change.
     In salinity acclimation period and the intermittent shock period, effect of salinity onnitrification rate is relatively small; but salinity continuous shock on the nitrification rate ofsalinity has decreased substantially when the salinity of20g/L, the nitrification rate is21.6%of salt-free conditions; salinity of25g/L, the aerobic nitrification completelyinhibited. Nitrite accumulation in the salinity of15g/L is maximum, it is80.1%.
     Heterotrophic bacteria has a stronger tolerant of high salinity capability than nitrifiersand PAOs. During salinity acclimation period and intermittent shocks period, PAOscompares to the nitrifying bacteria are more sensitive to salinity; after a acclimation, in thecontinuous impact of salinity conditions, the PAOs on the salinity tolerance of slightlystronger on nitrifiers. In A/O/A-SBR, the result showed that the salinity tolerant limit ofPAOs is20g/L under salinity continuous shocks condition; nitrifiers is15g/L undersalinity continuous shocks condition.
     In ASM2d model, salinity inhibition term is introduced into the biochemical processof the model. After the simulation and optimization, the model is established on simulatesalinity wastewater treatment. The aerobic phosphorus uptake inhibitory factor KsalXPH,anoxic phosphorus uptake inhibition factor KsalXPQ, anaerobic phosphorus releaseinhibition factor KsalSP and nitrification inhibition factor KsalXH recommended values are:12.0g/m~3,10.8g/m~3,14.6g/m~3,15.3g/m~3,respectively.
引文
[1]杨鲁豫,王林,王宝贞.适宜中小城镇的水污染控制技术[J].中国给水排水,2001,17(1):23~25
    [2]严素定,陈玉成.小城镇污水处理的SBR运行模式[J].环境科学与技术2006,29(7):89~92
    [3]刘智晓,崔福义,丁雷,左金龙,孙兴滨.中小城镇高效低耗污水处理工艺的选择[J].给水排水,2006,32(4):32~37
    [4]李亚新,活性污泥法理论与技术[M].北京:中国建筑工业出版社,2007.
    [5]王晓莲,彭永臻,A2/O法污水生物脱氮除磷处理技术与应用[M].北京:科学出版社,2009.
    [6] Chen,Y. S. Chen,Q. Xu,et al. Comparison between Acclimated andUnacclimated Biomass Affecting Anaerobic-aerobic Transformations in the BiologicalRemoval of Phosphorus[J]. Process Biochemistry.2005,40:723~732.
    [7] Wang JC and Park JK. Effect of wastewater composition on microbialpopulations in biological phosphorus removal processes[J]. Wat.Sci.Tech,1998,38(1):159~166.
    [8] Smolders G,Model of the anaerobic metabolism of the biological phosphorusremoval process: stoichiometry and pH influence[J]. Biotech. Bioengi.,1994,1(43):461~470
    [9] Kuba T,smolders G,et.al.,Biological phosphorus removal from wastewater byanaerobic-anoxic SBR[J]. Wat.Sci. Tech.,1993,27(5-6):241~252
    [10] Tomonori,Matsuo. Metabolism of organic substances in anaerobic phase ofbiological phosphate uptake process[J]. Wat.Sci. Tech.,1992,25(6):83~92
    [11] Wachtmeister A,Kuba T, et.al., A sludge characterization assay for aerobicand denitrifying phosphorus removing sludge[J]. Wat. Res.,1997,31(3):471~478
    [12] Tayà, Carlota; Guisasola, Albert; Baeza, Juan A. Assessment of abioaugmentation strategy with polyphosphate accumulating organisms in anitrification/denitrification sequencing batch reactor[J]. Bioresource Technology,2011102(17):7678~7684.
    [13] Monti,Alessandro; Hall,Eric R.; Van Loosdrecht,Mark M. C. Kinetics ofphosphorus release and uptake in a membrane-assisted biological phosphorus removalprocess[J]. Environmental Engineering,2007,133(9):899~908.
    [14] S.H.Chuang. Effects of SRT and DO on nutrient removal in a combinedAS-BIOFILM process[J]. Water res.tech.,1997,36(12):12~17
    [15] Henze.M,Gujer,W,Mino,T,Matsuo,T,ASM No.2,ASM2d[J] Waterres.tech. Vol.,1999,39(1):165~182
    [16] Sorm R,Brotone G,Saltarelli R,et al, Phosphate uptake under anoxicconditions and fixed-film nitrification in nutrient removal activated sludgesystem[J].Wat.Res,1996,7(30):1573~1584
    [17] Dulekgurgen E,Ovez S,Artan N,et al. Enhanced biological phosphate removalby granular sludge in a sequencing batch reactor[J].Biotechnology Letters,2003,25:687~693
    [18]卢然超,张晓健,张悦等.SBR工艺污泥颗粒化对生物脱氮除磷特性的研究[J].环境科学学报,2001,21(5):577~581
    [19] Meyer R L,Zeng R J X,Giugliano V,et al. Challenges for simultaneousnitrification, denitrification,and phosphorus removal in microbial aggregates masstransfer limitation and nitrous oxide production[J]. FEMS Microbiology Ecology,2005,52(3):329~338
    [20] Koichi S, Akihiko T,et al., Enhancement of nitrogen and phosphorusremoval in a anaerobic/oxic/anoxic sequencing batch reactor as affected by the amount ofexternal carbon[J]. Wat. Environ.Tech.,2011,9(1):79~86
    [21] Soejima K,Oki K,et.al.,Effects of acetate and nitrite addition on fraction ondenitrifying phosphate-accumulating organisms and nutrient removal efficience inanaerobic/aerobic/anoxic process[J]. Bioprocess Biosyst. Eng.,2006,29(5-6):305~313
    [22] Tsunede S,Ohno T,et.al., Simultaneous nitrogen and phosphorus removalusing denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J].Biochem. Engi.,2006,27(3):191~196
    [23]张杰,李小明,杨麒,王冬波,曾光明,何端海.采用AOA模式在SBR中实现同步脱氮除磷[J].中国给水排水,2007,23(17):19~22
    [24] Koichi S,Shinya M,et al.,Modeling and experimental study on theanaerobic/aerobic/anoxic process for simultaneous nitrogen and phosphorus removal:theeffect of acetate addition[J]. Biochemistry,2008,43:605~614
    [25]赵阳国,任南琪,王爱杰.生活污水人工渠自净过程及原生动物演替[J].哈尔滨工业大学学报,2008,40(6):870~873.
    [26]刘霞,陈洪斌.村镇及小区污水的生态处理技术[J].中国给水排水,2003,19(12):32~35.
    [27] Ho G. Technology for sustainability: The role of onsite small and communityscale technology [J]. W ater Sci Tech,2005,51(10):15~20.
    [28] Almany J, Comas J, Turon C,et al. Evaluating the application of a decisionsupport system in identifying adequate wastewater treatment for small communities. Acase study [J]. Water Sci Tech,2005,51(10):179~186.
    [29]全向春,杨志峰,汤茜.生活污水分散处理技术的应用现状[J].中国给水排水,2005,21(4):24~27.
    [30]张真真,王龙,姜瑞雪.小城镇污水处理实用技术研究[J].水科学与工程技术,2006,6:48~50.
    [31]中国环境保护产业协会水污染治理委员会.小城镇污水处理技术装备实用指南[M].北京:化学工业出版社,2007.
    [32] Wang L,Wang B Z,Yang L Y et al. Eco-pond systems for wastewatertreatment and utilization [J]. Wat Sci Tech,2001,21:60~63
    [33]张立秋,王宝贞.处理城市污水的生态塘系统设计[J].中国给水排水,2000,16(2):38~40
    [34] Wang B Z,Dong W Y,Li G Q et al. Experimental study on high rate pondsystem treating piggery wastwater[J].Wat Sci Tech,1996,34(11):125~132
    [35]祁佩时,王宝贞,赵福明等.寒冷地区短暂时间稳定塘研究[J],中国给水排水,2000,16(10):6~9
    [36]贾宏宇,孙铁珩,李培军等.污水土地处理技术研究的最新进展[J],环境污染治理技术与设备,2001,2(1):62~65
    [37]高光智,陈辅利.小城镇污水处理技术研究—利用沟渠处理污水[J].农业环境保护,2001,20(2):104~107
    [38]张志斌,夏四清,赵建夫等.化学生物絮凝工艺处理城市污水的试验研究[J].工业水处理,2005,25(7):53~56
    [39]中国市政工程华北设计研究院.泰安市污水处理实验研究报告[R].天津,1989:15~32
    [40]任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究[J].给水排水,2000,26(6):7~10
    [41]周斌.改良型A2/O工艺的除磷脱氮运行效果[J].中国给水排水,2001,17(7):47~48
    [42]何国富. AB法工艺的运行特点及局限性[J].青岛建筑工程学院学报,2001,11(5):23~26
    [43]刘洪斌.我国海水淡化和海水直接利用事业前景的分析[J].海洋技术1995,14(4):76~79
    [44]尤作亮,蒋展鹏等.海水直接利用及其环境问题分析[J].给水排水,1998,24(3):64~68
    [45]文湘华,占新民等.含盐废水的生物处理研究进展[J].环境科学,1999,20(3):104~106
    [46]张悦,张志敏.加快滨海、岛屿城镇居民海水冲厕示范区建设研究[J].给水排水,2002,28(2):14~18
    [47]张雨山,王静,蒋立东等.海水盐度对曝气反应器中微生物生态的影响[J].工业水处理,1999,19(5):17~18
    [48]张雨山,王静,蒋立东等.利用海水冲厕对城市污水处理的影响研究[J].中国给水排水,1999,15(9):4~6
    [49] Li A,Guowei G. The treatment of saline wastewater using a two stage contactoxidization methods[J]. Wat Sci Technol,1993,28(7):31~37
    [50] Belkin S,Brenner A,Abeliovich A. Biological treatment of a high salinitychemical industrial wastewater [J]. Water Sci Technol,1993,27(7~8):105~112
    [51] Hamoda M F,Al-Att ar I M S. Ef fects of high sodium chloride concentrationon activated sludge treatment [J]. Water Sci Technol,1995,31(9):61~72
    [52] Dincer A R, Kargi F. Salt inhibit ion kinetics in nitrification of syntheticsaline wastewater[J]. Enzyme Microb Technol,2001,28:661~665
    [53] Panswad T,Anan C. Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J].Water Res,1999,33(5):1165~1172
    [54]王淑莹,崔有为,宋学起等. NaCl盐度对活性污泥处理系统的影响[J].环境工程,2004,22(1):19~35
    [55] Uygur A,Kargi F. Salt inhibition on biological nutrient removal from salinewastewater in a sequencing batch reactor [J]. Enzyme. Micro. Tech.,2004,34(3~4):313~318
    [56] Panswad T., Chadarut A. Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds[J].Wat. Res.,1999,33(5):1165~1172
    [57]于德爽,彭永臻,宋学起等.含海水污水的短程硝化反硝化[J].环境科学,2003,24(3):50~55
    [58]郭艳丽,张培玉,于德爽,成广勇.嗜盐菌与高盐度废水生物处理研究进展[J].环境科学与管理,2008,33(9):79-82
    [59]杨健,郭长虹.废水中高浓度钠盐对活性污泥系统的影响[J].污染防治技术,1998,11(4):199~202
    [60]王淑莹,崔有为,于德爽等.无机盐对活性污泥沉降性的影响[J].环境工程,2003,21(5):7~9
    [61]张雨山等.海水盐度对二沉池污泥沉降性能分影响[J].中国给水排水,2000,16(2):18~19
    [62] Campos JL,Mosquera-Corral A,Sanchez M,et al. Nitrification in salinewastewater with high ammonia concentration in an activated sludge unit[J]. Wat.Res.,2002,36:2555~2560
    [63] Dahl C,Sund C,Kristensen GH,Vredenbregt L. Combined biologicalnitrification and denitrification of high-salinity wastewater[J]. Wat. Sci. Tech.,1997,36(2):345~352
    [64] Kargi F,Auygur. Salt inhibition on biological nutrient removal from salinewastewater in a Sequeneing batch reaetor[J]. Enzyme and Microbial Teehnology,2004(34):313~318
    [65]崔有为,张国辉,计立平等.海水冲厕污水生物处理可行性研究[J].工业水处理,200323(12):33~36
    [66] Meinhold J,Amold E,Issaacs S.Effect of nitrite on anoxic phosphate uptake inbiological phosphorus removal activated sludge[J].Wat.Res.,1999,33(8):1871~1883
    [67] Intrasungkha N, Blackall LL.Biological nutrient removal efficiency intreatment of saline wastewater[J].Wat.Sci.Tech.,1999,39(6):183~190
    [68]张勇,于德爽,王洪娟. SBR工艺处理高盐度生活污水试验[J].环境工程,2008,26(1):27-29
    [69] Chen,Liu-Jin; Wang,Dun-Qiu; Zhang,Wen-Jie; Chen,Teng-Su.Research onthe principle of denitrifying phosphorus removal and the influential factors in sewagetreatment[C].5th International Conference on Bioinformatics and BiomedicalEngineering, iCBBE2011
    [70] Danesh S,Oleszkiewicz JA.Use of a new anaerobic-aerobic sequencing batchreactor system to enhance biological phosphorus removal[J].Water Sci.Technol.,1997,35(1):137~144
    [71]郑兴灿,李亚新编著.污水除磷脱氮技术[M].北京:中国建筑工业社,1998
    [72]亢涵,王秀蘅,李楠等.生物除磷系统启动期聚磷菌的FISH原位分析与聚磷特性[J].环境科学,2009,30(1):80~84
    [73] Randall A A,Liu Y.Polyhydroxyalkanoates form potentially a key aspect ofaerobicphosphorus uptake in enhanced biological phosphorus removal[J].Water Res.,2002,36(14):3474~3478
    [74]文湘华,占新民,王建龙等.含盐废水生物处理研究进展[J].环境科学,1999,20(3):104~106
    [75] Chen Y G,Liu Y,Zhou Q,et al. Enhanced phosphorus biological removalfrom wastewater effect of microorganism acclimatization with different ratio of short2chain fatty acids mixture[J].Biochemical Engineering,2005,27:24~32
    [76]刘正.高浓度含盐废水生物处理技术[J].化工环保,2004,24:209~211
    [77] Ingram M S. The influence of sodium chloride and temperature on theendogenous respiration of bacillus cereus[J].Journ.Bacter,1993,38:613~618
    [78]赵凯峰,王淑莹等.NaCl盐对耐盐活性污泥沉降性能及脱氮的影响.环境工程学报,2010,3,570~574
    [79] Panswad T.,Chadarut A. Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Wat.Res.,1999,33(5):1165~1172
    [80]尚会来,彭永臻,张静蓉,叶柳,赵凯峰.盐度对污水硝化过程中N2O产量的影响[J].环境科学,2009,30(4):1079-1083
    [81]李玲玲,周鹏.活性污泥中功能性菌群抗盐度冲击性能研究[J].环境工程学报,2010,1:105-109
    [82]邹高龙,李小明等.盐度变化对SBR中硝化作用的动态影响研究[J].环境工程学报,2009,3(4):595-600
    [83] Yang,Jiachun; Zhang,Li; Hira,Daisuke; Fukuzaki,Yasuhiro; Furukawa,Kenji Anammox treatment of high-salinity wastewater at ambient temperature [J].Bioresource Technology,2011,102(3):2367-2372
    [84] Kim,Sang-Soo; Moon,Byung-Hyun; Seo,Gyu-Tae; Yoon,Cho-Hee. Theeffects of starvation on physical characteristics of flocs in SBR for treating salinewastewater [J]. Water Sci.Tech.,2007,56(7):41-46
    [85] Claros, J. Jiménez,E. Borrás, L. Aguado,D. Seco,A. Ferrer,J,Serralta,J. Short-term effect of ammonia concentration and salinity on activity of ammoniaoxidizing bacteria [J]. Water Sci.Tech.,2010,61(12):3008-3016
    [86] Katz,L, Dosoretz,Carlos G. Desalination of domestic wastewater effluents:phosphate removal as pretreatment [J]. Desalination,2008,222(1-3):230-242
    [87]李梅,郑西来,李玲玲.盐度对活性污泥驯化前后硝化特性的影响[J].环境工程学报,2007,1(10):108-111
    [88]崔有为,彭永臻,李晶.盐度抑制下的MUCT处理效能及其微生物种群变化[J].环境科学,2009,30(2):488-492
    [89] Olivier L,Rene M. Treatment of organic pollution in industrial saline wastewater: A literature review [J]. Water Res,2006,40:3671~3682.
    [90] Dincer A R, Kargi F. Salt inhibition kinetics in nitrification of synthetic salinewastewater[J]. Enzyme Microb Technol,2001,28:661~665.
    [91] Intrasungkha N,Keller J,Blackall L L. Biological nutrient removal efficiencyin treatment of saline wastewater[J]. Water Sci Tech.,1999,39(6):183~190.
    [92] Chen J H,Woog M T,Okabe S,et al. Dynamic response of nitrifying activatedsludge batch culture to increased chloride concentration [J]. Water.Res,2003,37:3125~3135.
    [93]张雨山,王静,将立东,等.利用海水冲厕对城市污水处理的影响研究.中国给水排水,199915(9):4~6
    [94]冯叶成,占新民.活性污泥处理系统耐含盐废水冲击负荷性能.环境科学,2000,21(1):106~108
    [95]刘样凤,李青山,乌锡康.驯化活性污泥处理高含盐量有机废水的研究.工业用水与废水,2002,33(4):43~45
    [96]杨健.高含盐量石油发酵废水处理研究[J].给水排水,1999,25(3):35~38
    [97]梁晨辉,易威,李斌.SBBR法处理高盐度有机废水的应用研究[J].污染防治技术,1998,11(12):226~228
    [98]李琳琳,林冰,徐金枝等CASS法处理含盐废水的研究[J].工业用水与废水,2003,34(4):33~35
    [99] Charles Glassetal. Denitrifieation of High-Nitrate High-Salinity Wastewater [J].Wat.Res.,1999,33(1):223~229
    [100]梁晨辉,吉风蓉,庞春霞.改进型SRB法处理高盐度有机磷农药废水的研究[J].污染防治技术,2003,16(l):44~45
    [101]尤作亮等.海水直接利用与含海水城市污水处理[J].水工业和可持续发展1997,2:226~231
    [102]刘洁玲. A-B两段法处理高含盐皂化废水[J].工业用水与废水,1999,30(1):6~8
    [103]石建敏,黄新文,林春绵等.无机盐对生物接触氧化处理法的影响[J].浙江工业大学学报,2003,31(1):97~100
    [104] Thonchai Panswad,Chadarut Anan. Impact of high chloride wastewater on ananaerobic/anoxic/aerobic Process with and without inoculation of chloride acclimatedseeds[J]. Wat. Sei. Tech,1999,33(5):1165~1172
    [105] A R Dincer,F Kai. Performance of rotating biological disc system treatingsaline wastewater [J]. Process Biochemistry,200l,36:90l~906
    [106] Morsyleide F. Ross,Angela A. L. Furtado,Ricardo T. Albuquerque,et al.Biofilm development and ammonia removal in the nitrifieation of a saline wastewater [J].BioreasouceTeehnology,1998,65:135~138
    [107] Y Lei,Ching-ting L,K S Wen. Biodegration of dispersed diesel fuel underhigh salinity conditions [J]. Wat Res.2000,34(13):3303~3314
    [108]丁文川,李桥,吉芳英,田秀美,吴丹,杜勇.双泥SBR系统的短程硝化反硝化和反硝化除磷研究[J].中国给水排水,2010,26(13):11~14
    [109]马斌,彭永臻,祝贵兵等.单污泥SBR工艺的反硝化除磷特性[J].中国给水排水,2009,25(9):25~28
    [110]方茜,张朝升.亚硝酸盐对反硝化聚磷菌除磷性能的影响[J].环境工程学报,2009,3(1):52~56
    [111]吴守中,陈立伟.影响添加反硝化聚磷菌的SBR脱氮除磷主要因素[J].水处理技术,2010,36(6):108~110,135
    [112]张杰,李小明,杨麒,陈瑶.反硝化除磷技术及其实现新途径[J].工业用水与废水,2007,38(3):1~4
    [113]彭赵旭,彭永臻,吴昌永,彭轶,马斌.曝气量对SBR工艺同步脱氮除磷的影响研究[J].中国给水排水,2008,24(3):13~16
    [114] Smolders G,Model of the anaerobic metabolism of the biological phosphorusremoval process: stoichiometry and pH influence[J]. Biotech. Bioengi.,1994,1(43):461~470
    [115] Kuba T. mumleitner E, van loosdrecht, et. Al,. A metabolic model forbiological phosphorus removal by denitrifying organisms[J]. Biotechnology andBioengineering,1996,52:685~695
    [116] Tomonori,Matsuo. Metabolism of organic substances in anaerobic phase ofbiological phosphate uptake process[J]. Wat.Sci. Tech.,1992,25(6):83~92
    [117] Wachtmeister A,Kuba T,et.al.,A sludge characterization assay for aerobicand denitrifying phosphorus removing sludge[J]. Wat. Res.,1997,31(3):471~478
    [118]荣宏伟,彭永臻,张朝升.低碳城市污水反硝化除磷试验[J].2008,26(1):11~14
    [119]高志广城市污水脱氮除磷过程模拟及工艺优化运行研究[D].同济大学博士论文,2007
    [120]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建筑工业出版社,2004
    [121]李玲玲高盐度废水生物处理特性研究[D].中国海洋大学博士论文,2006
    [122] Magara Y, Nambu S, Utosava K. Biochemical and physical properties ofactivitived sludge on settleing characteristics[J]. Wat. Res.,1976,10:71~77.
    [123]国际水协废水生物处理设计与运行数学模型课题组著张亚雷李咏梅译.活性污泥数学模型[M].上海:同济大学出版社,2002.
    [124]郝晓地.可持续污水-废物处理技术[M].北京:中国建筑工业出版社,2006.
    [125]杨力,张盼月,曾关明等.ASM No.2d模型模拟SBR工艺同步脱氮除磷效能[J].环境工程学报,2008,2(5):599~603.
    [126] Libelli S.M. Ratini P,Spagni.A, et.,al, Implementation,study and calibration ofa modified ASM2d for the simulation of SBR processes[J]. Wat.Sci. Tech.,2001,43(3):69~76.
    [127]郭亚萍,顾国维.ASM2d在污水处理中的研究与应用[J].中国给水排水,2006,22(6):8~10
    [128] Garcia U.F, Ribes J,Ferrer A. et.,al, Calibration of denitrifying activity ofpolyphosphate accumulating organisms in an extended ASM2d model[J]. Wat. Res.,2010,44(18):5284~5297.
    [129] Vinicius C M, Gladys T,David G, et.,al, Systematic identifiability study basedon the afisher Information Matrix for reducing the number of paramrters calibration of anactivated sludge model[J]. Enviro. Model Soft,2009,24:1274~1284.
    [130]刘艳臣Carrousel氧化沟单沟脱氮优化条件及其控制策略研究[D].清华大学博士论文,2008
    [131] T.Y.Pai, Y.P.Tsai,et.,al., Microbial kinetic analysis of three different types ofEBNR process[J]. Chemosphere,2004,(55):109~118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700