用户名: 密码: 验证码:
粮—菜轮作系统铜污染的作物和土壤微生物生态效应及诊断指标
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以"水稻-青菜"轮作制土壤生态系统为对象,综合运用室内外培养、作物盆栽试验、模型模拟,借助微生物代谢指纹图谱方法(Biolog)、磷脂脂肪酸(PLFA)等生物技术并结合传统微生物学方法,研究了黄红壤、青紫泥和小粉土等三种水稻土粮-菜轮作系统主要污染重金属铜对水稻和青菜的毒性效应,并重点探讨了铜胁迫下土壤微生物生态学特征(微生物生物量、呼吸、酶活性、区系组成、代谢剖面、群落结构等)。主要结论如下:
     1.铜污染对植物生长的毒害作用受植物种类和土壤理化性质的双重影响。铜对水稻和青菜生长的剂量效应表现为低铜浓度(50 mg kg~(-1))促进作物的生长,地上、地下部分生物量增加(小粉土除外);100 mgkg~(-1)铜显著增加了水稻的根系长度,增加了水稻的分蘖数、株高、穗长、从而显著增加总茎数,产量增加。更高的铜浓度则产生显著的抑制作用。黄红壤和青紫泥水稻铜致死浓度分别为1200 mg kg~(-1)和1600 mg kg ~(-1),而小粉土为50 mgkg~(-1);三种土壤改种青菜后的表观致死浓度都为800 mg kg~(-1)。
     铜对作物毒害的生理基础为,50 mg kg~(-1)Cu~(2+)促进青菜根系体积、直径和叶绿素增加及水稻产量构成因素,青菜根系长度和表面积及水稻总茎数及单茎成穗数显著增加,显著增产。更高的铜浓度则抑制了SOD活性、叶绿素含量及光合作用,丙二醛MDA含量下降,脯氨酸含量显著下降,造成青菜减产。外源铜浓度大于400mg kg~(-1)则极显著抑制水稻叶绿素合成,减少穗数、穗粒数和千粒重,产量下降。
     2.水稻茎叶对铜的吸收随土壤铜污染浓度的升高而呈指数式增长,水稻根系和籽粒中的铜浓度随外源铜浓度的增加而极显著线性增加。水稻不同的器官对土壤铜吸收的顺序为:根》茎叶>糙米。但外源铜浓度超过400 mg kg~(-1)能够导致糙米铜含量超过食品安全标准。青菜根系的铜含量高达77.77%-80.41%,随铜浓度的增加,青菜地上部分和根系中铜的累积量相应增长,但青菜地上部分铜的相对累积量随铜浓度的增加而下降,从而大大减少高铜污染下铜在青菜可食部位的积累。
     3.三种土壤中的铜均是以Fe-Mn氧化物结合态为主。四种提取剂提取的有效铜含量和外源铜总量均呈极显著的正相关。各种提取态铜之间以及各种形态铜与水稻产量、青菜生物量之间呈显著或极显著负相关,与水稻及青菜组织体内累积的铜呈极显著正相关。其中,以0.5 mol L~(-1)DTPA提取铜与外源铜的相关性最好,可以作为土壤有效性铜的最佳化学提取剂。
     4.因溶解性能源物质数量的消耗,三种水稻土的微生物生物量碳、基础呼吸速率及微生物商随培养时间的延长而显著下降;而在轮作中因根系不断分泌有机物及残根分解的刺激作用而显著增加。三种土壤微生物生物量碳及基础呼吸速率对铜胁迫的剂量效应表现为在低铜浓度下(<400 mg kg~(-1))增加或显著增加,更高铜浓度因毒害作用而显著下降。土壤微生物代谢商随铜污染浓度的提高及培养时间的延长而升高。但在粮.菜轮作系统中稻作淹水下,随铜污染浓度的提高,黄红壤的微生物代谢商和呼吸速率增加,青紫泥和小粉土的微生物代谢商降低。改青菜旱作后,土壤的微生物代谢商和呼吸速率都随铜污染浓度的提高而降低。
     5.低铜浓度(50-100 mg kg~(-1))显著促进了过氧化氢酶、脲酶和蔗糖酶活性,高铜污染浓度则抑制了酶活性。四种酶对铜污染敏感的顺序为:脲酶>蔗糖酶>磷酸酶>过氧化氢酶;粮-菜轮作体系中,根系及其分泌物的共同作用促进土壤酶活性,尤其是水作改旱作后,酶活性进一步极显著提高。
     6.铜污染胁迫下,三种土壤可培养微生物总量在低铜浓度下随铜污染浓度的逐步提高而显著提高;但当铜浓度超过400 mg kg~(-1)及随培养时间的延长,铜污染的抑制作用增强。肥沃土壤青紫泥和黄红壤可培养微生物总量随培养时间的延长而显著下降,而贫瘠土壤小粉土可培养微生物总量则因环境条件的改善而随培养时间的延长而提高。铜胁迫使土壤微生物区系组成结构也发生显著变化。三种土壤培养过程中因耐性细菌出现而维持细菌的相对比例不降反升;真菌比例随铜污染浓度的提高而先升后降;而放线菌的比例随铜污染浓度的提高而显著降低。
     7.铜胁迫导致土壤微生物群落结构或功能多样性发生改变。三种土壤之间的C_(12)-C_(20)磷脂脂肪酸(PLFA)的含量达到显著差异;每种土壤内所含有的C_(12)-C_(20)不同碳结构PLFA则达极显著差异。
     这种差异首先表现在可检测PLFA的类型变化。培养8周时,100-400 mg kg~(-1)铜显著促进了可以命名的微生物类型,800 mg kg~(-1)铜则显著抑制,以贫瘠的小粉土表现最典型。随培养时间延长至52周,各土壤可命名磷脂脂肪酸类型增加,且低铜浓度促进磷脂脂肪酸类型增加,高铜浓度则显著抑制。可见,铜胁迫并非改变被测土壤LFA结构的唯一影响因素。
     其次,铜污染显著改变了微生物群落主要构成成分的结构比例。三种土壤PLFA随培养时间而变化。黄红壤和青紫泥微生物群落都以细菌占绝大多数,真菌和放线菌类型与数量比例都很低,与培养计数法获得的结果非常一致。小粉土对照土壤培养8周时真菌占比例高达58.58%,细菌只占27.51%,放线菌未能测出;而培养52周时,细菌比例高达69.5%,真菌比例下降到6.85%,放线菌仅占0.69%。即,小粉土即使在无铜污染的情况下,微生物群落结构也发生了剧烈改变。当然,铜胁迫进一步促进了土壤微生物群落结构的改变。细菌和放线菌的比例随铜污染浓度的提高而显著提高,真菌的比例和真菌/细菌的比例都随铜污染浓度的提高而显著下降。
     此外,铜污染导致土壤微生物产生适应性或耐性反应,一些特征磷脂脂肪酸消失或涌现。铜胁迫使甲烷营养菌Ⅰ型16∶1w5c和好氧细菌15∶0 3OH、16∶0 2OH及硫酸盐还原细菌17∶1 w8c消失,厌氧细菌17∶0 ISO 30H和真菌20∶2W6,9C受激发作为新种出现,革兰氏阴性细菌(17∶0 CYCLO和19∶0CYCLO w8c)和革兰氏阳性细菌(4∶0 iso,15∶0 anteiso,15∶0 iso,15∶0 iso 3OH,16∶0 iso,17∶0 anteiso,17∶0iso)大量涌现。
     8.铜胁迫降低了土壤的微生物群落代谢剖面(AWCD),且AWCD值与测试时间之间呈非线性关系。三种土壤Biolog生态盘碳源利用的铜浓度效应受培养时间的影响而存在一定差异。随着铜污染浓度增加到800 mg kg~(-1)时,土壤的AWCD值下降,微生物群落生理代谢功能下降。三种土壤在31种碳源构建的主成分分析坐标体系中存在明显的空间分异,表明微生物群落结构对铜污染非常敏感。
     三种土壤铜污染微生物群落的功能多样性指数在同一时间的不同浓度和同一浓度的不同污染时间下存在差异。高铜浓度(>800 mg kg~(-1))导致丰富度显著下降,均匀度和Shannon指数也下降,微生物种群变得单一。
     9.根据铜污染对水稻、青菜生长的抑制效应,以及粮.菜轮作系统中土壤微生物生物量、微生物商、酶活性等生态指标的铜胁迫剂量效应,以水稻、青菜减产10%,水稻籽粒或青菜可食部位铜含量不超过10 mg kg~(-1),特别是运用生态剂量(ED_(10))的概念,根据上述各项指标与铜浓度对数值的模拟模型,计算了黄红壤、青紫泥和小粉土的铜临界指标分别为198、185和71 mg kg~(-1)。
Three paddy soils namely yellowish red soil(YRS),purplish clayey soil(PCS) and silt loam soil(SLS)within 'rice-Chinese cabbage' rotation system were collected from Jiaxin county,Deqing County,and Xiasha District of Hangzhou City,Zhejiang province.Laboratory and greenhouse pot experiments combined with soil biochemical measurements,Biolog and Phospholipids fatty acids analysis were adopted to investigate the toxic effects of copper on both rice and cabbage growth. The research also focus on studying the toxic effects of Cu~(2+)on soil microbial biological characteristics such as soil microbial biomass,soil basal respiration,soil enzyme activities,and soil microbial community structures.The results are summarized as follows:
     1.Toxic effect of Cu on plant growth depends on either vegetative types or soil basic physical-chemical characteristics.Lower Cu loading(50 mg kg~(-1))promote cabbage growth except SLS.100 mg kg~(-1)Cu loading promote rice yield mainly because the increase of root length,tillers,spike length,as well as the number of total stems.Yet higher concentration of Cu has restrictive effect.The lethal concentration of Cu is 1200 mg kg~(-1)and 1600 mg kg~(-1)for YRS and PCS respectively,whereas it is 50 mg kg~(-1)for SLS under rice planting system.However,the lethal concentration is 800 mg kg~(-1)for all the three paddy soils under cabbage growing system.
     There are some physiological differences of Cu toxicity between rice and cabbage.50 mg kg~(-1)Cu loading boost root volume,root diameter,SPAD value,root length,and root surface area.Yet higher Cu loading restrict SPAD and photosynthesis, superoxide dismutase(SOD)activity,Malondialdehyde(MDA)levels,and proline content.The result is cabbage yield declined.Yet 50 mg kg~(-1)Cu loading prominently boost total stems and spikes,which increase the grain yield.However,higher Cu loading(>400 mg kg~(-1))extremely restrict chlorophyll synthesis,decrease spikes, grain number per panicle,as well as 1000-grain weight,led to grain yield dropped.
     2 The absorption of Cu by rice stalks and leafs is exponentially promoted along with the increased Cu loading.Cu content in rice roots and seeds is extremely enhanced along with the increased Cu loading.Cu absorption order within different rice organs is:roots>stalks and leafs>seeds.Cu accumulative amount both in cabbage upper and under ground part is rise along with increased Cu loading.Cu content in roots of cabbage is 77.77%-80.41%.Much more Cu was stored in roots than in leafs, which is benefit to reduce Cu accumulation in edible part of cabbage.
     3.The main fractionated Cu conponent in three soils were Fe-Mn oxide-fraction. The amount of available Cu~(2+)was notably positive correlated with extracted Cu~(2+)by four extractants(water,0.1 mol L~(-1)HCl、0.5 mol L~(-1)DTPA、and 1 mol L~(-1)NH_4OAc (pH7.0).All kind of extracted Cu was prominently negative correlated with rice yield, fresh cabbage leaf weight,fresh cabbage root weight,and dry leaf weight,but notably positive correlated with accumulated Cu within rice and cabbage organs.The quantity of 0.5 mol L~(-1)DTPA extracted Cu has the highest correlations shown that it is the best extractant for available Cu extraction.
     4.Both soil microbial biomass carbon,basal respiration and microbial quotient (MQ)was decreased along with prolonged incubation time mainly because easy usable available C resource provided by organic C mineralization was decreased. However,they were increased because root residual and its exudation provide available C resource for microbial biomass usage when soil planting rice and cabbage. The dose-effect of Cu on microbial biomass C is notably increased less than 400 mg kg~(-1)Cu loading.Yet higher Cu loading lead to extremely restriction effect on it.Soil microbial metabolic quotient(MMQ)was increased along with increased Cu loading and prolonged incubation time for rice growth.Yet it was decreased in all three paddy soils when planting cabbage.
     5.Catalase,urease,invertase,and phosphatase activities were notably promoted when Cu loading less than 100 mg kg~(-1).Yet restrict effect were observed when Cu loading higher than 100 mg kg~(-1).Sensitivity of the four enzymes to Cu contamination is urease>invertase>phophatase>catalase.Enzymes activities were remarkable increased by planting rice and cabbage by decomposition of residual rice root and their exudation.
     6.Total microorganism was increased along with enhanced Cu loading less than 400 mg kg~(-1).Yet extremely restriction effect were observed for PCS and SLS when Cu loading higher than 400 mg kg~(-1).Total microorganism was reduced along with incubation time for fertile YRS and PCS.However,opposite effect was observed for SLS.Microorganism structures were also changed under Cu pollution.Bacteria ratio was notably increased along with enhanced Cu loading which may caused by the appearance of endurance bacteria.Fungal ratio was augmented because it's high resistance capability for threatening environment.Actinomycete ratio was decreased along with increased Cu loading.
     7.Cu contamination leads to the changes of both microbial biological structures and functions.Notable differences of C_(12)-C_(20)phospholipids fatty acid(PLFA)were measured among three paddy soils and within each of them.
     The first difference was measurable types of PLFA.In 8~(th)week incubation time under 100-400 mg kg~(-1)Cu loading,the types of PLFA were.However,800 mg kg~(-1)Cu loading prominently restricted the PLFA types especially for SLS.But in 52~(th)week incubation time,the types of PLFA were increased.Great changes were happened not only caused by increased Cu loading,but also caused by prolonged incubation time.
     The second changes were the ratios of main microorganisms.Bacteria account for absolutely most of the microorganism,whereas quite low percentage of fungal and actinomycetes in YRS and PCS.The result is coincides with the traditional culture method.Very simple PLFA structure was measured for non polluted SLS at 8~(th)week incubation time which fungal account for 58.58%of total PLFA,bacteria account for 27.51%,0%for actinomycetes.But the percentage is changed to 6.85%,69.50%,and 0.69%in 52th week incubation time which shown that Cu loading is not the only factor to affect microorganism structure.The ratio of bacteria/total PLFA, actinomycetes/total PLFA were promoted,while the ratio of fungal/total PLFA and fungal/bacteria was decreased along with enhanced Cu loading.
     In addition,Cu pollution causes flexible or forbearing reaction of microorganisms.Some indicative PLFAs were appeared or disappeared.For example, Cu loading causes methane nourish bacteria-16:1w5c,aerobiosis bacteria-15:0 3OH, 16:0 2OH,and sulphatedeoxidize bacteria-17:1 w8c totally vanish,whereas anaerobicbacteria-17:0 ISO 3OH,and fungal-20:2W6,9C emergence as new PLFA types by Cu pollution inspiring in YRS.The G-bacteria(17:0 CYCLO and 19:0CYCLO w8c)and G~+-bacteria(4:0 iso,15:0 anteiso,15:0 iso,15:0 iso 3OH,16:0 iso,17:0 anteiso,17:0 iso)was increased greatly.
     8.Cu pollution decreased microbial community metabolic profile(AWCD).No linear relationship exists between AWCD and test time.Some differences were observed for carbon resource utility by microorganisms under different Cu loading. 100 mg kg~(-1)Cu loading promotes AWCD,yet further increased Cu loading to 800 mg kg~(-1)cause decrease of AWCD.Main components analysis showed that AWCD among 31 carbon resource utilization rate were distribute widely which indicate the sensibility of microbial community structures to Cu contamination.
     Differences also exist among soil microbial functional diversities under changed Cu loading levels.Shannon index,Shannon Richness and Evenness of microbial community were decreased under higher Cu loading(>800 mg kg~(-1))indicated that the microbial community structure trends to singularity.
     The usage ability of C resource by microbial community in all three paddy soils was affected by Cu loading rate.100-400 mg kg~(-1)Cu loading promote C resource utility,but 800 mg kg~(-1)Cu loading notably restrict microbial community metabolic activity as their structures were simplified.These results demonstrated that both microbial community structure and microbial functional diversity can be used as sensitive bio-indicator for reflecting heavy metal caused environment changes.
     9.According to the restriction effect of Cu pollution to rice and cabbage growth, and to soil microbial ecological characteristics,we were modeling regression equations to calculate the critical concentration for these three paddy soils by using 10%yield reduction,food security sanitary criteria,and ecological dose as indexes. The critical levels of Cu are 198,185,and 71 mg kg~(-1)for YRS,PCS and SLS respectively.
引文
Allan D L, Jarrel W M. Proton and copper adsorption to maize and soybean root cell walls[J].Plant physiology, 1989, 89: 823-832
    
    Alva. A K, Graham J H. Role of Calcium in amelioration of copper phytotoxicity for citrus[J]. Soil Science, 1993 (155 ): 211-218
    
    Ana A, Patricia S. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance [J]. Antimicrobial Agents and Chemotherapy, 2000,44 (7 ): 1778-1782
    
    Anderson T H, Domsch K H. Carbon link between microbial biomass and soil organic matter. In Proceedings of the Fourth International Symposium on Microbial Ecology [M], eds. Megusor T,Ganter M. 1986, pp. 467-471. Slovene Society for Microbiology, Ljubljana, Jugoslavia.
    
    Anderson T.H., Domsch K.H. Application of ecophysiological quotients (qCO2 and qD ) on microbial biomass from soils of different cropping histories[J]. Soil Biol. Biochem. 1990, 22:251-255.
    
    Antonio G Anneke C. Keijzer W. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis[J]. Journal of Microbiological methods, 1999, (38): 1-15
    
    Applied Soil Ecology 21,149-158
    
    Baath E, Arnebrant K, Nordgren A. Microbial biomass and ATP in smelter-polluted forest humus[J]. Bulletin of Environmental Contamination and Toxicology, 1991.47:278-282.
    
    Baath E, Frostegard A, Diaz-Ravifla M and Tunlid A. 'Microbial community-based measurements to estimate heavy metal effects in soil: The use of phospholipids fatty acid patterns and bacterial community tolerance'[J], Ambio, 1998, 27, 58-61
    
    Baath E. Diaz R M, Frostegard A and Campbell C D. Effect amendments on the soil microbial community[J]. Appl. Environ. Microbiol of metahrich sludge 1998.64, 238-245.
    
    Baath E. Effects of heavy metals in soil on microbial processes and populations (a review ) [J]. Water Air Soil Pollution, 1989,47: 335- 379.
    
    Babich H, Bewley R J E, Stotzky G. Application of ecological dose concept to the impact of heavy metals in some microbe-mediated ecological processes in soil[J]. Archives of Environmental Contamination, 1983,12: 421-426
    
    Barcan V, Kovnatsky E. Soil surface geochemical anomaly around the copper -nickel metallurgical smelter[J]. Water Air Soil Pollution, 1998,103: 197-200
    
    Barcel J, Poschenrieder C H. Plant water relationships as affected by heavy metals stress[J].A review J.Plant Nutr, 1990, 13: 1-37.
    
    Bardgett, R D, Speir, T W, Ross, D J. 1994. Impact of pasture contamination by copper, chromium,and arsenic timber preservative on soil microbial properties and nematodes[J]. Biol. Fertil. Soils,18,71-79
    
    Ben-David E A, Holden P J, Stone D J M, et al. The use of phospholipids fatty acid analysis to measure compact of acid rock drainage on microbial communities in sediments [J]. Microbial Ecology, 2004, 48 (3 ): 300-315.
    
    Bergstrom D W, Monreal, C M, King D J. Sensitivity of soil enzyme activities to conservation practices. Soil Sci.Soc. Am. J. 1998,62: 1286-1295
    
    Besnard E, Chenu C, Robert M. Distribution of copper in champagne vineyards soils, as influenced by organic amendments. Proc. 5th Int. Conf. Biogeochem. Trace Elements, 1999,11-15 July, Vienna pp. 416-418
    
    Besnard E, Chenu C, Robert M. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils [J]. Environmental Pollution,2001,112:329-337
    
    Bisessar S. Effect of heavy metals on microorganisms in soils near a secondary lead smelter[J].Water, Air, Soil Pollution, 1982,17: 305-308
    
    Bligh E G and Dyer W J. A rapid method of total lipid extraction and purification[J]. Can. J.Biochem. Physio. 1959,37, 911-917
    
    Bossio D A, Scow K M. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils[J]. Appl. Environ. Microbial, 1995, 61(11): 4043-4050
    
    Branquinho C. Brown D H, Catarino F. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence[J]. Environmental Experimental Botany, 1997,38:165-179
    
    Bronwyn D H, Raymond L C. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil community[J]. Journal of Microbiological Methods. 1997, 30:91-101
    
    Brookes P C, Powlson D S, Jenkinson D S. The microbial biomass in soil[M]. In: Lynch J M. Soil biotechnol. Blackwell, Oxford, London, 1985,123-125
    
    Brookes P C. The potential of microbiological properties as indicators in soil pollution monitoring.In: Schulin, R. (editor ). Soil Monitoring Proceedings of the Workshop, Monte Verita Ascona,Switzerland, Birkhauser Verlag, Basel, 1993, pp. 229-254.
    
    Brookes P C. The use of microbial parameters in monitoring soil pollution by heavy metals[J].Biology and Fertility of soils, 1995,19: 269-279
    
    Brookes P C, McGrath S P. Effects of metal toxicity on the size of the soil microbial biomass[J]. J.Soil Sci., 1984,35,341-346
    
    Brun L A, Maillet J, Hinsinger P, et al,. Evaluation of copper availability to plants in copper-contaminated vineyard soils[J]. Environmental Pollution, 2001, 111: 293-302
    
    Cao Z H, Hu Z Y, Wong M H. Copper contamination in paddy soils irrigated with wastewater.Special issue of Environmental contamination, toxicology and health [J]. Chemosphere, 2000, 41:3-6
    
    Cecconi I, Scaloni A, Rastelli G, et al,. Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism[J]. J. Biol.Chem. 2002, 277,42017-42027.
    
    Chaignon V, Bedin F, Hinsinger P. Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil [J].Plant and Soil, 2002,243 (2): 219-228
    
    Chander K, Brookes P C. Microbial biomass dynamics following addition of metal-mriched sewage sludges to a sandy loam [J]. Soil Biol. Biochem., 1995, 27:1409-1421
    
    Chander K, Brookes P C. Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam soil and silty loam UK soil [J]. Soil Biol Biochem, 1991, 23: 927-932
    
    Chander K, Brookes P C. Residual effects of zinc, copper and nickel in sewage sludge on microbial biomass in asandy loam[J]. Soil Biology and Biochemistry, 1993, 25: 1231-1239.
    Chantigny M H, Angers D A, Beauchamp C J. Active carbon pools and enzyme activities in soils amended with de-inking paper sludge. Can.J. Soil Sci. 2000, 80:99-105
    
    Chen C T, Chen L M, Lin C C, et al,. Regulation of praline accumulation in detached rice leaves exposed to excess copper[J]. Plant Sci, 2001, 160: 283-290
    
    Chen H M, Zheng C R. Tu C, et al,. Studies on loading capacity of agricultural soils for heavy metals and its applications in China[J]. Applied Geochemistry, 2001, 16: 1397-1403
    
    Chettri M K, Cook C M , Vardaka E, et al,. The effect of Cu , Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangi formi . Envi ron Exp Bot ,1998, 39(1): 1-10
    
    Chongpraditnun P, Mori S, Chino M. Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root[J]. Plant Cell Physiol. 1992, 33: 239-244.chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[M].Food and Nutrition Board. National Academy Press, Washington, DC, 2002, pp. 224-257
    
    Chu L, Liu D Y, Wan Y B, et al,. Effect of copper pollution on seedling growth and activate oxygen metabolism of Trifo Hum pratense[J]. Chin. J. Appl. Ecol., 2004, 15 (1): 119-122
    
    Contrufo M F.. Effects of urban heavy metal pollution on organic matter decomposition in woods[J]. Environ. Pollut. 1995, 89: 81-87
    
    Cristina B, Dennis H B, Fernando C. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence[J]. Environ & Exper Botany, 1997, 38:165-179
    
    Crompton TR. Occurrence and Analysis of Organometallic Compounds in the Environment. John Wiley & Sons, Chicheste, 1998, pp: 250-258
    
    Crossman Z M, Ineson P, Evershed R P. The use of C_2~(13) labelling of bacterial lipids in the characterisation of ambient methane2oxidising bacteria in soils[J]. Organic Geochem., 2005 , 36(5 ): 769-778
    
    Dalai P C. Soil microbial biomass: What do the numbers really mean?[J]. Australian Journal of Experimental Agriculture, 1998.38: 649-665.
    
    Dar G H and Mishra M M. Influence of cadmium on carbon and nitrogen mineralization in sewage sludge amended soils[J]. Environmental Pollution, 1994, 84: 285-290
    
    Dar G H. Impact of lead and sewage sludge on soil microbial biomass carbon and nitrogen mineralization[J]. Bulletin of Environmental Contamination and Toxicology, 199758: 234-240.
    
    Davanzo F, Settimi L, Faraoni L, et al,. Agricultural pesticide-related poisonings in Italy: cases reported to the Poison Control Centre of Milan in 2000-2001. Epidemiol. Prev. 28, 2004, 330-337.
    
    Srivastava A, Peshin S S , Kaleekal T et al,. An epidemiological study of poisoning cases reported to the National Poisons Information Centre, All India Institute of Medical Sciences, New Delhi. Hum. Exp. Toxicol. 2005, 24: 279-285
    
    De Vos C H R, Vonk M J, Vooijs R, et al,. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidativ stress in Silene cucubalus[J]. Plant Physiol., 1992,98:853-858
    
    Dean-Ross D, Mills A L. Bacterial community structure and function along a heavy metal gradient [J]. Applied Environmental Microbialogy,1998, 55: 2002-2009.
    
    Deiana S, Gessa C, Palma A, Premoli A, Senette C. Influence of organic acids exuded by plants on the interaction of copper with the polysaccharidic components of the root mucilages[J]. Organic Geochem,2003, 34: 651-660
    
    Doelman P, Haanstra L. Short- and long term effects of heavy metals on phosphatase activity: an ecological dose-response model approach[J].Biology and Fertility of Soils,1989,8,235-241
    Doelman P,Haanstra L.Short- and long-term effects of heavy metals on urease activity in soils[J].Biology and Fertility of Soils,1986,2,213-218.
    Doncheva S.Copper-induced alternations in structure and proliferation of maize root meristem cells[J].J.Piant Physiol,1998,153:482-487
    Duxbery T.Bicknell B.Metal-tolerant bacterial populations from natural and metal-polluted soils [J].Soil Biol.Biochem,1983,15:243-250
    Elliott E T.The potential use of soil biotic activity as an indicator of productivity.In:Pankhurst,C.E.,Doube,B.M.,Gupta,V.V.S.R.,Grace,P.R.(editors).Soil Biota:Management in Sustainable Farming Systems[M].CSIRO,Melbourne,1994,pp:250-256
    Eric S,Paula L.Detection of shift s in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis[J].Fems of Microbiology Ecology,1997,23:249-261
    Widmer F,Fliebach A.,Laczk E,et al,.Assessing soil biological characteristics:a comparison of bulk soil community DNA-,PLFA-,and BiologTM-analyses[J].Soil Bio & Biochem,2001,(33):1029-1036
    Fanizza G,Della G C,Bagnulo C.A nondestructive determination of leaf chlorophyll in Vitis Vinifera[J].Ann.Appl.Biol.,1991,119(1):203-209
    Filip Z.International approach to assessing soil quality by ecologically-related biological parameters[J].Agriculture Ecosystems and Environment,2002.88:169-174
    Fliebach A,Martens R,Reber H H,Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge[J].Soil Biology and Biochemistry,1994.26:1201-1205.
    Fritze H.Soil microbial effects of a Cu-Ni smelter in southwestern Finland[J].Biol Ferti.Soils,1989,8:87-94
    Frostegard A,Baath E.The use of phospholipids fatty acid analysis to estimate bacteria and fungal biomass in soil[J].Biology and Fertility of SoilS.1996,22,59-65
    Frostegard A,Tunlid A,Baath E.Phospholipid fatty acid composition,biomass,and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J].Appl.Environ.Microb.,1993,59,3605-3617
    G.w.利铂著.胡荣梅,陈怀满,马立珊 等译.农地中重金属的控制技术[M].北京:科学出版社,1987
    Gaetke L M,Chow C K.Copper toxicity,oxidative stress,and antioxidant nutrients[J].Toxicology,2003,189,147-163.
    Gaetke L M,Chow C K.Copper toxicity,oxidative stress,and antioxidant nutrients[J].Toxicology,2003,189,147-163.
    Garland J L,Mills A L.Classification and characterization of heterotrophic microbial conununities on basis of patterns of community-level sole-carbon-source utilization.Appli.Envron.Microbiol.1991,57:2351-2359.
    Garland J L.Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization[J].Soil Biology & Biochemistry,1996,28:213-221
    Garland J L.and Mills A L.Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization[J]. Applied Environmental Microbial, 1991, 57: 2351-2359
    
    Garland J L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization[J]. Soil Biology & Biochemistry, 1996, 28,213-221.
    
    Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review[J]. Soil Biology and Biochemistry 1998, 30, 1389-1414
    
    Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and disease[J].Gastroenterology, 2003,125,1868-1877.
    
    Green C T , Scow K M. Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers[J]. Hydrogeol. J . 2000, 8 : 126 — 141
    
    Gu Z L, Wu L S, Xie S Q, et al,. Toxicity of Cu and Cd in Soils and Detoxication by Additives[J].Pedosphere, 1991,1; 265-276
    
    Gupta A, Singha L C. Inhibition of PSH activity by copper and its effect on spectral properties on intact cells in Anacy stis nidulans[J]. Enuiron Exper Botany, 1995, 35: 435- 437
    
    Haanstra L, Doelman P, Oude Voshaar J H. The use of sigmoidal dose response curve in soil ecotoxicological research[J]. Plant and Soil, 1985, 84: 293-297
    
    Halliwell B. Free Radicals in Biology and Medicine[M]. Oxford University Press, New York.1999.
    
    Handy R D. Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 135, 25-38
    
    He Z L, Yang X E, Baligar V C, et al,. Microbiological and Biochemical Indexing Systems for Assessing Quality of Acid Soils[M]. Advances in Agronomy, Volume 78, Academic Press, 2003,89-138
    
    Heribert Insam. Developments in soil microbiology since the mid 1960s [J]. Geoderma, 2001 (100): 389-402
    
    Herrick J E, Whitford W G Assessing the quality of rangeland soils: challenges and opportunities[J]. Journal of Soil and Water Conservation, 1995, 50: 237-242
    
    Hiroki M. Effects of heavy metal contamination on soil microbial population [J]. Soil Science and Plant Nutrition, 1992,38: 141-147
    
    Hiroki M. Effects of heavy metal contamination on soil microbial population[J]. Soil Sci.Plant Nur.. 1992,38:141-147.
    
    Hsu B and J Lee. Toxic effects of copper on photosystem II of spinach chloroplasts[J]. Plant Physiology. 1988, (87): 116-119
    
    Huang C H, Yang Y L. Adsorption characters of Cu (II ) on humus-kaolin complexes [J]. Water research, 1995, 29 (11): 2455-2460
    
    Hue N V. Sewage sludge. In: RecHClgl, J E. (Ed.), Soil Amendments and Environmental Quality[M]. Lewis Publishers, Boca Raton, FL, 1995.pp. 199-247.
    
    Iaena Atanassova, Masanori Okazaki. Adsorption-desorption characteristics of high levels of copper in soil clay fractions [J]. Water, air and soil pollution, 1997, 98 (3 ): 213-228
    
    Institute of Medicine. Copper. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron,James B. Guckert. Toxicity assessment by community analysis [J]. Journal of Microbiological Methods, 1996,25,101-112
    
    Janet Y, Uriu-Adams, Carl L K. Copper, oxidative stress, and human health[J]. Molecular Aspects of Medicine , 2005, 26: 268-298
    Janet Y, Uriu-Adams, Carl L K. Copper, oxidative stress, and human health[J]. Molecular Aspects of Medicine, 2005,26 : 268-298
    
    Jenkinson D S, Ladd J N. Microbial biomass in soil: measurements and turnover. In: Paul, E. A.and Ladd, J. N. (editors ). Soil Biochemistry[M]. Vol. 5. Marcel Dekker, New York, 1981.pp:415-471.
    
    Jennifer D, Knoepp, David C, et al,. Crossley Jr., James S Clark. Biological indices of soil quality: an ecosystem case study of their use. Forest Ecology and Management. 2000,138:357-368
    
    Johansen A, Olsson S. Using phospholipid fatty acid technique to study short2term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere[J]. Microbial Ecol., 2005 ,49 (2) :272-281
    
    Josanidia S L. Copper balances in coca agrarian ecosystems: effects of differential use of cupric fungicides[J]. Agricultural Ecosystems and Environment, 1994,48: 19-25
    
    Kadeler E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities[J]. Biology and Fertility of Soils, 1996. 23: 299-306.
    
    Kandeler E , Luftenegger G, Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities [J]. Biology and Fertility of Soils, 1997, 23: 299-306
    
    Kandeler E, Luxhoi J, Tscherko D, Magid J. Xylanase , invertase and protease at the soil-litter interface of a loamy sand[J]. Soil Biology& Biochemistry, 1999, 31: 1171-1179
    
    Kell J J, Tate R L. Use BIOLOG for the analysis of microbial communities from zinc-contaminated soil[J]. Journal of Enviromental Quality, 1998.27 (3 ):601608.
    
    Kelly J J, Robert L. Use of biology for the analysis of microbial communities from zinc-contaminated soils[J]. J Environ Qual, 1998,27: 600-608
    
    Killham K. A physiological determination of the impact of environmental stress on the activity of microbial biomass[J]. Environ. Pollut. 1985, 38, 283-29
    
    Knight B. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc[J]. Applied and Environmental Microbiology, 1997,63:39-43.
    
    Knight J A, Voorhees R P. Peroxidation of linolenic acid catalysis by transition metal ions[J]. Clin.Lab. Sci. 1990, 20: 347-352
    
    Knight B P, McGrath S P, et al,. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Applied and Environmental Microbiology, 1997,63: 39-43.
    
    Kochian L V. Mechanisms of micronutrient uptake and translocation in plants. In Micronutrients in Agriculture. 2nd Edition, SSSA Book Series 4[M]. Mortvedt, J.J., Cox, F.R., Shuman, L M .Welch R M, Eds., Soil Science Society of America, Inc. Madison, W.I. 1991, 229-296.
    
    Konstantinidies K T, Fett N J. Microbial diversity and resistance to copper in metal-contaminated lake sediment [J]. Microbial Ecology, 2003, 45:191- 202.
    
    Kostov O, Van Cleemput, O. Nitrogen transformation in copper-contaminated soils and effects of line and compost application on soil resiliency[J]. Biol. Fertil. Soils 2001, 33, 10-16.
    
    Kumar V, Singh M. Inhibition of soil urease activity and nitrification with some metallic cations [J]. Australian Journal of Soil Research, 1986, 24 (4 ): 527-532
    
    Kuperman R G, Carreiro M M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem[J]. Soil Biol. Biochem. 1997, 29:179-190.
    
    Lara Lombardi, Luca Sebastiani. Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants[J]. Plant Science, 2005, 168: 797-802
    
    Lee I S, Kim O K, Chang Y Y et al,. Heavy Metal Concentrations and Enzyme Activities in Soil from a Contaminated Korean Shooting Range[J]. Journal of Bioscience and Bioengineering,2002,9 4, (5): 406-411.
    
    Leita L, Denobili M, Muhlbachova G, et al,. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation[J]. Biology and Fertility of Soils, 1995.19:103-108.
    
    Liao M, Chen C L, Huang C Y. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area[J]. Journal of Environmental Sciences, 2005, 17 (5 ):832-837
    
    Liao M, Hedley M, Wooley D J, et al,. Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna ) and tomato (Lycopersicon esculentum Mill.cv Rondy ) plants grown in NFT system.II. The role of nicotianamin and histidine in xylem sap copper transport[J].Plant and Soil, 2000, 223: 243-252.
    
    Lidon F C , Henriques F S. Copper toxicity in rice: diagnostic criteria and effect on tissue Mn and Fe [J]. Soil Sci, 1992,154 (2): 130 - 135
    
    Lisa J, Constantinos X, Nikos M, et al,. Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus [J]. Applied Geochemistry, 2005, (20): 101 -107
    
    Lorena A, Elisa G, Gian P, et al,. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators [J]. Applied Soil Ecology, 2005, 30: 21-33
    
    Luna C M, Gonzalez C A, Trippi V S. Oxidative damage caused by an excess of copper in oat leaves[J]. Plant Cell Physiol, 1994,35 (1): 11-15
    
    Luo Y M, Jiang X, Wu L, et al,. Accumulation and chemical fractionation of Cu in a paddy soil irrigated with Cu-rich wastewater. Geoderma, 2003, 115,113-120
    
    Maksymiec W, Ryszard R, Urbanik-Sypniewska T, et al,. Effects of Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages[J]. Plant. Physiol. 1994, 91,715-721.
    
    Martinez C E, Motto H L, Solubility of lead, Zinc, and copper added to mineral soils[J].Environmental Pollution, 2000,107:153-158
    
    Marzadori C, Ciavatta D. Effect of lead pollution on different soil enzyme activities [J]. Biol Fertil Soil, 1996,23 (6): 581-587
    
    Marzadori C, Francioso O, Ciavatta C, et al,. Influence of the content of heavy metals and molecular weight of humic acids fraction on the activity and stability of urease[J]. Soil Biology & Biochemistry, 2000, 32,1893-1898
    
    Mathur S P, MacDougall J I, McGrath M. Levels of activities of some carbohydrases, protease,lipase and phosphatase in organic soils of differing copper content[J]. Soil Science, 1980, 129,376-385.
    
    Mazhoudi S, Chaoui A, Ghorbal M H, et al,. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum.Mill. )[J]. Plant Sci. 1997, 127: 129-137.
    
    McGrath S P, Chaudri A M, Giller, K E. Long-term effects of metals in sewage sludge on soils,microorganisms, and plants[J]. Journal of Industrial Microbiology, 1995.14: 94-104.
    
    Moreno J L, Hernandez T, Perez A, et al,. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose[J]. Applied Soil Ecology, 2002,21: 149-158
    
    Morgan R K, Bowden R. Copper accumulation in soils from two different aged apricot orchards in central Otago. New Zealand International[J]. Journal of Environmental Studies, 1993, 43 (2-3): 161-167
    
    Msaky J J, Calvet R. Adsorption behavior of copper and zinc in soils: influence of pH on adsorption characteristics [J]. Soil Science, 1990, 150 (2): 513-522
    
    Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil. In: Burns R. G and Dick R P. (editors ). Enzymes in the Environment[M].Marcel Dekker, New York, 2002, pp: 1-34.
    
    Nannipieri P. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst C E, Doube B ., Gupta V V S R., Grace P R. (Eds. ), Soil Biota:Management in Sustainable Farming Systems [M], CSIRO, East Melbourne, Victoria, Australia,1995.pp.238-244.
    
    Nishizono H. The role of the root cell wall in the heavy metal tolerance of Athyium yokoscense[J].Plantand Soil, 1987,101: 15-20
    
    Nordgren A, Baath E, Soderstrom, B. Microfungi and microbial activity along a heavy metal gradient[J]. Applied and Environmental Microbiology, 1983.45: 1829-1837.
    
    Obbard J P. Ecotoxicological assessment of heavy metals in sewage sludge amended soils.Applied Geochemistry, 2001 (16): 1405-1411
    
    Ouzounidou G Copper-induced changes on growth, metal content and photosynthetic function of Al yssum montanum plants. Envi ron Exp Bot ,1994,34 (2): 165-172.
    
    Pankhurst C E, Hawke B G Evaluation of soil biological properties as potential bioindicators of soil health[J]. Aust J Exp Agri, 1995, 35: 1015-1028
    
    Pankhurst C E, Yu S, Hawke B G et al,. Capacity of Fatty Acid Profiles and Substrate Utilization Patterns to Describe Differences in Soil Microbial Communities Associated with Increased Salinity and Alkalinity at Three Locations in South Australia. Biol. Fertil. Soils. 2001, 33:204-217.
    
    Pennanen T, Frostegard A, Fritze, H, et al,. 'Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forest' [J], Appl. Environ. Microbiol. 1996, 62,420-428.
    
    Pich A, Scholz G, Stephan U W. Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and the xylem exudates of two tomato genotypes. Nicotianamine as possible copper transporter [J]. Plant and Soil,1994, 165: 189-194.
    
    Prassd P. A comparative account of the microbiological characteristics of soils under natural forest,grassland and cropfield from Eastern India[J]. Plant and Soil. 1995, 175 (1):85-91
    
    Rama D S, Prasad, M N V. Copper toxicity in Ceratophyllum demersum L. (Coontail ), a free floating macrophyte: response of antioxidant enzymes and antioxidants[J]. Plant Sci. 1998, 138(2): 157-165
    
    Rboads F M, Olson S M, Manninga. Copper toxicity in tomato plants [J]. Journal of Environmental Quality, 1989, 18 (2):195-197
    
    Renella G, Ortigoza A L R, Landi L, et al,. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50 )[J]. Soil Biology & Biochemistry, 2003, 35: 1203-1210
    
    Roy S, Bhattaryya P, Ghosh A K. Influence of toxic metals on activity of acid and alkaline phosphatase enzymes in metal-contaminated landfill soils. Australian Journal of Soil Research,2004,42,339-344
    
    Sandmann G, Boger P. The enzymatological function of heavy metals and their role in electron transfer processes of plants. In Encyclopedia of Plant Physiology. New Series[M].Lauchli A L, Bieleski R L, Eds Vol. Springer-Verlag. Berlin. 1983, 15: 563-596.
    
    Saviozzi A, Bufalino P, Levi-Menzi R, Riffaldi R. Biochemical activities in a degraded soil restored by two amendments: a laboratory study. Biology and Fertility of Soils, 2002, 35, 96-101
    
    Schramel O, Michalke B and Kettrup A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures[J]. Science of the Total Environment.2000,26(3): 11-2
    
    Schuller E. Enzyme activities and microbial biomass in old landfill soils with long term metal pollution. Verhandlungen Gesellschaft furOkologie. 1994,18:339-348
    
    Sedberry J E, Bligh D P. An evaluation of chemical methods for extraction copper from rice soils[J]. Communication in Soil Science and Plant Analysis. 1988, 19 (11): 1811-1857
    
    Shuman L M. Chemical forms of micronutrients in soils. In Micronutrientsin Agriculture 2nd Edition, SSSA Book Series: 4[M]. Morrvedt J J, Cox F R, Shuman L M, Welch R M. Eds., Soil Science Society of America, Inc. Madison, W I. 1991, 113-144
    
    Shuman L M. Fractionation method for soil microelements [J]. Soil Science, 1985, 140 (1):11-22
    
    Shuman L M. Zinc, manganese and copper in soil fractions[J]. Soil Science, 1979,127-10-17
    
    Smit E, Leeflang P, Wemars K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis[J].FEMS Microbiology Ecology, 1997, 23: 249-261
    
    Sommer A L. Copper as essential for plant growth[J]. Plant physiology, 1931, 6; 339
    
    Speir T W, Ross D J. A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr toxicity to soil biological properties[J]. Soil Biol Biochem,1995, 27: 801-810
    
    Stadler H, Schindler P. W. The effect of dissolved ligands on the sorption of Cu (II ) by Ca-rnontmorillonite[J]. Clays and Clay Minerals, 1994,42 (2):148-160
    
    Steinberger Y, Zelles L, Bai, Q Y, et al,. Phospholipid fatty acid profiles as indicators for the community structure in soils along a climatic transect in the Judean Desert[J]. Biology and Fertility of Soils. 1999.28,292-300.
    
    Stratton M L, Barker A V, RecHClgl J E. Compost. In: Soil amendments and environmental quality. Ed. By JE RecHClgl. Leewis Publishers: New York, London. 1995
    
    Strojan C L. Forest leaf litter decomposition in the vicinity of a zinc smelter [J]. Oecologia, 1978,32:203-212
    
    Sunderman F W J. Biochemical indies of lipid peroxidation in occupational and environmental medicine. In: Foa V, Emmett E A. Maroni M, Colomi A. (Eds). Occupational and environmental chemical hazards: Cellular and biochemical indies for monitoring toxicity. New York:Wiley-Interscience. 1988, 7,151-158
    
    Tessler A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particle trace metals [J]. Analytical Chemistry, 1979, 51 (7): 844-851
    
    Tripathi B N, Gaur J P. Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp[J]. Planta, 2004,219:397-404
    
    Tsadilas C D, Matsi T, Barbayiannis N, et al,. Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metal fractions[J]. Commun. Soil Sci.Anal. 1995.26,2603-2619.
    
    Tunlid A, Hoitink H A J, Low C, et al,. Characterization of bacteria that suppress Rhizoctonia damping off in bark compost media by analysis of fatty acid biomarkers[J]. Appl . Environ. Microbiol. 1991,55 :1 368 - 1 374
    
    Turpeinen R, Kairesalo T, Haggblom M M. Microbial community structure and activity in arsenic-,chromium-, and copper- contaminated soils [J]. FEMS Microbiology Ecology, 2004,47: 39-50
    
    Tyler G. Heavy metals in soil biology and biochemistry. In Soil biochemistry. Marcel Dekker,New York. 1981
    
    Tyler G B, Pahlsson A M, Giles J, et al. Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates: a review[J]. Water, Air and Soil Pollution. 1989, 47:189-215
    
    Tyler, G, Heavy metal pollution and soil enzyme activity[J]. Plant and Soil, 1974,41, 303-311
    
    Valsecchi G, Gigliotti C, Farini A. Microbial biomass, activity, and organic matter accumulation in soils contaminated with heavy metals[J]. Biol. Fertil. Soils, 1995,20, 253-259.
    
    Van Assche F F, Clijsters H. Effects of metals on enzyme-activity in plants[J]. Plant Cell Environ.1990,13(3):195-206.
    
    Van Beelen P, Doelman P. Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment[J]. Chemosphere, 1997, 34 (3):455-499
    
    Vestal J R, White D C. Lipid analysis in microbial ecology : Quantitative approaches to the study of microbial communities[J]. Bioscience ,1989, 39 :535 - 541
    
    Visser S, Parkinson D. Soil biological criteria as indicators of soil quality: soil microorganisms[J]. American Journal of Alternative Agriculture, 1992.7: 33-37.
    
    Wang G, Chen J B. Influence of application of rice straw and Chinese in ile vetch on the species and ecological effect of added copper in two soils[J]. Acta Ecological Sincia, 1999, 19 (4):551-556)
    
    White D C, Stair J Q, Ringelberg D B. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis[J]. Journal of Industrial Microbiology. 1996.17,185-196
    
    Widmer F, Fliebach A, Laczk E, et al,. Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and BiologTM-analyses[J]. Soil Bio & Biochem 2001(33 ):1029-1036
    
    Wilke B M. Long-term effects of different inorganic pollutants on nitrogen transformations in a sandy cambisol[J]. Soil Biological Biochemistry, 1989, 7: 254-258
    
    Wojcik M, Tukiendorf A. Response of wild type of Arabidopsis thaliana to copper stress. Biological plantarum, 2003.46 (1):79-84
    
    World Health Organization. IPCS Environmental Health Criteria 200. Copper. World Health Organization, Vammala Finland., 1998
    
    Yang C C, Wu M L, Deng J F. Prolonged hemolysis and methemoglobinemia following organic copper fungicide ingestion[J]. Vet. Hum. Toxicol. 2004,46, 321-323
    
    Yang C, Crowley D E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status[J]. Appl Environ. Microbiol, 2000, 66 (1): 345-351
    
    Yao H Y, Liu Y Y, Xue D, et al,. Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils[J]. Journal of Environmental Sciences, 2006, 18 (3):503-509
    
    Yao H, He Z L, Wilson M J,et al,. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use[J]. Microbial Ecol. 2000, 40: 223-237
    
    Yuan G, Lavkulich L M. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties [J]. Communication in Soil Science and Plant Analysis, 1997, 28 (6/8): 571-587
    He Z L,Yang X E,Baligar V C,et al,.Microbiological and Biochemical Indexing Systems for Assessing Quality of Acid Soils[J].Advances in Agronomy.Volume 78,Academic Press,2003,89-138
    Zak J C,Willing M R,Moorhead D L,Wildman H G.Functional diversity of microbial communities:a quantitative approach[J].Soil Biology&Biochemistry,1994,26:1101-1108.
    Zelles L,Bai Q Y,Ma R X,et al.Microbial biomass,metabolic activity and nutritional status determined from fatty acid patterns and polyhydroxybutyrate in agriculturally managed soils[J].Soil Biol.Biochem.,1994,26:439-446
    Zelles L.Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil[J]:A review.Biol.Fert.Soils,1999,29:111-129
    Zelles L,Raekwitz R R,Bai Q Y,et al,.Discrimination of microbial diversity by fatty acid profiles of phospholipids and lipopolysaccharides in differently cultivated soils[J].Plant and Soil,1995.170(1):115-122
    白宝璋.张宪政.植物生理学[M].北京:中国科学技术出版社,1992
    白清云.土壤微生物群落结构的化学估价方法[J].农业环境保护,1997,16(6):252-256
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999
    曹德菊,岳永德,黄祥明 等.巢湖水体Pb,Cu,Fe污染的环境质量评价[J].中国环境科学,2004,24(4):509-512
    曹仁林,何宗兰,霍文瑞.铜对四种作物生长和残留的影响[J].农业环境科学学报,1986,6:21-24
    曾树青,陆巍,翟虎渠 等.用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究[J].中国水稻科学,15(4):309-313
    常红岩,孙百晔,刘春生 等.植物铜素毒害研究进展[J].山东农业大学学报(自然科学版),2000,31(2):227-230
    常学秀,段昌群,王焕校.根分泌作用于植物对金属毒害的抗性[J].应用生态学报,2000,11(2):315-320
    陈国祥,施国新.汞镉对Brasenia schrerberi冬芽光合膜光化学活性及多肽组成的影响[J].环境科学学报,1999.19(5):521-525
    陈怀满 等.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996,344
    陈怀满 等著.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002,10
    陈怀满,郑春荣.关于土壤环境容量研究的商榷[J].土壤学报,1992,29(2):219-225
    陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996
    陈俭霖,史公军.城郊菜地土壤和蔬菜重金属污染研究进展[J].北方园艺,2005,(3):8-9
    陈建斌,高山.有机物料对土壤中外源铜形态及土壤化学性质的影响[J].农业环境保护,2000,19(1):38-40
    陈杰,张学雷,龚子同 等.土壤多样性的概念及其争议[J].地球科学进展,2001,16(2):189-193
    陈世俭,胡霭堂.土壤铜形态及有机物质的影响[J].长江流域资源与环境,1995,4(4):367-371
    陈世俭,胡霭堂.有机物质种类对污染土壤铜形态及活性的影响[J].土壤通报,2001,32(1):138-44
    陈世俭.铜污染土壤添加有机物质的生物效应(Ⅰ)对黑麦草生物量的影响[J].土壤与环境,2000.9(3):183-185
    陈树元,徐和宝,谢明云 等.铜、砷在水稻-土壤体系中的迁移及其对水稻影响的研究.农村生态环境,1995,11(3):15-18
    陈同斌,黄启飞,高定 等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569
    成杰民,潘根兴,郑金伟 等.模拟酸雨对太湖地区水稻土铜吸附-解吸的影响[J].土壤学报,2001,38(3):333-340
    迟爱民,徐忠林.呼和浩特市蔬菜中重金属污染的研究.干旱区资源与环境,1995,9(1):86-94
    储玲,刘登义,王友保 等.铜污染对三野草幼苗生长及活性氧化代谢影响的研究[J].应用生态学报,2004,15(1):119-122
    戴树桂.环境化学[M].北京:高等教育出版社,1996
    单广福.铜离子对水培青菜幼苗生长的影响[J].安徽农业科学,2005,33(7):1202-1203,1206
    丁佳红,刘登义,李征 等.土壤不同浓度铜对小飞蓬毒害及耐受性研究[J].应用生态学报,2005,16(4):668-672
    段学军,盛清涛.土壤重金属污染的微生物生态效应[J].中原工学院学报,2005,26(1):1-5
    尔-维-加里乌林.根据土壤酶的活性监测土壤的重金属污染[J].国外农业环境保护,1994,13(1):30-33
    樊小林,姜军,张一平,等.土壤和蔬菜中重金属含量的研究[J].西北农业大学学报,1993,21(3):103-165
    高永华,王金,赵莉 等.污灌区土壤-植物系统中重金属分布与迁移转化特征研究[J].河北农业大学学报,2006,29(5):52-57
    高拯民.土壤-植物系统污染生态研究进展.土壤-植物系统污染生态研究[M].北京:中国科学技术出版社,1986,1-14
    龚平,孙铁珩,李培军.重金属对土壤微生物的生态效应[J].应用生态学报,1997,8(2):218-224.
    谷巍,施国新,张超英等.Hg~(2+)、Pb~(2+)、Cu~(2+)对菹草光合系统及保护酶系统的毒害作用[J].植物生理与分子生物学学报,2002,28(1):69-74
    顾宗濂,吴留松,谢思琴 等.黄棕壤添加重金属的毒性评价及其临界浓度确定[J].土壤学报,1992,9(2):158-167
    顾宗濂,谢思琴,吴留松.土壤中镉、砷、铅的微生物效应及其临界值[J].土壤学报,1987,24(4):327-334.
    关松荫.土壤酶活性影响因子的研究Ⅰ有机肥料对土壤中酶活性及氮磷转化的影响[J].土壤学报,1989,26(1):72-77
    国家环境保护局,GB15618295.土壤环境质量标准[M].北京:中国标准出版社,1995
    韩春梅,王林山,巩宗强 等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502
    韩晓日,邹德乙,郭鹏程.长期施肥对土壤中铜的形态转化及其有效性影响[J].沈阳农业大学学报,1992,23(专辑):62-67
    韩雪梅,郭卫华,周娟 等.土壤微生物生态学研究中的非培养方法[J].生态科学,2006,25(1):87-90
    何增耀,叶杰,吴方正 等.农业环境科学概论[M].上海:上海科技出版社,1991
    何振立,周启星,谢正苗 主编.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998,362-390
    和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境.2000,9(2): 139-142
    胡培松,翟虎渠,万建民.中国水稻生产新特点与稻米品质改良[J].中国农业科技导报,2002,4(4):33-39
    胡正义,沈宏,曹志洪.Cu污染土壤.水稻系统中Cu的分布特征[J].环境科学,2000,3:62-65
    黄细花,赵振纪,刘永厚等.铜对紫云英生长发育影响的研究[J].农业环境保护,1993,12(1):1-6.
    黄向明,魏明.巢湖水体Pb,Cu,Fe污染的环境质量评价[J].中国环境科学,2004,24(4):509-512
    蒋廷惠,胡霭堂.土壤中锌、铜、铁、锰的形态与有效性的关系[J].土壤通报,1989,20(50:228-231
    蒋廷惠.土壤中锌、铜、铁、锰的形态区分方法选择[J].环境科学学报,1990,10(3):280-286
    蒋先军,骆永明.赵其国.重金属污染土壤的微生物学评价[J].土壤,2000,32(3):130-134
    康立娟,赵明宪,赵成爱.铜对水稻的影响及迁移积累规律的研究[J].广东微量元素科学,1999,6(4):43-44
    康立娟,赵明宪,庄国臣.铜的单元及复合污染中水稻对Cu吸收累积规律的研究[J].农业环境科学学报,2003,22:503-504
    孔维屏.土壤中铜的形态及其转化[J].环境科学学报,1987,7(1):78-85
    李东升,程温莹,汪模辉.成都市大气颗粒物的特性研究[J].广东微量元素科学,2005,12(12):47-51
    李海华,刘建武,李树人.土壤-植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30-34.
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,167-169,258-260
    李军,刘庆勇,郭雄.铜的摄入和铜状态的评估[J].国外医学医学地理分册,1999,20(1):13-15
    李文,张民,束怀瑞 等.苹果园土壤中铜的含量及形态特征研究[J].园艺学报,2005,32(5):769-772
    李文革,刘志坚,谭周进 等.土壤酶功能的研究进展[J].湖南农业科学,2006,(6):34-36
    廖林仙,邵孝侯,钟华.污水灌溉对土壤环境的影响及其防治对策[J].江苏农业科学,2006,3,188-191
    林芬芳.福建省主要蔬菜对土壤铜富集规律的研究[D].福建农林大学硕士学位论文,2006
    林雅兰,田哲贤.微生物对重金属的抗性及解毒机理[J].微生物学通报,1998,25(1):36-39
    林治卿,袭著革,杨丹凤 等.采暖期大气中不同粒径颗粒物污染及其重金属分布状况[J].环境与健康杂志,2005,22(1):33-34
    刘春生,史衍玺,马丽 等.过量铜对苹果树生长及代谢的影响[J].植物营养与肥料学报,2000,6(4):451-456
    刘登义,谢延春,杨世勇 等.铜尾矿对小麦生长发育和生理功能的影响[J].应用生态学报,2001,12(5):126-128
    刘景春,李裕红,晋宏.铜污染对辣椒产量、铜累积及叶片膜保护酶活性的影响[J].福建农业学报,2003,18(4):254-257
    刘敬新.铜的次生资源与再生冶金(一)[J].中国资源综合利用,1992,08:16-19
    刘庆,李文庆,王欣英 等.菠菜和油菜对铜的吸收及化学结合形态研究[J].江西农业大学学报,2005,27(1):150-153
    刘万玲.重金属污染及其对植物生长发育的影响[J].安徽农业科学,2006,34(16):4026- 4027,4030
    刘霞,刘树庆.土壤重金属形态分布特征与生物效应的研究进展[J].农业环境科学学报,2006,25(增刊):407-410
    刘永厚,黄细花,赵振纪 等.铜对紫云英固氮作用及养分吸收的影响[J].土壤肥料,1993,5:23-27
    龙健,黄昌勇,滕应 等.红壤矿区复垦土壤的微生物生态特征及其稳定性恢复研究Ⅱ:对土壤微生物生态特征和群落结构的影响[J].应用生态学报,2004,15(2):237-240
    龙健,黄昌勇,腾应 等.我国南方红壤矿山复垦土壤的微生物特征研究[J].水土保持学报,2002,16(2):126-129
    龙新宪,倪吾钟,***.菜园土壤铜吸附-解吸特性研究[J].农村生态环境,2000,16(30:39-41
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    陆晓辉,黎成厚,涂成龙.不同有机物料对土壤外源铜有效性的影响[J].山地农业生物学报,2004,23(1):5-9
    罗海峰,齐鸿雁,薛凯,张洪勋.PCR-DGGE技术在农田土壤微生物多样性研究中的应用[J].生态学报,2003,23(8):1570-1576
    罗亚平,刘杰,蔡湘文等.铜对水稻种子萌发和生长的影响[J].广西农业科学,2005,36(4):316-318
    马万里.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):101-105
    马振东,张凌,蒋敬业 等.长江中游鄂东南铜矿集区土壤铜环境地球化学特征[J].地球化学,2002,31(1):91-96
    孟凡乔,史雅娟,吴文良.我国无污染农产品重(类)金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护,2000,19(6):356-359
    倪才英,刘永厚.不同质地土壤对铜的吸附性能试验[J].江西农业大学学报,1996,18(4):426-430)
    倪才英a,陈英旭,骆永明 等.紫云英(Astragalus siniucus L.)对重金属胁迫的响应[J].中国环境科学,2003,23(5):503-508
    倪才英b,陈英旭,骆永明 等.红壤模拟铜污染下紫云英根表形态及其组织和细胞结构变化[J].环境科学,2003,24(3):116-120
    倪吾钟,马海燕,余慎 等.土壤-植物系统的铜污染及其生态健康效应[J].广东微量元素科学,2003,10(1):1-5
    彭刚华.土壤铜污染对水稻生长及产量的影响研究[J].福建环境,2000,6:31-32
    全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998
    沈根祥,谢争,钱晓雍 等.上海市蔬菜农田土壤重金属污染物累积调查分析[J].农业环境科学学报,2006,25(增刊):37-40
    沈佳琴,廖瑞章.重金属、非重金属、矿物油对土壤酶活性的影响[J].农业环境保护,1987,6(3):24-27
    史长青.重金属污染对水稻土酶活性的影响[J].土壤通报,1995,26(1):34-35
    尔维-加里乌林.根据土壤酶的活性监测土壤的重金属污染[J].国外农业环境保护,1992,3:33-36
    史吉平,董永华.重金属胁迫对小麦幼苗超氧化物歧化酶活性的影响[J].国外农学-麦类作物,1996,(3):33-34
    史艇,蔡士悦,阎雨平.重金属和矿物油对土壤微生物生态活性的影响[J].农业环境科学学报,1993,3:34-37
    宋玉芳,许华夏,任丽萍 等.土壤重金属污染对蔬菜生长的抑制作用及其生态毒性[J].农业环境科学学报,2003,22(1):13-15
    宋玉芳,周启星,王新 等.污灌土壤的生态毒性研究[J].农业环境科学学报,2004,23(4):638-641
    苏静,欧今次仁,尼霞次仁 等.德兴铜矿周边地区土壤酶活性研究[J].环境污染与防治,2007,29(5):356-360
    苏流坤,袁换祥.土壤中铜、砷对水稻生长发育影响的研究[J].热带亚热带土壤科学,1997,26(1):194-197
    孙百晔.铜对苹果幼树和砧木实生苗的毒害机理及化学修复效应研究[D].山东:山东农业大学硕士论文,2002
    孙铁珩,李培军,周启星.土壤污染形成机理及修复技术[M].北京:科学出版社,2005
    孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[M].北京:科学出版社,2005,9
    孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001
    孙铁珩,周启星.污染生态学的研究前沿与展望[J].农村生态环境,2000,16(3):42-45
    孙卫玲,赵蓉,张岚 等.pH对铜在黄土中吸持及其形态的影响[J].环境科学,2001,22(3):78-83
    腾应,黄昌勇,骆永明 等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119
    滕应,黄昌勇,龙健 等.矿区土壤微生物区系结构及其主要细菌生理类群研究[J].农业环境科学学报,2003,17(3):115-118
    滕应,黄昌勇,龙健 等.铜尾矿污染区土壤酶活性研究[J].应用生态学报,2003,14(11):1976-1980
    滕应,黄昌勇,龙健等.铅锌银尾矿污染区土壤微生物区系及主要生理类群研究[J].农业环境科学学报,2003,22(4):408-411.
    滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002,11(1):85-89
    滕应,龙健.矿区侵蚀土壤的微生物活性及群落多样性研究[J].水土保持学报,2003,17(1):23-26
    田生科,李廷轩,***等.植物对铜的吸收运输及毒害机理研究进展[J].土壤通报,2006,37(2):387-395
    涂从,郑春荣,陈怀满.土壤-植物系统中重金属与养分元素交互作用[J].中国环境科学,1997,17(6):527-530
    涂丛,青长乐.紫色土壤中铜对莴苣生长的影响及其临界值指标的研究[J].农业环境保护,1986,9(4):13-17
    汪金舫,朱其清,刘铮.小麦和油菜中Cu和Zn的化学结合形态初步研究[J].应用生态学报,2000,11(4):629-63
    汪雅谷,章国强.蔬菜区土壤镉污染及蔬菜种类选择.农业环境保护,1985,(4):7-10
    王保军,杨惠芳.微生物与重金属的相互作用[J].重庆环境科学,1996,18(1):35-39
    王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605
    王宏康,阎寿沧.污泥施肥时铜对农作物的污染[J].环境科学,1990,11(3):6-111
    王敬国.植物营养的土壤化学[M].北京:北京农业大学出版社,1995,155-159
    王夔.生命科学中的微量元素[M].北京:中国计量出版社,1996
    王淑芳.重金属污染黑土中固氮菌及硝化细菌作用强度的测定[J].应用生态学报,1991,2(2):174-177
    王卫红,吴刚,游植娄 等.赤红壤施用Cu、Zn对菜心生长和吸收Cu、Zn的影响[J].华南 农业大学学报,1997,18(2):66-71
    王新,周启星.土壤重金属污染生态过程、效应及修复[J].生态科学,2004,23(3):278-281
    王秀丽,徐建民,谢正苗等.重金属铜和锌污染对土壤环境质量生物学指标的影响[J].浙江大学学报(农业与生命科学版),2002,28:190-194.
    王秀丽,徐建民,姚槐应 等.重金属铜、锌、镐、铅复合污染对土壤环境微生物群落的影响[J].环境科学学报,2003,23(1):22-27
    王友保,刘登义,张莉等.Cu、As及其复合污染对黄豆影响的初步研究[J].应用生态学报,2001,12(1):117-120
    王友保,刘登义.Cu、As及其复合污染对小麦生理生态指标的影响[J].应用生态学报,2001,12(5):773-776
    王裕顺;李彤;吴燕玉 等.土壤中铜锌锰钴活性的研究[J].农业环境科学学报,1992,11(3):118-122,128
    王云,魏复盛.土壤环境化学[M].北京:中国环境科学出版社,1995
    吴家燕,夏增禄,巴音,等.土壤重金属污染的酶学诊断-紫色土中的镉、铜、铅、砷对水稻根系过氧化物酶的影响[J].环境科学学报,1990,10(1):73-76
    吴龙华,骆永明,卢蓉晖等.铜污染土壤修复的有机调控研究Ⅱ.根际土壤铜的有机活化效应[J].土壤,2000,2:67-70
    吴新民,潘根兴,李恋卿.长江三角洲土壤质量演变趋势分析[J].地理与地理信息科学,2006,22(3):88-91
    武玫玲.土壤对铜离子的专性吸附及其特征的研究[J].土壤学报,1989,26(1):31-39
    席劲瑛,胡洪营,钱易.Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1):138-141
    夏家淇,骆永明.我国土壤环境质量研究几个值得探讨的问题[J].生态与农村环境学报,2007,23(1):1-6
    夏家淇.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996.
    夏增禄.土壤环境容量及其信息系统[M].北京:气象出版社,1991,108-114
    夏增禄.土壤环境容量及其应用[M].北京:气象出版社,1988,216
    夏增禄.中国土壤环境容量[M].北京:地震出版社,1992,215
    夏增禄.中国主要类型土壤若干重金属临界含量和环境容量的区域分异[J].地理学报,1993,48(4):297-303
    夏增禄.中国主要类型土壤若干重金属临界含量和环境容量的区域分异的影响[J].土壤学报,1994,31(2):161-169
    谢朝阳,黄巧云,黄敏 等.耐重金属细菌对土壤胶体矿物体系吸附铜的影响[J].湖北农业科学,2006,45(5):587-592
    谢正苗.土壤中铜的化学平衡[J].环境科学进展,1996,4(2):1-23
    熊礼明.施肥与植物的重金属吸收[J].农业环境保护,1993,12(5):217-222
    熊治廷.环境生物学[M].武汉:武汉大学出版社,2000
    徐加宽a,杨连新,王志强 等.土壤铜含量对水稻生长发育和产量形成的影响[J].中国水稻科学,2005,19(3):262-268
    徐加宽b,杨连新,王余龙等.水稻对重金属元素的吸收与分配机理的研究进展[J].植物学通报,2005,22(5):614-622
    徐加宽c,杨连新,王志强.土壤铜含量对水稻根系的影响及其与产量的关系[J].中国水稻科学,2005,19(5):427-433
    徐磊.铜胁迫对小白菜生理生化指标的毒害作用[D].福建农林大学,硕士学位论文,2003
    徐琪,董元华.土壤生态学.见:刘全根,孙成权 主编.地球科学新学科新概念集成[M].北京:地震出版社,1995,392-393
    徐勤松.镉对Ottelia alismoi des的抗氧化系统及超微结构的影响[J].农村生态环境,2001,17(5):30-34
    徐晓燕.锌、铜对水稻幼苗生长及超氧物歧化酶的影响[J].山西农业大学学报,1997,17(2):113-115
    许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995
    许炼烽,郝兴仁,冯显湘.城市蔬菜的重金属污染及其对策[J].生态科学,2000,19(1):80-85.
    薛艳,沈振国,周东.蔬菜对土壤重金属吸收的差异与机理[J].土壤,2005,37(1):32-36
    阎章才,东秀珠.微生物的生物多样性及应用前景[J].微生物学通报,2001,28(1):96-102
    颜慧,蔡祖聪,钟文.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43(5):854-858
    杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2002,22(6):39-41
    杨桂芬,李德波.我国南方某些铜矿附近水稻土铜污染的调查研究[J].农村生态环境,1990,(4):55-59
    杨洪英,朱长亮,王大文 等.辽宁某冶炼厂污染土壤的铜污染研究[J].东北大学学报(自然科学版),2007,28(1):80-82
    杨剑虹,魏朝富,谢德林,耕作制对紫色水稻土铁锰铜锌形态的影响研究[J],西南农业大学学报,1992,14(6):471-476
    杨金燕.土壤-植物系统中铅污染的微生物生态特征及诊断指标[D].浙江大学,博士学位论文,2005
    杨景辉.土壤污染与防治[M].北京:科学出版社,1995,1-167
    杨景辉.土壤中的铜[J].农业环境与发展,1986,2:11-19
    杨居荣,查燕,刘红.污染种子中镉铜铅的分布与化学形态[J].中国环境科学,1999,19(6):500-504
    杨万勤 王开运,2002,土壤酶研究动态与展望,应用与环境生物学报,8(5):564-570
    杨元根,Paterson E,Campbell C.重金属Cu的土壤微生物毒性研究[J].土壤通报,2002,33(2):137-141
    杨元根.用土壤微生物方法评价重金属Cu的毒性及其时间效应[J].自然科学进展,2001,11(3):19-24
    姚槐应,***,黄昌勇.不同土地利用方式对红壤微生物多样性的影晌[J].水土保持学报,2003,17(2):51-54
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006,5-6
    姚志春.含铜废水处理及资源循环利用的应用研究[J].甘肃科技,2005,21(12):96-98
    叶姜瑜,罗固源.遗传指纹图谱技术对微生物群落的分析[J].重庆大学学报,2003,26(3):147-152
    于群英.土壤磷酸酶活性及其影响因素研究[J].安徽技术师范学院学报,2001,15(4):5-8
    余海珊,张海清,崔杰峰 等.龙湾涌铜污染的迁移转化研究[J].环境保护科学,2001,27(2):18-20
    俞慎,李勇,张桃林等.土壤微生物生物量作为红壤质量生物指标的探讨[J]土壤学报,1999,36(3):387-394
    俞慎.红壤铜污染的物理化学行为和生物学表征[D].浙江大学,博士学位论文,2002
    俞毓磬,吴国庆,孟宪庭 主编.环境中微生物生物量测定.环境工程微生物检验手册[M]. 北京:中国环境科学出版社,1989,129-130
    岳振华,张富强,胡瑞芝,等.菜园土中重金属和氟的迁移积累及蔬菜对重金属的富集作用[J].湖南农学院学报,1992,18(4):929-936.
    曾思坚.珠江三角洲经济区农业生态环境现状与对策[J].热带亚热带土壤科学,1995,4(4):242-245
    张国军,邱栋梁,刘星辉.Cu对植物毒害研究进展[J].福建农林大学学报(自然科学版),2004,33(3):289-294
    张宏淘,卢玉祺,孙淑庄 等编.水质分析大全[M].重庆:科学技术文献出版社重庆分社,1989
    张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展[J].生态学报,2003,23(5):988-995
    张纪伍,梁伟,李德波 等.土壤铜铅锌复合污染对水稻的生态效应[J].农村生态环境,1997,13(1):16-20.
    张俊会,金则新,闵航 等.废旧金属拆解地土壤的微生物学评价[J].农业环境科学学报,2006,25(3):678-684
    张开明,黄苏珍,原海燕 等.铜污染的植物毒害、抗性机理及其植物修复[J].江苏环境科学,2005,18(1):4-9
    张乃明.土壤-植物系统重金属污染研究现状与展望[J].环境科学进展,1999,7(4):30-33
    张维碟,林琦,陈英旭.不同Cu形态在土壤-植物系统中的可利用性及其活性诱导[J].环境科学学报,2003,23(3):376-382
    张学君,王金生,方中达.硫酸铜防治马铃薯软腐病及其对薯块有关酶类的影响[J].植物病理学报,1993,19(1):75-79
    张杨珠,刘学军,袁正平 等.不同稻作制对红壤性水稻土铜的化学行为的影响[J].农业现代化研究,1999,20(2):120-124
    张杨珠,刘学军,袁正平 等.不同稻作制对红壤性水稻土铜的化学行为的影响[J].农业现代化研究,1999,20(2):120-124
    张咏梅,周国逸,吴宁,2004,土壤酶学的研究进展,热带亚热带植物学报12(1),83-90
    章家恩,蔡燕飞,高爱霞 等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350
    赵玲,马永军,董爱平.宁波农业生态环境污染现状研究[J].农业和农村发展,2002,4,15-17
    赵其国,骆永明.开展我国东南沿海经济快速发展地区资源与环境质量问题研究建议[J].土壤,2000,32:169-172
    赵振纪,黄细花,刘永厚 等.铜对土壤-植物系统的影响及其临界值指标的研究[J].环境与开发,1993,8(1):4-9
    征文.我国蔬菜标准与国际及国外先进标准的差距[J].中国标准导报,2004,8:14-16
    郑爱珍.铜在青菜体内的分布与存在形式研究[J].安徽农业科学,2005,33(3):426-427
    郑华,欧阳志云,方治国,赵同谦.BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报,2004,41(3):456-461
    中国基础研究网.香山会议第212号:污染土壤修复与生态安全[EB/OL].(2003-09-24).http://www.xssc.ac.cn/Web/ListConf_s/ConfDetail.asp?mo=488.
    中国科学院南京土壤研究所微生物研究室编著.土壤微生物研究法[M].北京:中国科学出版社.1985.
    仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272
    周建利,陈同斌.我国城郊菜地土壤和蔬菜重金属污染研究现状与展望[J].湖北农学院学 报,2002,22(5):476-480.
    周建民,党志,蔡美芳 等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究,2005,18(3):5-11
    周礼恺,张志明,曹承锦,等.土壤的重金属污染与土壤酶活性[J].环境科学学报,1985,5(2):176-183
    周礼恺.土壤酶学[M].北京:科学出版社,1987
    周启星,孔繁翔,朱林 主编.生态毒理学[M].北京:科学出版社,2004
    周启星,孙铁珩.土壤-植物系统污染生态学研究与展望[J].应用生态学报,2004.15(10):1698-1702
    朱永官,陈保冬,林爱军 等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J].环境科学学报,2005,25(12):1575-1579
    朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J].环境科学学报,2003,23(3):205-210
    庄树宏,王克明.城市大气重金属(Pb,Cd,Cu,Zn)污染及其在植物中的富积[J].烟台大学学报(自然科学与工程版),2000,13(1):31-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700