用户名: 密码: 验证码:
河口潮滩湿地沉积物中胞外酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长江口典型湿地—崇明东滩为例,首次研究了沿高程梯度或沿植被演替系列沉积物中碱性磷酸酶等五种胞外酶活性的空间分布规律,分析了胞外酶活性与环境因子的相互关系及其产生机制,讨论了胞外酶活性在湿地植被演替中的作用。同时以崇明东滩沉积物为对象,运用重金属离子的添加和去除等方法,研究了重金属离子对沉积物中碱性磷酸酶活性的影响,利用胞外酶活性的变化探讨了崇明东滩重金属污染的状况。此外,本文还研究了横沙东滩吹泥试验工程对沉积物环境因子和胞外酶活性的影响并进行了对比分析。上述工作的开展不仅有助于丰富湿地沉积物胞外酶的理论,理解湿地生态系统的生态过程,而且对于河口湿地的保护和利用具有重要的现实意义和应用价值。
     主要研究结果如下:
     1.崇明东滩沉积物中胞外酶活性沿高程梯度或演替系列呈规律性变化,沉积物理化性质影响着胞外酶活性的分布。
     崇明东滩沉积物中沿高程梯度碱性磷酸酶活性有增加的趋势。而各植被样带沉积物中碱性磷酸酶活性、Vmax除在表层有一高值以外,各植被样带在20-30cm处有一较高峰值,而Km值在该处有一较低值,说明除了表层之外,在亚表层有一个令人注意的碱性磷酸酶活跃区。通过直线回归分析发现,碱性磷酸酶活性与沉积物中粒径、溶解无机磷含量呈显著负相关,与总磷、有机质、总氮含量呈显著正相关。最大反应速度Vmax与环境因子的关系与有机质、总氮呈正相关,而Km则相反。说明有机质总氮含量是提高碱性磷酸酶活性的重要因素,同时反映出碱性磷酸酶活性受底物和产物并存机制的诱导或抑制,这种并存机制在其它土壤或沉积物碱性磷酸酶的研究中并不多见。
    
    华东师范大学博士学位论文
    摘要
     过氧化氢酶活性随着演替的发展有逐渐增大的趋势。各植被带酶活性垂
    直分布受环境因子的影响而没有统一的分布规律。无论是水平还是垂直样
    品,沉积物过氧化氢酶活性与有机质、总氮、总磷呈正相关,与溶解无机磷
    和沉积物粒径呈负相关。充分反映了随着演替的发展,沉积物的肥力逐渐增
    高的特点,也反映了沿高程梯度沉积物生物氧化作用逐渐增强。
     蛋白酶活性从光滩到芦苇带有降低的趋势,各植被样带垂直样品蛋白酶
    活性低于表层。与环境因子分析表明,蛋白酶活性与有机质、总氮呈负相关,
    而与溶解无机磷和沉积物粒径呈正相关。从光滩到芦苇带,硅藻数量逐渐降
    低,导致沉积物中蛋白质含量降低,影响着蛋白酶的活性,也可能说明蛋白
    酶主要来源于藻类,因此蛋白酶活性的高低更决定于有机质的类型而与有机
    质总量无关。
     转化酶活性从光滩到芦苇带变化并不明显,在海三棱蔗草带略高。垂直
    分布在10一3Ocm处有较高的值。与环境因子无显著的相关关系。转化酶活性
    的大小与分布可能与有机物组成有关。
     崇明东滩沉积物中脉酶活性很低,甚至难以检出,与各环境因子无显著
    相关关系。
     2.向沉积物中添加金属离子实验发现,重金属离子对崇明东滩沉积物
    中碱性磷酸酶的作用方式有两种:Hg、Cd、Pb、Cu等离子对碱性磷酸酶有抑
    制作用,通过生态剂量分析,四种金属离子对碱性磷酸酶的抑制作用强弱存
    在差异,顺序为HgZ,>Cu卜)Pb2+>CdZ‘;Zn和Mn离子在低浓度下激活碱性磷酸酶
    的活性,而在高浓度下则起抑制作用,说明崇明东滩Zn和Mn的污染性不大。
    通过向不同植被带沉积物样品中添加鳌合剂EDTA以消除重金属离子,发现在
    各样带沉积物碱性磷酸酶活性最高时相对应的EDTA添加量不同,海三棱蔗草
    带低于混合带和芦苇带,与各样带重金属的累积含量相一致,EDTA的添加量
    能够综合反映潮滩湿地重金属的污染程度,由于对酶起作用的重金属形态为
    
    华东师范大学博士学位论文
    摘要
    离子态,因此利用胞外酶活性来评价沉积物重金属的污染状况更具实践意义。
     3.横沙东滩沉积物中存在Cd、Sn、Pb等重金属元素为主的污染,吹泥
    后沉积物粒径减小,总磷含量明显增加,重金属污染有增加的趋势。尤其是
    SN,,站位最为明显,这与SN,,站位处于深槽,积累了大量的吹泥原土有关。吹
    泥后碱性磷酸酶活性显著低于吹泥前,原因在于重金属尤其是Zn的抑制作
    用。而过氧化氢酶在重金属含量较高的站位具有较高的酶活性,说明了微生
    物应激反应的存在,过氧化氢酶活性能反映出水域沉积物中污染的程度。转
    化酶、蛋白酶、脉酶活性无显著变化。因此,碱性磷酸酶和过氧化氢酶活性
    对环境变化有较好的指示作用。以上说明吹泥对横沙东滩底质环境造成较大
    的影响,长期影响需进一步跟踪研究。
     总之,潮滩湿地高程和沉积物粒径影响着物质的积累和群落的演替,从
    而决定着胞外酶活性的变化。胞外酶对环境因素的变化具有敏感性,决定了
    其活性可以作为环境变化的评价指标。
The paper studied three aspects of extracelluar enzymes in sediments of the tidal flat wetland, namely 1) the distibution of five sorts of extracellular enzymes in sediments in the East End of Chongming Island along the elevation gradient or community succession series, the relationships between the activities of enzymes and the ecological factors, and functions of extracellular enzymes in the process of community succession; 2) the effects of the heavy metal ions and EDTA on the activity of alkaline phosphatase in sediments of the East End of Chongming Island by adding and removing of heavy metal ions, discussing whether the activities of extracellular enzymes could be taken as the indicators for the environmental status; 3) the variations of the activities of extracellular enzymes in sediments in the East End of Hengsha Island after the discarding clay. These studies would enrich the knowledge of the extracellular enzymes, help us to understud the ecological processes of wetland ecosystem and be important
    practice to direct the conservation and development of the estuarine tidal flat wetlands.
    The major conclusions drew on this studies are:
    1 . The activities of extracellular enzymes in sediment in the east end of Chongming island changed regularly along the elevation gradient, the physical and chemical factors affected the activities of extracellular enzymes.
    Along the elevation gradient or succession series, the activity of alkaline phosphatase increased gradually. Besides the surface sediments* alkaline phosphatase of sediments in every vegetation area has higher peak activity and Vmax,but a lower Km at the depth of 20-30cm.lt was proved that there was a remarkably active zone of the alkaline phosphatase in the sediments besides the surface layer. The activity of alkaline phosphatase was significantly correlated to the particle size and dissolved inorganic phosphorus negatively but opposite to organic matters and total nitrogen. Vmax had a same trend as activity of alkaline phosphatase, but opposite to Km. The
    
    
    
    
    results suggested that organic matter and total nitrogen could increase the activity of alkaline phosphatase, and that the activity of alkaline phosphatase was activated or inhibited by substrate and product due to co-existence. This mechanism was reported poorly in the wetland sediments or soils.
    With succession of community, the activity of catalase increased gradually, and the vertical variation of the activity was affected by environmental factors and didn't show identical rule. No matter what kinds of sample, including the horizontal and vertical, the activity of catalase was correlated to organic matter, total nitrogen and total phosphorus positively, but opposite to dissolved inorganic phosphorus and particle size of sediments. It suggested that the fertility of sediment and biological oxidation was improved with succession.
    The activity of proteinase decreased from bare flat to reed zone, and the activity in deeper sediment was lower than surface sediment. The activity of proteinase was correlated to organic matters and total nitrogen negatively, but opposite to dissolved inorganic phosphorus. From bare flat to reed zone, theconcentration of protein declined with diatom quantity which influenced the activity of proteinase. It suggested that proteinase in the sediments was probably produced by diatom, and the activity of proteinase was decided by the types of organic matter but not the concentration of organic matter.
    From bare flat to reed zone, the activity of sucrase changed insignificantly. There was a higher activity in triangle sulbush(5c/rp? mariquetef) zone than other vegetation zones. To the vertical distribution, there was higher activity at 10-3 Ocm depth. The activity of sucrase had insignificant correlation to the environmental factors. It may mainly depend on the composition of organic matter more than the organic matter.
    The activity of urease is too low to detect nearly and it had no correlation with environmental factors.
    2. The experiment of heavy m
引文
φ.X.哈兹耶夫。1980。土壤酶活性。北京:科学出版社。
    毕春娟。2001。潮滩植物根际重金属的时空分布规律及生物有效性研究。上海:华东师范大学硕士学位论文。
    陈德昌,尤伟来,虞志英。1989。崇明东滩环境质量评价。海洋环境科学,8(1):22~26。
    陈素丽,陈清西,丘文杰,等。1998。金属离子对长毛对虾酸性磷酸酶的影响。台湾海峡,17(1):96~99。
    陈锡时,郭树凡,汪景宽,等。1998。地膜覆盖栽培对土壤微生物种群和生物活性的影响。应用生态学报,9(4):435~439。
    陈振楼,许世远,柳林,等。2000。上海滨岸潮滩沉积物重金属元素的空间分布与积累。地理学报,55(6):641~651。
    何斌,温远光,袁霞,等。2002。广西英罗港不同红树植物群落土壤理化性质与酶活性的研究。林业科学,38(2):21~26。
    何文珊。2002。河口湿地生态演替及其干扰研究。上海:华东师范大学博士学位论文。
    和文祥,韦革宏,武勇军。2001。汞对土壤酶活性的影响。中国环境科学,21(3):279~283。
    和文祥,朱铭莪,张一平。2000。土壤酶活性与重金属关系的研究现状。土壤与环境,9(2):139—142。
    和文祥,朱铭莪。1997。陕西土壤脲酶活性与土壤肥力关系分析。土壤学报,34(4):392~398。
    胡海波,康立新,梁珍海,等。1998。泥质海岸防护林土壤酶活性特征研究。土壤学报,35(1):112~118。
    傅瑞标,何青,孙振彬。2000。长江口南槽重金属的积累特征。中国环境科学,20(4):357~360。
    龚平,孙铁珩,李培军。1997。重金属对土壤微生物的生态效应。8(2):218~224。
    关松荫。1986。土壤酶及其研究法。北京:农业出版社。
    
    
    黄银晓。1986。北京东郊作物——土壤系统中重金属的迁移、分布、积累。植物生态学与地植物学学报,10(2):131~137。
    金相灿,屠清瑛。1990。湖泊富营养化调查规范。北京:中国环境科学出版社。
    康勤书。2003。长江口沉积物元素地球化学特征。上海:华东师范大学硕士学位论文。
    劳家柽。1988。土壤农业分析手册。北京:农业出版社。
    李博文,刘树庆。1999。镉锌铅复合污染与土壤酶活性关系的模拟试验。江苏农业科学,4:51~52。
    李茂田。2002。崇明东滩湿地生态系统硅的生物地球化学循环初探。上海:华东师范大学硕士论文。
    李清芳,马成仓。1997。EDTA对汞毒害下玉米幼苗细胞膜损伤及体内保护系统变化的缓解作用。农村环境保护,16(4):165~167。
    梁威,吴振斌,周巧红,等。2002。复合垂直流构建湿地基质微生物类群及酶活性的空间分布。云南环境科学,21(1):5~8。
    刘存岐,王安利,王维娜,等。2001。海水中几种金属离子对中国对虾幼体体内碱性磷酸酶和ATPase活性的影响。水产学报,25(4)298~303。
    刘敏,陆敏,许世远,等。2001。长江口滨岸潮滩沉积物中磷的存在形态和分布特征。海洋通报,20(5):10~17。
    刘敏,陆敏,许世远,等。2000。长江河口及其上海岸带水体沉积物中磷的赋存形态。地学前缘,7(Suppl.):94~98。
    刘树庆.1996。保定市污灌区土壤的Pb、Cd污染与土壤酶活性关系研究.土壤学报,33(2);175~182。
    刘云国,李欣,徐敏,等。2002。土壤重金属镉污染的植物修复和土壤酶活性。湖南大学学报(自然科学版),29(4):108~111。
    柳林,许世远,陈振楼。2000上海潮滩表层沉积物重金属的分布特征。上海环境科学,19(7):309~312。
    柳林,许世远,陈振楼,等。2001。上海滨岸带潮滩表层沉积物中重金属的空间分布与环境质量分布。上海地质,73(1):1~5。
    陆健健,孙宪坤,何文珊。1998a。上海地区湿地研究。中国湿地研究和保护,上海:华东师范大学出版社,297~309。
    陆健健,孙平跃。1998b。长江口湿地资源生物的可持续利用。中国湿地研究和保护,上海:华东师范大学出版社,346~353。
    
    
    陆健健,邱忠虹,何文珊,等。2002。崇明东滩EDD环境容量研究。上海:华东师范大学课题技术报告。
    青长乐,牟树森,蒲富永,等。1992。论土壤重金属毒性临界值。农业环境保护,11(2):51~56。
    沈桂琴,廖瑞章。1987。重金属、非重金属,矿物油对土壤酶活性的影响。农业环境保护,6(3):24~27。
    孙炳寅,朱长生。1989。互花米草(Spartina alterniflora)草场土壤微生物生态分布及某些酶活性的研究。生态学报,9(3):240~244。
    陶静,许世远。1995。上海地区潮滩沉积与重金属元素分布。见:地貌、环境、发展。北京:中国环境科学出版社。
    王秀丽,徐建民,谢正苗,等。2002。重金属铜和锌污染对土壤环境质量生物学指标的影响。浙江大学学报(农业与生物科学版),2002,28(2):190~194。
    温远光,刘世荣,元昌安。2002。广西英罗港红树植物种群的分布。生态学报,22(7):1160~1165。
    吴龙华。2000。铜污染土壤修复的有机调控研究—Ⅱ.根际土壤铜的有机活化效应。土壤,32(2):67~70。
    吴启堂。1992。土壤重金属环境质量基准指标的选择探讨。北京:第四届青年土壤会议论文集.86~92。
    吴振斌,梁威,成水平,等。2001。人工湿地植物根区土壤酶活性与污水净化效果及其相关分析。环境科学学报,21(5):622~624。
    吴振斌,梁威,成水平,等。2002。复合垂直流构建湿地净化污水基质研究。长江流域资源与环境,11(2):179~183。
    夏家淇,1996。土壤环境质量标准详解。北京:中国环境科学出版社。
    许光辉等。1984。长白山北坡自然保护区森林土壤微生物生态分布及其生化特性的研究。生态学报,4(3):207~223。
    许世远,陶静,陈振楼,等。1997。上海潮滩沉积物重金属的动力学累积特征。海洋与湖沼,28(5):509~514。
    薛雄志,洪华生,黄邦钦。1995。海洋沉积物中碱性磷酸酶活力与水体污染的关系。台湾海峡,14(3):274~279。
    杨桂山,施雅风,张琛。2002。江苏滨海潮滩湿地对潮位变化的生态响应。地理学报,57(3):325~332。
    
    
    杨留法。1997。试论粉砂淤泥质海岸带微地貌类型的划分—以上海市崇明县东部潮滩为例。上海师范大学学报(自然科学版),26(3):72~77。
    杨世伦,陈吉余。1994。试论植物在潮滩发育演变中的作用。海洋与湖沼,25(6):631~635。
    杨志新,刘树庆。2001。重金属Cd、Zn、Pb复合污染对土壤酶活性的影响。环境科学学报,21(1):60~63。
    尹君。1993。土壤中有效态镉测定方法探讨。河北农业大学学报,16(4):37~40。
    虞志英,刘存岐,朱晓君,等。2002。横沙东滩上滩吹泥吹泥试验对环境质量状况的影响。上海:华东师范大学课题技术报告。
    袁兴中。2001。河口潮滩湿地底栖动物群落的生态学研究。上海:华东师范大学博士学位论文。
    张学红,陈志强,吕炳南,等。2000。污泥农用的重金属安全性试验研究。中国给水排水,16(12):18~21。
    张银龙,林鹏。1999。秋茄红树林土壤酶活性时空动态。厦门大学学报(自然科学版),38(1):129~136。
    张银龙。1996。九龙江口红树林土壤酶活性等性质及其细根的生态学研究。厦门:厦门大学博士学位论文。
    周济福,王涛,李家春,等。1999。径流与潮流对长江口泥沙运输的影响。水动力研究与进展,13(1):90~106。
    周礼恺。1987。土壤酶学。北京:科学出版社。
    周礼恺。1983土壤酶活性的总体在评价土壤肥力水平中的应用。土壤学报,20(4):413~417。
    周礼恺,张志明,曹呈锦,等。1985。土壤的重金属污染与土壤酶活性。环境科学学报,5(2):176~183。
    周易勇,李建秋,张敏。2002。湿地中碱性磷酸酶的动力学特征与水生植物的关系。湖泊科学,14(2):134~138。
    Anronson, S. & N. J. Patni. 1976. The role of surface and extracellular phosphatase in the phosphatase in the requirement of Oocbromonas. Limnol Oceanogr, 21: 838~845.
    
    
    Bacic, A., P. J. Harris & B. A. Stone. 1988. Structure and function of plant cell Walls. In: Biochemistry of plants, A Comprehensive Treatise, Vol. 14. Carbohydrates (Preiess J. ED.), pp.297, 371, Academical Press, New York.
    Barrett, D. J. , A. E. Richardson & R. M. Gifford. 1998. Elevted atmospheric CO2 concentrations increase wheat root phosphatase activity when growth is limited by phosphorus. Aust J Plant Physiol, 25: 87~93.
    Bernner, R. , A. E. Maccubbin & R. E. Hodson. 1984. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Env. Microbiol. , 47: 998-1004.
    Berendse, F. 1990. Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J Ecol, 78: 413-427
    Blaser, P. , S. Zimmermann, J. Luster, et al. 2000. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn Swiss forest soils. The Science of the Total environment, 249(1-3) : 257~280.
    Boetius, A. & K. Lochte. 1994. Regulations of microbial enzymic degradation of organic matter in deep sea sediments. Mar. Ecol. Prog. Ser. , 1994, 104: 299~ 307.
    Boetius, A. & K. Lochte, 1996 . Effects of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Mar. Ecol. Prog. Ser., 140: 239-250.
    Boschker, H. T. S. & T. E. Cappenberg. 1998. Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, The Netherlands. FEMS Microbiology Ecology, 25: 79~86.
    Brackke F. H. 1981. Hydrochemistry of high altitude catchments in southern Norway. 3. Dynamics in water flow and in release-fixation of sulphate, nitrate, and ammonium. Norsk Institutt. For Skogforskning 36: 1~21.
    Brinson, M. M. , A. E. Lugo & S. Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu. Rev. Ecol. Syst. , 1981, 12:123~161.
    Chrost , R. J. , w. Siuda & G. Halemejko. 1984. Longterm studies on alkaline phosphatase activity(APA) in a lake with fish-aquaculture in relation and
    
    phosphorus cycle. Arch Hydrobiol Suppl, 70: 1-32.
    Chrost, R. J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chrost, R.J. (Ed.), Microbial Enzymes in Aquatic Environments. Spronger-Verlag, New York.
    Conter, Jr, J. B., & J. R. Health. 1988. Potential phosphate release from phosphomonoesters by acid phosphatase in a bog lake. Arch. Hydrobiol, 111: 329-338.
    Cowie, G. L. & J. I. Hedges. 1984. Carbohydrate sources in a coastal marine environment. Geochim Cosmochim. Acta, 48, 2075-2078.
    DeBusk, W. F. 1996. Organic matter turnover along a nutrient gradient in the Everglades. Ph. D. Diss. Univ. Florida, Gainesville, F1.
    Deng, S. P. & M. A. Tabatabai. 1995. Cellulase activity of trace elements. Soil Biol & biochem, 27(7) : 977-979.
    Dhillion, S. S., J. Roy & M. Abrams. 1996. Assessing the impact of elevated CO2 on Soil Microbial activity in a Mediterranean Model ecosystem. Plant Soil, 187: 333-342.
    Freeman, C., R. Baxter, J. F. Farrar, et al. 1998. Could competition between plants and concentration? Sci Total Environ 220: 181-184.
    Freeman, C., M. A. Lock & B. Reynold. 1993a. Fluxes of carbon dioxide, methane and nitrous oxide from a wesh peatland following simulation of water table drawdown: potential feed-back to climatic change. Biogeochemistry, 19: 51-60.
    Freeman, C., M. A. Lock & B. Reynolds. 1993b. Impacts of climatic change on peatland hydrochemistry: a laboratory based experiments. Chem. Ecol., 8: 49-59.
    Freeman C., G. Liska, N. J. Ostle, et al.. 1996. Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and soil 180, 121-127.
    Freeman, C., G. Liska, N. J. Ostle, et al. 1997. Enzymes and the biogeochemical responses of wetlands to climate change. Biogeochemistry, 39: 177-187.
    
    
    Freeman, C., G. B. Nevson, S. Hughes, et al.. 1998. Enzymic involvement in the biogeochemical responses of Welsh peatland to a rainfall enhancement manipulation. Biol fertile Soils, 27: 173-178.
    Freeman, C., N. J. Ostle & H. Kang. 2001. An enzymic latch on a global carbon store. Nature, 409: 149.
    Hisashi, J. 1983. Fraction of phosphorus and releasable fraction in sediment mud of Osaka. Bull Jap Soc Sci fish, 49(3) : 447-454.
    Jackson, C. R., C. M. Foreman & R. L. Sinsabaugh. 1995. Microbial enzyme activities as indicator of organic matter processing rates in a lake Erie coastal wetland. Freshwater Biol. 34: 329-342.
    Kalinowska, K. 1997. Eutrophication process in shallow, Macrophyte dominated lake phosphatase activity in Lake Luknajno(Poland). Hydrobiologia, , 342/343: 395-399.
    Kang H. & C. Freeman. 1997. Measurement of phosphomonoesterase activity in wetland sediments-a sensitive method using HPLC and UV detection. Arch. Hydrobiol 140(3) : 411-417.
    Kang H. & C. Freeman. 1998a. Measurement of cellulase and xylosidase activities in peat using a sensitive fluorogenic compound assay. Commun. Soil Sci. Plant anal., 29(17418) , 2769-2774.
    Kang, H., C. Freeman & M. A. Lock. 1998b. Trace gas emission from a north Wales fen-Role of hydrochemistry and soil enzyme activity. Water, Air, and Soil Pollution, 105: 107-116.
    Kang, H., C. Freeman, D. Lee, et al. 1998c. Enzyme activitied in wetland: implication for water quality amelioration. Hydrobiologia, 368: 231-235.
    Kang, H. & C. Freeman. 1999. Phosphatase and arylsulphatase activities in wetlands soils: annual variation and controlling factors. Soil biology & Biochemistry, 31: 449-454.
    Kang, H., C. Freeman & T. W. Ashendon. 2001. Effects of elevated CO2 on fen peat biogeocheminstry. The science of the Total environment, 279:45-50.
    Kiss, S., Drgan-Bularda & D. Radulescu. 1975. Biological significance of enzymes accumulated in soil. Adv. Agron. 27: 25-87.
    
    
    Laine, J., H. Vasander & R. Laiho. 1995. Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32: 785-802.
    Mackenzie, A., A. S. Ball & S. R. Virdee. 2000. : &BIOS Scientific Publishers Limited. 122~130.
    Mannabe, S. & R. T. Weatherald. 1986. Reduction in summer soil wetness induced by an increase in atmospheric carbon dioxide. Science, 232: 626-628.
    Marxsen, J. & S. Schmidt. 1993. Extracellular phosphatase activity in sediments of the Breitenbach, a central European mountain stream. Hydrobiology, 253: 207~ 216.
    Marzadori, C. D. 1996. Effect of lead pollution on different soil enzyme activities. Biol. Fertil. soil , 23(6) : 581-587.
    McLatchey, G. P. & K. R., Reddy. 1998. Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality, 27 (5) : 1268-1274.
    Mitchell, J. F. B. &. D. A. Warrilow. 1987. Summer dryness in northern mid-latitudes due to increased carbon dioxide. Nature, 330: 238-240.
    Mitsch, W. J., J. K. Cronk, X. Wu, et al. 1995. Phosphorus retention in constructed freshwater riparian marshes. Ecol. Appl., 5: 830-845.
    Mitsh, W. J. & J. G. Gosselink. 2000. Wetlands. John Wiley & Sons, Inc., New York.
    Moorhead, D. L. & A. E. Linkins. 1997. Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant Soil, 1997, 189: 321-329.
    Moore, T. R. & M. Dalva. 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci, 44: 651-654.
    Moore, T. R., R. Knowles. 1981. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci, 69:33-38.
    Newman, S. & K. R. Reddy. 1993. Alkaline phosphatase activity in the sediment water column of a hypereutrophic lake. J. Environ Qual. 22: 832-838.
    
    
    Pancholy, S. K. & E. L. Rich. 1973. Soil enzymes in relations to old field succession: Amylase, cellulase, invertase, dehydrogenase and Urease. Soil Sci Soc Amer Proc, 37: 47~50.
    Pettersson, K. 1985. The availability of phosphorus and the species composition of the spring phytoplankton in Lake Erken. Int Revueges Hydrobiol, 70: 527~546
    Pind, A., C. Freeman, M. A. Lock. 1994. Enzymatic degradation of phenolic materials in peatlands-measurement of phenol oxidase activity. Plant Soil, 159: 227-231.
    Pulford, I. D., & M. A. 1988. Tabatabai. Effects of waterlogging on enzyme activities in soil. Soil Biol. Biochem., 20: 215-219.
    Reddy, D. 1985. Nutrient removal potential of selected aquatic macrophytes. J Environ Qulity, 14(4) : 459-462.
    Reddy, K. R. & E. M. D' Angelo. 1997. Biogeochemical indicators to evalute pollutant removal efficiency in Constructed wetlands. Wat. Sci. Tech., 35(5) : 1-10.
    Robinson, J. S., C. T. Johnston, K. R. Reddy. 1998. Combined chemical and 31P-NMR spectroscopic analysis of phosphorus on wetland organic soil. Soil Sci, 163(9) : 705-713.
    Rowntree, P. R., B. A. Callender, J. Cochrane. 1989. Modeling of climatic change and some potential effects on agriculture in the UK. J Royal Agric Soc England, 50: 153-170.
    Savant, N. K., A. F. James & G. H. McClellan. 1985. Effects of soil submergence on urea hydrolysis. Soil Sci. 140: 81~88.
    Serrano, L. , & P. I. Boon. 1991. Effects of polyphenolic compounds on alkaline phosphatase activity: Its implication of for phosphorus regeneration in Australian freshwaters. Arch Hydrobiol, 123:1-19.
    Shi C. Q. 1995. Effect of heavy metal pllution on paddy soil enzyme activities. Chinese Journal of soil science, 26(1) : 24~35.
    Silva, C. D., & N. B. Bholse. 1990. Phosphorus availability and phosphatase activity in the sediments of Mandovi estuary, Goa. Indian J Mar Sci, 19: 143-144.
    
    
    Sinsabaugh, R. L., R. K. Antibus, A. E. Linkins, et al. 1993. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology, 74:1586-1593.
    Sinsabaugh, R. L. & S. Findlay. 1995. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microbial Ecology, 30(2) : 127-147.
    Speir, T. W., H. A. Kettles, A. Parshotam, et al. 1995. Simple Kinetic approach to derive the ecological dose value ED50, for the asseement of Cr (VI) toxicity to soil biological properties. Soil Biology and Biochemistry, 27: 801~810.
    Speir, T. W., H. A. Kettles, A. Parshotam, et al. 1999. Simple kinetic approach to determine the toxicity of As (V) to Soil biological properties. Soil Biology & Biochemistry, 31: 705-713.
    Valiela, I. 1995. Marine Ecological processes. Springer Verlag, New York.
    VanHaesebroeck, V., B. Verhagen, R. F. Verheyen. 1997. Experimental investigation of drought induced acidification in a rich fen soil. Biogeochemistry 37: 15-32.
    Venkateswaran, K. & R. Natarajan. 1983. Distribution of phosphatase in sediments of Porto Novo. Indian J Mar Sci, 12: 231-242.
    Vitousek, P. M., P. A. Matson & K. Cleve. 1989. Nitrogen availability and nitrication during succession: primary, secondary, and old seres. Plant Soil , 115: 229-239.
    Wagner, G., P. Lischer, S. Theocharopoulos, et al.. 2001. Quantitative evaluation of the CEEM soil sampling intercomparison. The Science of the Total Environment, 264(1-2) : 73-101.
    Wetzel R. G. 1991. Extracellular enzymatic interactions: storage, redistribution, and interspecific communication. In: Chrost, R. J., Microbial enzymes in aquatic environments. New York: Springer verlag, 6-28.
    White J. R., & K. R. Reddy. 2000. Influence of phosphorus loading on organic nitrogen mineralization of Everglades soils. Sci. Soc. Am. J., 64: 1525-1534.
    Williams S. C., H. J. Simpson, C. R. Olsen, et al. 1978. Sources of heavy metals in sediemnts of the Hudson river estuary. Mar. Chem., 1978, 6(3) : 195-213.
    
    
    Wright, A. L., K. R. Reddy. 2001. Phosphorus loading effects on Extracellular enzyme activity in Everglades wetland soils. The Soil Science Society of America Journal, , 65(2) : 588~599.
    Zantua, M. I. & J. M. Bremner. 1975. Preservation of soil samples for assay of urease activity. Soil Biol. Biochem., 7: 297~299.
    Zhou Y. Y., J. Q. Li, M. Zhang. 2001. Vertical variations in kinetics of alkaline phosphatase and P species in sediments of a shallow Chinese eutrophic lake (Lake Donghu). Hydrobiologia, 450: 91~98.
    Zhou Y. Y., J. Q. Li, M. Zhang. 2002. Temporal and spatial vatiations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu). Water Research, 36: 2084~2090.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700