用户名: 密码: 验证码:
海南岛热带天然林生物多样性与生态系统功能关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球生态系统正在遭遇剧烈的变化,从而加快了物种灭绝的速率。全球生物多样性减少和丧失对生态系统功能的影响是当前生态学最为关注的领域之一。大量关于生物多样性与生态系统功能关系(BEF)的研究结果表明生物多样性对生态系统功能具有显著的影响。目前,大多数有关生物多样性与生态系统功能关系(BEF)的研究主要是通过对草本植物的控制实验来进行的,由于其选择的物种数量有限再加之控制的条件与野外群落的实际生态条件有较大差异,因此其结果与野外实际情况的吻合性还有待证实。基于野外实地的调查观察也还很少,尤其在森林生态系统中更是这样。但基于野外调查的研究更加符合生物多样性与生态系统功能关系的实际情况。此外,以往的研究主要侧重于物种丰富度如何影响生态系统功能,而较少关注生物多样性的其他方面(例如功能多样性和谱系多样性)的作用。本文以海南岛霸王岭自然保护区刀耕火种后处于不同演替阶段的热带低地雨林、尖峰岭自然保护区不同海拔梯度的老龄林以及尖峰岭自然保护区30公顷热带山地雨林大样地为研究对象,通过群落学调查、功能性状测定及环境因子分析,探讨了功能性状和生物多样性(包括物种多样性、功能多样性及谱系多样性)及生态系统主要功能(本文仅分析林分地上部分生物量)随时间(演替阶段)和空间(海拔梯度和生境类型)的变化,并评估了群落演替过程中,评估环境因子如何影响功能性状及生物多样性;研究了生物多样性不同指标之间、功能性状及生物多样性与生态系统功能(林分地上部分生物量)之间的关系随时间(演替阶段)和空间(海拔梯度和生境类型)的变化规律;并运用结构方程模型(SEM)阐述环境因素如何影响功能性状或者生物多样性,并影响生态系统功能。本文是少有的基于野外实际调查测定所进行的关于森林生物多样性与生态系统功能关系(BEF)的研究,对于进一步深入开展生物多样性的理论分析和生态系统服务功能评估都具有较大的参考价值。主要研究结果如下:
     (一)、热带天然林功能性状、生物多样性及地上部分生物量的时空变化
     1.在霸王岭的不同演替阶段(15年、30年、60年次生林和老龄林)的热带低地雨林中,随着次生演替的进行:(1)比叶面积、叶片氮含量、叶片磷含量和叶片总有机碳含量逐渐降低,叶片干物质含量、木材密度和潜在最大高度逐渐升高,而叶片钾含量则变化不大;(2)物种丰富度和Shannon-Weaver指数均增加,Pielou's均匀度指数在次生林中差异不大但都小于老龄林;(3)功能丰富度、功能均匀度、功能离散度和Rao's二次熵均呈先下降后增加的趋势,而功能分散度随演替的进行逐渐增加,但60年以后有所下降;(4)物种对的平均谱系距离和谱系多样性逐渐增大,净谱系亲缘关系指数和平均最近相邻谱系距离逐渐减小,最近分类单元指数在在次生演替各阶段中差异不大但都大于老龄林,群落谱系结构由聚集逐渐转向发散;(5)林分地上部分生物量逐渐增大;(6)在不同的演替阶段,影响功能性状和生物多样性指标(物种多样性、功能多样性、谱系多样性)的关键因素不同,其中影响15年、30年、60年次生林和老龄林的关键环境因子依次为pH值与有机质、林冠开阔度、全钾与有效磷、以及土壤磷含量。
     2.在尖峰岭的不同海拔范围内的老龄林中,随着海拔的升高:(1)比叶面积和潜在最大高度逐渐降低,叶片干物质含量和木材密度逐渐增大;(2)物种丰富度和Shannon-Weaver指数逐渐增大;(3)功能丰富度逐渐增大,功能均匀度、功能分散度、功能离散度和Rao's二次熵均则逐渐降低;(4)谱系多样性逐渐增大,群落谱系结构由发散转向聚集;(5)林分地上部分生物量增大。3.在尖峰岭30公顷热带山地雨林老龄林大样地中,随着生境从沟谷、下坡、中坡、上坡逐渐到山顶的变化:(1)比叶面积逐渐减小,叶片干物质含量、木材密度和潜在最大高度逐渐增大;(2)物种丰富度和Shannon-Weaver指数呈逐渐降低趋势;(3)功能丰富度、功能均匀度、功能离散度和Rao's二次熵逐渐减小,而功能分散度呈先降低后增加的格局;(4)谱系多样性呈逐渐降低趋势,从沟谷经下坡至中坡,群落谱系结构由聚集逐渐走向发散,而从中坡经上坡至山顶则由发散逐渐趋于随机,但群落总体格局趋于随机状态;(5)林分地上部分生物量逐渐增大。
     (二)、热带天然林不同生物多样性指标之间的关系
     4.在各种不同类型的林分中,物种丰富度、功能丰富度与谱系多样性之间均存在显著的正相关,物种丰富度与谱系多样性的相关性最大。在霸王岭不同演替阶段的热带低地雨林中,随着演替的进行,物种丰富度与谱系多样性的相关性逐渐增大,而物种丰富度与功能丰富度的相关性及谱系多样性与功能丰富度的相关性在15年次生林和60年次生林中较高。在尖峰岭不同海拔范围内的老龄林中,与高海拔(>800m)相比,低海拔(<800m)群落中物种丰富度解释了更多的谱系多样性的变异。在尖峰岭30公顷热带山地雨林老龄林大样地中,随着生境从沟谷、下坡、中坡、上坡逐渐到山顶的变化,物种丰富度与功能丰富度的相关性逐渐增大。物种丰富度与谱系多样性的关系在沟谷和山顶均较强,而在下坡时较弱。谱系多样性和功能丰富度的关系在沟谷时最弱,而在下坡最强。
     (三)、热带天然林植物功能性状及生物多样性与地上部分生物量关系随时空的变化规律
     5.在霸王岭不同演替阶段的热带低地雨林中,前三个演替阶段的天然次生林地上部分生物量与比叶面积和叶片干物质含量相关性不显著,而老龄林地上部分生物量与比叶面积负相关,而与叶片干物质含量正相关。不同演替阶段林分的地上部分生物量均与木材密度呈正相关。与30年次生林相反,15年次生林和老龄林地上部分生物量与潜在最大高度正相关,而在60年的次生林中二者相关性不显著。在尖峰岭不同海拔范围的老龄林中,低海拔地区地上部分生物量与功能性状相关性不显著,而在高海拔地区林分地上部分生物量与比叶面积负相关,而与叶片干物质含量和木材密度正相关,但与潜在最大高度的相关性不显著。在尖峰岭30公顷热带山地雨林大样地中,在沟谷和下坡生境,林分地上部分生物量与比叶面积负相关,与叶片干物质含量及木材密度正相关。在中坡、上坡及山顶生境下,林分地上部分生物量只与木材密度的正相关,而与其它功能性状的相关性不显著。随着生境从沟谷、下坡、中坡、上坡逐渐到山顶的变化,林分地上部分生物量与潜在最大高度相关性均不显著,而与其他功能性状的相关性逐渐减弱。
     6.在霸王岭不同演替阶段的热带低地雨林中,林分地上部分生物量与生物多样性各指标均呈显著正相关。在15年次生林和老龄林中,生物多样性解释了较多的林分地上部分生物量变异,而在30年和60年次生林中,生物多样性所解释的林分地上部分生物量变异较少。在尖峰岭不同海拔范围的老龄林中,林分地上部分生物量与生物多样性的相关性均不显著。在尖峰岭30公顷老龄林热带山地雨林大样地中,在沟谷生境下林分地上部分生物量与物种丰富度和谱系多样性均显著正相关,但物种丰富度解释了更多的林分地上部分生物量变异,而林分地上部分生物量与功能丰富度相关性不显著。在其它四种生境下,林分地上部分生物量与生物多样性的相关性都不显著。
     (四)、环境因素对功能性状及生物多样性与林分地上部分生物量关系的调控机制
     7.假设结构方程模型是环境因素影响群落特征(包括功能性状或者生物多样性),群落特征进而对生态系统功能(地上部分生物量)产生影响,而演替阶段对环境因素、群落特征及生态系统功能均产生影响。最终的结构方程模型运算结果表明比叶面积与木材密度、地上部分生物量存在负相关,而木材密度与地上部分生物量存在正相关,生物多样性与地上部分生物量存在正相关,与地上部分生物量相关性由小到大的多样性指标依次为物种丰富度、谱系多样性和功能多样性。群落演替阶段对地上部分生物量的影响最大。功能性状及生物多样性比环境因素解释了更多的地上部分生物量变异。本研究表明在海南岛热带天然林中,植物功能性状及生物多样性对生态系统功能具有决定性的作用,而不同的环境因素通过影响功能性状及生物多样性对生态系统功能进行不同程度的调控。
The ecosystems in the globe are experiencing unexpected change. Biodiversity is thebackbone of ecosystems.The relationships between biodiversity and ecosystem functioning(BEF) is a central issue in ecology. Many experiments on BEF showed that the loss ofbiodiversity will significantly affect ecosystem functioning. Until recently, most of the controlexperiments on BEF have beenconducted in grassland by manipulating combinations ofherbaceous species richness. Due to the limited numbers of species and the controlledenvironment,the consistency of these experiental results with the actual field situations stillneed to be proven.Actual field ecosystems are far more complex than the ones designed bycontrolled experiments.Up to now, few studies on BEF have been done in the actual naturalecosystems, especially in complex ecosystems such as the tropical rainforests. Observationsbased on natural ecosystems may reveal the actual relationships between biodiversity andecosystem functioning. Furthermore, those controlled experiments have been mainly designedto assess how species richness affected ecosystem functioning and ignored other facets ofbiodiversity such as functional diversity and phylogenetic diversity. In this thesis,based on fieldinvestigations of communities and measurements of functional traits and environmental factorsin the tropical lowland rainforests of different successional stages after shifting cultivation inthe Bawangling Nature Reserve,in the old growth forests distributed in different elevationalranges in the Jianfengling Nature Reserve,as well asin the tropical montane rianforests locatedin different habitat types within a30haforest dynamics plot(FDP)in the Jianfengling NatureReserve,we explored the relationships between biodiversity and ecosystem functioning in thenatural tropical forests on Hainan Island,China.We did this research by the four followingsteps:Firstly,the variations of functional trait, biodiversity (including species diversity,functional diversity, phylogenetic diversity) and ecosystem function (stand abovegroundbiomass,AGB) with successional stages,elevations,habitat types and their influences by environmental factors were assessed;Secondly,the correlations among different facets ofbiodiversity(species/functional/phylogenetic diversity) were probed;Thirdly, the relationshipsbetween functional traits versusAGBand different facets of bidiversity versus AGB undervaried conditions (i.e.different successional stages, elevations and habitat types) wereexamined. Finally, the influence of environmental factors on the relationships betweenbiodiversity and ecosystem functioning through functional traits were comprehensivelyanalyzed by the structural equation modeling (SEM) approach. This thesis was one of the fewstudies on BEF based on actual field observationsin forest ecosystems,which is helpful infurther exploring the theory of biodiversity and for evaluating ecosystem functioning andservices. The main results are as follows:
     1. For tropical lowland rainforests with different successional stages (15-,30-and60-year-old secondary forests and old growth forest) in Bawangling Nature Reserve,(1)specific leaf area, leaf nitrogen content, leaf phosphorus content, leaf total organic carboncontent decreased and leaf dry matter content, wood density, potential maximum heightincreased with the process of succession. Leaf potassium content changed non-significantlywith the processof succession;(2) Species richness and Shannon-Weaver index increased withthe process of succession. There was a no significant change for Pielou's index in the secondaryforests, but the value of Pielou's index in secondary forests was lower than that in old growthforest;(3) Functional richness, functional evenness, functional dispersion and Rao's entropydecreased first and then increased with the process of succession. Functional divergencereached peak in the60-year-old secondary forest;(4) Mean phylogenetic distance andphylogenetic diversity increased while net relatedness index and mean nearest phylogenetictaxon distance decreased with the process of succession. Nearest Taxon Index in the secondaryforests changed no significantly but were higher than that in old growth forest. Phylogeneticstructure transferred from clustering to overdispersion with the process of succession;(5) AGBincreased with the process of succession;(6) Functional traits and biodiversity (speciesdiversity, functional diversity and phylogenetic diversity) in different successional stages affected by different environmental factors. The key environmental factors to drive functionaltraits and biodiversity in15-,30-,60-year-old secondary forest and old-growth forest were pHand soil organic matter, canopy openness, soil total potassium content and availablephosphorus content, soil phosphorus content successively.
     2. For old growth forests distributed in different elevations in Jianfengling Nature Reserve,
     (1) specific leaf area and potential maximum height decreased while leaf dry matter contentand wood density increased with the increase of elevation;(2) Species richness andShannon-Weaver index increased with the increase of elevation;(3) Functional evenness,functional divergence, functional dispersion and Rao's entropy decreased whereas functionalrichness increased with the increase of elevation;(4) Phylogenetic diversity enhanced andphylogenetic structure transferred from overdispersion to clustering with the increase ofelevation;(5) AGBincreased significantlywith the increase of elevation.
     3. For the tropical montane rainforests distributedin different habitat types (valley, downhill,middle slope, uphill and mountaintop successively) in the30ha.FDP on Jianfengling NatureReserve,(1) specific leaf area decreased while leaf dry matter content, wood density andpotential maximum height increased from valley to mountaintop;(2) There was a reducingtrend for species richness and Shannon-Weaver index from valley to mountaintop;(3)Functional richness, functional evenness, functional dispersion and Rao's entropy decreasedwhile functional divergence decreased at first and then increased from valley to mountaintop;
     (4) Phylogenetic diversity decreased from valley to mountaintop. Phylogenetic structuretransferred from clustering to overdispersion from valley to middle slope whereas phylogeneticstructure transferred from overdispersion to random from middle slope to mountaintop. Thewhole phylogenetic structure of the30ha FDP was close to random;(5) AGB increased fromvalley to mountaintop.
     4. The correlations among species richness, functional richness and phylogenetic diversitywere positive in tropical forests under different conditions. The correlation between speciesrichness and phylogenetic diversity was higher than the other correlationsin all study area. For tropical lowland rainforests with different successional stages in Bawangling Nature Reserve,the correlation between species richness and phylogenetic diversity increased with the processof succession; The correlations between species richness and functional diversity as well as thecorrelation between phylogenetic diversity and functional diversity were higher in15-and60-year-old secondary forests. For old growth forests in different elevational ranges inJianfengling Nature Reserve, species richness explained more variation of phylogeneticdiversity in the low elevations(<800m) than that in the high elevations(>800m). For the oldgrowth tropical montane rainforest in the30ha.FDP in Jianfengling Nature Reserve, thecorrelations between species richness and functional diversity increased from valley tomountaintop. The correlation between species richness and phylogenetic diversity was lower indownhill than that in valley or mountaintop, while the correlation between phylogeneticdiversity and functional diversity was higher in downhill than that in valley ormountaintop.
     5. For tropical lowland rainforests with different successional stages in Bawangling NatureReserve, AGB in secondary forest (15-,30-and60-year-old forest) was not significantlyinfluenced by specific leaf area or leaf dry matter content; AGB in old growth forest decreasedmonotonously with the increase of species leaf area or the decrease of leaf dry matter content;AGB was positively related to wood density in all successional stages; Contrasting with30-year-old secondary forest, AGB in15-year-old secondary forest or old growth forest waspositively related to potential maximum height, but this relationship was not significant in60-year-old secondary forest. For old growth forests with different elevations in JianfenglingNature Reserve, AGB was not significantly related to functional traits in low elevation; specificleaf area was negatively related to AGB,leaf dry matter content and wood density werepositively related to AGB and potential maximum height was not significantly related toAGBin high elevation. For the old growth tropical montane rainforest in the30ha.FDP inJianfengling Nature Reserve, AGB decreased with the increase specific leaf area and increasedwith the increase of leaf dry matter content and wood density in valley and downhill; AGBonly increased with the increase of wood density from middle slope to mountaintop; Potential maximum height were not significantly related to AGB in all habitat types and the correlationsbetween other functional traits and AGB declined from valley to mountaintop.
     6. For tropical lowland rainforests with different successional stages in Bawangling NatureReserve, there was a significant and positive effect of biodiversity on AGB; Biodiversityexplained more variation of AGB in the15-year-old secondary forest and old growth forestthan those in the30-and60-year-old secondary forests. For old growth forests with differentelevations in Jianfengling Nature Reserve, biodiversity was not related to AGB both in low orhigh elevations. For the old growth tropical montane rainforest in the30ha.FDP in JianfenglingNature Reserve, species richness and phylogenetic diversity were positively to related to AGBin valley while the effect of species richness on AGB was greater than that of phylogeneticdiversity; Biodiversity was not significantly related to AGB from downhill to mountaintop.
     7.Initial SEM hypothesized that: the community characteristic (functional traits orbiodiversity) responded to environmental factors and affected ecosystem functioning (AGB)and environmental factors/community characteristic/ecosystem functioning were influencedby successional stage. Final SEM showed that specific leaf area was negatively related to wooddensity or AGB whereas wood density was positively related to AGB; Biodiversity waspositively related to AGB and the order for the effect of biodiversity on AGB was speciesrichness, phylogenetic diversity, functional diversity successively; The successional stage hadthe maximum effect on AGB and functional traits/biodiversity had a larger effect on AGB thanenvironmental factors. Overall, our results suggest functional traits or biodiversity are themajor drivers of ecosystem functioning and environmental factors regulate ecosystemfunctioning indirectly through functional traits or biodiversity in the tropical natural forests ofHainan Island.
引文
Ackerly D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance.Ecological Monographs,2004,74:25-44.
    Ackerly DD, Cornwell W. A trait-based approach to community assembly: partitioning of species trait valuesinto within-and among-community components. Ecology Letters,2007,10:135-145.
    Aerts R, Chapin FS. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns.Advances in Ecological Research,1999,30:1-67.
    Alves LF, Vieira SA, Scaranello MA, et al.. Forest structure and live aboveground biomass variation alongan elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management,2010,260:679-691.
    Andersen KM, Endara MJ, Turner BL, et al.. Trait-based community assembly of understory palms along asoil nutrient gradient in a lower montane tropical forest. Oecologia,2012,168:519-531.
    Baker TR, Phillips OL, Malhi Y, et al.. Variation in wood density determines spatial patterns inAmazonianforest biomass. Global Change Biology,2004,10:545-562.
    Baniya CB, Solh y T, Vetaas OR. Temporal changes in species diversity and composition in abandonedfields in a trans-Himalayan landscape, Nepal. Plant Ecology,2009,201:383-399.
    Baniya CB, Solh y T, Gauslaa Y, et al.. The elevation gradient of lichen species richness in Nepal. TheLichenologist,2010,42:83-96.
    Baribault TW, Kobe RK, Finley AO. Tropical tree growth is correlated with soil phosphorus, potassium, andcalcium, though not for legumes. Ecological Monographs,2012,82:189-203.
    Bazzaz FA. Plants in changing environments: linking physiological, population, and community ecology.London: Cambridge University Press,1996.
    Bonnell TR, Reyna-Hurtado R, Chapman CA. Post-logging recovery time is longer than expected in an EastAfrican tropical forest. Forest Ecology and Management,2011,261:855-864.
    Botta‐Dukát Z. Rao's quadratic entropy as a measure of functional diversity based on multiple traits.Journal of Vegetation Science,2005,16:533-540.
    Brooks TM, Mittermeier RA, da Fonseca GA, et al.. Global biodiversity conservation priorities.science,2006,313:58-61.
    Brown JH, Gillooly JF, Allen AP, et al.. Toward a metabolic theory of ecology. Ecology,2004,85:1771-1789.
    Bruijnzeel L, Veneklaas E. Climatic conditions and tropical montane forest productivity: the fog has notlifted yet. Ecology,1998,79:3-9.
    Bucci S, Goldstein G, Meinzer F, et al.. Functional convergence in hydraulic architecture and water relationsof tropical savanna trees: from leaf to whole plant. Tree Physiology,2004,24:891-899.
    Cadotte M, Dinnage R, Tilman GD. Phylogenetic diversity promotes ecosystem stability. Ecology,2012,93:s223-s233.
    Cadotte MW. The new diversity: management gains through insights into the functional diversity ofcommunities. Journal of Applied Ecology,2011,48:1067-1069.
    Cadotte MW, Cardinale BJ, Oakley TH. Evolutionary history and the effect of biodiversity on plantproductivity. Proceedings of the National Academy of Sciences,2008,105:17012-17017.
    Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional diversity and the maintenance ofecological processes and services. Journal of Applied Ecology,2011,48:1079-1087.
    Cadotte MW, Cavender-Bares J, Tilman D, et al.. Using phylogenetic, functional and trait diversity tounderstand patterns of plant community productivity. PLoS One,2009,4: e5695.
    Cardinale B. Impacts of Biodiversity Loss. Science,2012,336:552-553.
    Cardinale BJ, Ives AR, Inchausti P. Effects of species diversity on the primary productivity of ecosystems:extending our spatial and temporal scales of inference. Oikos,2004,104:437-450.
    Cardinale BJ, Matulich KL, Hooper DU, et al.. The functional role of producer diversity in ecosystems.American Journal Botany,2011,98:572-592.
    Cardinale BJ, Wright JP, Cadotte MW, et al.. Impacts of plant diversity on biomass production increasethrough time because of species complementarity. Proceedings of the National Academy ofSciences,2007,104:18123.
    Cavender-Bares J, Keen A, Miles B. Phylogenetic structure of Floridian plant communities depends ontaxonomic and spatial scale. Ecology,2006,87:109-122.
    Cavender-Bares J, Kozak KH, Fine PVA, et al.. The merging of community ecology and phylogeneticbiology. Ecology letters,2009,12:693-715.
    Chao KJ, Phillips OL, Gloor E, et al.. Growth and wood density predict tree mortality in Amazon forests.Journal of Ecology,2008,96:281-292.
    Chapin III FS, Matson PA. Principles of terrestrial ecosystem ecology Berlin: Springer,2011.
    Chave J, Andalo C, Brown S, et al.. Tree allometry and improved estimation of carbon stocks and balance intropical forests. Oecologia,2005,145:87-99.
    Chave J, Coomes D, Jansen S, et al.. Towards a worldwide wood economics spectrum. Ecology Letters,2009,12:351-366.
    Chazdon RL. Chance and determinism in tropical forest succession Oxford: Wiley-BlackwellPublishing,2008.
    Chazdon RL. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives inPlant Ecology, Evolution and Systematics,2003,6:51-71.
    Chinea J. Tropical forest succession on abandoned farms in the Humacao Municipality of eastern PuertoRico. Forest Ecology and Management,2002,167:195-207.
    Cleveland CC, Townsend AR, Taylor P, et al.. Relationships among net primary productivity, nutrients andclimate in tropical rain forest: a pan‐tropical analysis. Ecology Letters,2011,14:939-947.
    Coomes DA, Kunstler G, Canham CD, et al.. A greater range of shade‐tolerance niches in nutrient‐richforests: an explanation for positive richness–productivity relationships? Journal of Ecology,2009,97:705-717.
    Coomes OT, Takasaki Y, Rhemtulla JM. Land-use poverty traps identified in shifting cultivation systemsshape long-term tropical forest cover. Proceedings of The National Academy of Sciences,2011,108:13925-13930.
    Cornelissen J, Lavorel S, Garnier E, et al.. A handbook of protocols for standardised and easy measurementof plant functional traits worldwide. Australian Journal of Botany,2003,51:335-380.
    Cornwell WK, Schwilk DW, Ackerly DD. A trait-based test for habitat filtering: convex hull volume.Ecology,2006,87:1465-1471.
    Cramer MJ, Willig MR. Habitat heterogeneity, habitat associations, and rodent species diversity in asand-shinnery-oak landscape. Journal of Mammalogy,2002,83:743-753.
    Cumming GS, Child MF. Contrasting spatial patterns of taxonomic and functional richness offer insights intopotential loss of ecosystem services. Philosophical Transactions of the Royal Society B: BiologicalSciences,2009,364:1683-1692.
    Díaz S, Fargione J, Chapin FS, et al.. Biodiversity loss threatens human well-being. PLoS biology,2006,4:e277.
    Díaz S, Lavorel S, De Bello F, et al.. Incorporating plant functional diversity effects in ecosystem serviceassessments. Proceedings of the National Academy of Sciences,2007,104:20684-20689.
    Dalle SP, Pulido MT, Blois S. Balancing shifting cultivation and forest conservation: lessons from a―sustainable landscape‖in southeastern Mexico. EcologicalApplications,2011,21:1557-1572.
    Dalling JW, Hubbell SP. Seed size, growth rate and gap microsite conditions as determinants of recruitmentsuccess for pioneer species. Journal of Ecology,2002,90:557-568.
    Daws MI, Mullins CE, Burslem DF, et al.. Topographic position affects the water regime in a semideciduoustropical forest in Panama. Plant and Soil,2002,238:79-89.
    de Bello F, Lavorel S, Díaz S, et al.. Towards an assessment of multiple ecosystem processes and servicesvia functional traits. Biodiversity and Conservation,2010,19:2873-2893.
    de Castilho CV, Magnusson WE, de Araújo RNO, et al.. Variation in aboveground tree live biomass in acentral Amazonian Forest: Effects of soil and topography. Forest Ecology and Management,2006,234:85-96.
    De Deyn G, Raaijmakers C, Van der Putten W. Plant community development is affected by nutrients andsoil biota. Journal of Ecology,2004,92:824-834.
    De Deyn GB, Cornelissen JHC, Bardgett RD. Plant functional traits and soil carbon sequestration incontrasting biomes. Ecology Letters,2008,11:516-531.
    Devictor V, Mouillot D, Meynard C, et al.. Spatial mismatch and congruence between taxonomic,phylogenetic and functional diversity: the need for integrative conservation strategies in a changingworld. Ecology Letters,2010,13:1030-1040.
    Ding Y, Zang R, Liu S, et al.. Recovery of woody plant diversity in tropical rain forests in southern Chinaafter logging and shifting cultivation. Biological Conservation,2012,145:225-233.
    Diniz-Filho JAF, Rangel TF, Hawkins BA. A test of multiple hypotheses for the species richness gradient ofSouth American owls. Oecologia,2004,140:633-638.
    Douma JC, de Haan MWA, Aerts R, et al.. Succession-induced trait shifts across a wide range of NWEuropean ecosystems are driven by light and modulated by initial abiotic conditions. Journal ofEcology,2011,100:366-380.
    Ehrenfeld JG. Microtopography and vegetation in Atlantic white cedar swamps: the effects of naturaldisturbances. Canadian Journal of Botany,1995,73:474-484.
    Emerson BC, Gillespie RG. Phylogenetic analysis of community assembly and structure over space and time.Trends in Ecology and Evolution,2008,23:619-630.
    Emerson BC, Gillespie RG. Phylogenetic analysis of community assembly and structure over space and time.Trends in Ecology&Evolution,2008,23:619-630.
    Enquist BJ, Kerkhoff AJ, Stark SC, et al.. A general integrative model for scaling plant growth, carbon flux,and functional trait spectra. Nature,2007,449:218-222.
    Eriksson O. The species-pool hypothesis and plant community diversity. Oikos,1993,68:371-374.
    Ernest S, Enquist BJ, Brown JH, et al.. Thermodynamic and metabolic effects on the scaling of productionand population energy use. Ecology Letters,2003,6:990-995.
    Fabbro T, K rner C. Altitudinal differences in flower traits and reproductive allocation. Flora-Morphology,Distribution, Functional Ecology of Plants,2004,199:70-81.
    Fahey TJ, Knapp AK. Principles and standards for measuring primary production. Oxford: OxfordUniversity Press,2007.
    Fargione J, Tilman D, Dybzinski R, et al.. From selection to complementarity: shifts in the causes ofbiodiversity-productivity relationships in a long-term biodiversity experiment. Proc Biol Sci,2007,274:871-876.
    Firn J, Erskine PD, Lamb D. Woody species diversity influences productivity and soil nutrient availability intropical plantations. Oecologia,2007,154:521-533.
    Fisher JB. A survey of buttresses and aerial roots of tropical trees for presence of reaction wood.Biotropica,1982:56-61.
    Flynn DFB, Gogol-Prokurat M, Nogeire T, et al.. Loss of functional diversity under land use intensificationacross multiple taxa. Ecology Letters,2009,12:22-33.
    Forest F, Grenyer R, Rouget M, et al.. Preserving the evolutionary potential of floras in biodiversity hotspots.Nature,2007,445:757-760.
    Fornara D, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation.Journal of Ecology,2008,96:314-322.
    Fortunel C, Garnier E, Joffre R, et al.. Leaf traits capture the effects of land use changes and climate on litterdecomposability of grasslands across Europe. Ecology,2009,90:598-611.
    Freschet GT, Cornelissen JHC, van Logtestijn RSP, et al.. Substantial nutrient resorption from leaves, stemsand roots in a subarctic flora: what is the link with other resource economics traits? NewPhytologist,2010,186:879-889.
    Fry EL, Power SA, Manning P. Trait-based classification and manipulation of plant functional groups forbiodiversity–ecosystem function experiments. Journal of Vegetation Science,2013: in press.
    Funk JL, Cleland EE, Suding KN, et al.. Restoration through reassembly: plant traits and invasion resistance.Trends in Ecology and Evolution,2008,23:695-703.
    Garnier E, Cortez J, Billès G, et al.. plant functional markers capture ecosystem properties during secondarysuccession. Ecology,2004,85:2630-2637.
    Gaston KJ, Davies RG, Orme CDL, et al.. Spatial turnover in the global avifauna. Proceedings of the RoyalSociety B: Biological Sciences,2007,274:1567-1574.
    Grace JB. Structural equation modeling and natural systems. London: Cambridge University Press,2006.
    Graham CH, Parra JL, Rahbek C, et al.. Phylogenetic structure in tropical hummingbird communities.Proceedings of the National Academy of Sciences,2009,106:19673-19678.
    Griffin JN, Méndez V, Johnson AF, et al.. Functional diversity predicts overyielding effect of speciescombination on primary productivity. Oikos,2009,118:37-44.
    Grime JP. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal ofEcology,1998,86:902-910.
    Grytnes JA, Beaman JH. Elevational species richness patterns for vascular plants on Mount Kinabalu,Borneo. Journal of Biogeography,2006,33:1838-1849.
    Hallé F, Oldeman RA, Tomlinson PB. Tropical trees and forests: an architectural analysis. New York:Springer-Verlag.,1978.
    Hardy OJ, Senterre B. Characterizing the phylogenetic structure of communities by an additive partitioningof phylogenetic diversity. Journal of Ecology,2007,95:493-506.
    Harrison S, Grace JB. Biogeographic Affinity Helps Explain Productivity‐Richness Relationships atRegional and Local Scales. the american naturalist,2007,170: S5-S15.
    Hawkins BA, Field R, Cornell HV, et al.. Energy, water, and broad-scale geographic patterns of speciesrichness. Ecology,2003,84:3105-3117.
    He J-S, Wang X, Flynn DF, et al.. Taxonomic, phylogenetic, and environmental trade-offs between leafproductivity and persistence. Ecology,2009,90:2779-2791.
    Helmus MR, Keller WB, Paterson MJ, et al.. Communities contain closely related species during ecosystemdisturbance. Ecology Letters,2010,13:162-174.
    Hillebrand H, Matthiessen B. Biodiversity in a complex world: consolidation and progress in functionalbiodiversity research. Ecology Letters,2009,12:1405-1419.
    Hoehn P, Tscharntke T, Tylianakis JM, et al.. Functional group diversity of bee pollinators increases cropyield. Proceedings of the Royal Society B: Biological Sciences,2008,275:2283-2291.
    Holl KD. Factors Limiting Tropical Rain Forest Regeneration in Abandoned Pasture: Seed Rain, SeedGermination, Microclimate, and Soil1. Biotropica,1999,31:229-242.
    Hooper D, Chapin Ⅲ F, Ewel J, et al.. Effects of biodiversity on ecosystem functioning: a consensus ofcurrent knowledge. Ecological Monographs,2005,75:3-35.
    Hooper DU, Adair EC, Cardinale BJ, et al.. A global synthesis reveals biodiversity loss as a major driver ofecosystem change. Nature,2012,486:105-108.
    Houghton R, Hall F, Goetz SJ. Importance of biomass in the global carbon cycle. Journal of GeophysicalResearch: Biogeosciences (2005–2012),2009,114.
    Hubbell SP. The unified neutral theory of biodiversity and biogeography Princeton: Princeton UniversityPress,2008.
    Hubbell SP, Foster RB, O'Brien ST, et al.. Light-gap disturbances, recruitment limitation, and tree diversityin a neotropical forest. Science,1999,283:554-557.
    Hughes RF, Kauffman JB, Jaramillo VJ. Biomass, carbon, and nutrient dynamics of secondary forests in ahumid tropical region of Mexico. Ecology,1999,80:1892-1907.
    Huston M, Smith T. Plant succession: life history and competition. American Naturalist,1987,130:168-198.
    Isbell F, Calcagno V, Hector A, et al.. High plant diversity is needed to maintain ecosystem services.Nature,2011,477:199-202.
    Jafari M, Chahouki M, Tavili A, et al.. Effective environmental factors in the distribution of vegetation typesin Poshtkouh rangelands of Yazd Province (Iran). Journal of Arid Environments,2004,56:627-641.
    Jiao J, Zhang Z, Bai W, et al.. Assessing the Ecological Success of Restoration by Afforestation on theChinese Loess Plateau. Restoration Ecology,2012,20:240-249.
    Johnson MT, Stinchcombe JR. An emerging synthesis between community ecology and evolutionary biology.Trends in Ecology and Evolution,2007,22:250-257.
    K rner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems Heideberg: SpringerVerlag,2003.
    K rner C. The use of altitude‘in ecological research. Trends in Ecology and Evolution,2007,22:569-574.
    Katabuchi M, Kurokawa H, Davies SJ, et al.. Soil resource availability shapes community trait structure in aspecies-rich dipterocarp forest. Journal of Ecology,2011,100:643-651.
    Keddy PA. Assembly and response rules: two goals for predictive community ecology. Journal of VegetationScience,1992,3:157-164.
    Keeling HC, Phillips OL. The global relationship between forest productivity and biomass. Global Ecologyand Biogeography,2007,16:618-631.
    Kembel SW, Hubbell SP. The phylogenetic structure of a neotropical forest tree community. Ecology,2006,87:86-99.
    Kier G, Kreft H, Lee TM, et al.. A global assessment of endemism and species richness across island andmainland regions. Proceedings of the National Academy of Sciences,2009,106:9322-9327.
    Kitayama K, Aiba SI. Ecosystem structure and productivity of tropical rain forests along altitudinal gradientswith contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology,2002,90:37-51.
    Kluge J, Kessler M, Dunn RR. What drives elevational patterns of diversity? A test of geometric constraints,climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. GlobalEcology&Biogeography,2006,15:358-371.
    Knapp S, Kühn I, Schweiger O, et al.. Challenging urban species diversity: contrasting phylogenetic patternsacross plant functional groups in Germany. Ecology Letters,2008,11:1054-1064.
    Kohyama T, Takada T. The stratification theory for plant coexistence promoted by one‐sided competition.Journal of Ecology,2009,97:463-471.
    Kraft NJB, Ackerly DD. Functional trait and phylogenetic tests of community assembly across spatial scalesin an Amazonian forest. Ecological Monographs,2010,80:401-422.
    Krajewski C. Phylogeny and diversity. Science,1991,254:918-919.
    LalibertéE, Legendre P. A distance-based framework for measuring functional diversity from multiple traits.Ecology,2010,91:299-305.
    LalibertéE, Shipley B, Norton DA, et al.. Which plant traits determine abundance under long-term shifts insoil resource availability and grazing intensity? Journal of Ecology,2012,100:662-677.
    Laliberte E, Wells JA, Declerck F, et al.. Land-use intensification reduces functional redundancy andresponse diversity in plant communities. Ecology Letters,2010,13:76-86.
    Lanta V, Lep J. Effect of functional group richness and species richness in manipulatedproductivity–diversity studies: a glasshouse pot experiment. Acta Oecologica,2006,29:85-96.
    Laughlin DC. Nitrification is linked to dominant leaf traits rather than functional diversity. Journal ofEcology,2011,99:1091-1099.
    Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs andsynergies in ecosystem services. Journal of Ecology,2012,100:128-140.
    Lee TM, Jetz W. Future battlegrounds for conservation under global change. Proceedings of the RoyalSociety B: Biological Sciences,2008,275:1261-1270.
    Letcher SG. Phylogenetic structure of angiosperm communities during tropical forest succession.Proceedings of The Royal Society B: Biological Sciences,2010,277:97-104.
    Letcher SG, Chazdon RL, Andrade ACS, et al.. Phylogenetic community structure during succession:Evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution andSystematics,2011,14:79-87.
    Loarie SR, Asner GP, Field CB. Boosted carbon emissions from Amazon deforestation. GeophysicalResearch Letters,2009,36.
    Lohbeck M, Poorter L, Paz H, et al.. Functional diversity changes during tropical forest succession.Perspectives in Plant Ecology, Evolution and Systematics,2012,14:89-96.
    Lomolino MV. Elevation gradients of species-density: historical and prospective views. Global Ecology andBiogeography Letters,2001,10:3-13.
    Long W, Zang R, Ding Y. Air temperature and soil phosphorus availability correlate with trait differencesbetween two types of tropical cloud forests. Flora-Morphology, Distribution, Functional Ecology ofPlants,2011,206:896-903.
    Long W, Zang R, Schamp BS, et al.. Within-and among-species variation in specific leaf area drivecommunity assembly in a tropical cloud forest. Oecologia,2011,167:1103-1113.
    Loreau M. Linking biodiversity and ecosystems: towards a unifying ecological theory. PhilosophicalTransactions of the Royal Society B: Biological Sciences,2010,365:49-60.
    Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature,2001,412:72-76.
    Loreau M, Naeem S, Inchausti P, et al.. Biodiversity and ecosystem functioning: current knowledge andfuture challenges. Science,2001,294:804-808.
    Luiz o RC, Luiz o FJ, Paiva RQ, et al.. Variation of carbon and nitrogen cycling processes along atopographic gradient in a central Amazonian forest. Global Change Biology,2004,10:592-600.
    Maestre FT, Bowker MA, Escolar C, et al.. Do biotic interactions modulate ecosystem functioning alongstress gradients? Insights from semi-arid plant and biological soil crust communities. PhilosophicalTransactions of the Royal Society B: Biological Sciences,2010,365:2057-2070.
    Maestre FT, Quero JL, Gotelli NJ, et al.. Plant Species Richness and Ecosystem Multifunctionality in GlobalDrylands. Science,2012,335:214-218.
    Maherali H, Klironomos JN. Influence of phylogeny on fungal community assembly and ecosystemfunctioning. Science,2007,316:1746-1748.
    Malhi Y, Wood D, Baker TR, et al.. The regional variation of aboveground live biomass in old-growthAmazonian forests. Global Change Biology,2006,12:1107-1138.
    Mani S, Parthasarathy N. Tree population and above-ground biomass changes in two disturbed tropical dryevergreen forests of peninsular India. Tropical Ecology,2009,50:249.
    Mason NW, Irz P, Lanoiselée C, et al.. Evidence that niche specialization explains species–energyrelationships in lake fish communities. Journal of Animal Ecology,2008,77:285-296.
    Mason NWH, de Bello F, Dole al J, et al.. Niche overlap reveals the effects of competition, disturbance andcontrasting assembly processes in experimental grassland communities. Journal of Ecology,2011,99:788-796.
    Mason NWH, Mouillot D, Lee WG, et al.. Functional richness, functional evenness and functionaldivergence: the primary components of functional diversity. Oikos,2005,111:112-118.
    Mason NWH, Richardson SJ, Peltzer DA, et al.. Changes in coexistence mechanisms along a long-term soilchronosequence revealed by functional trait diversity. Journal of Ecology,2012.
    McGill BJ, Enquist BJ, Weiher E, et al.. Rebuilding community ecology from functional traits. Trends inEcology and Evolution,2006,21:178-185.
    MEA. Ecosystems and human well-being Washington, DC: Island Press,2005.
    Meier CL, Bowman WD. Chemical composition and diversity influence non-additive effects of littermixtures on soil carbon and nitrogen cycling: Implications for plant species loss. Soil Biology andBiochemistry,2010,42:1447-1454.
    Meigs G, Donato D, Campbell J, et al.. Forest Fire Impacts on Carbon Uptake, Storage, and Emission: TheRole of Burn Severity in the Eastern Cascades, Oregon. Ecosystems,2009,12:1246-1267.
    Messier J, McGill BJ, Lechowicz MJ. How do traits vary across ecological scales? A case for trait‐basedecology. Ecology Letters,2010,13:838-848.
    Minden V, Kleyer M. Testing the effect–response framework: key response and effect traits determiningabove‐ground biomass of salt marshes. Journal of Vegetation Science,2011.
    Mokany K, Ash J, Roxburgh S. Functional identity is more important than diversity in influencing ecosystemprocesses in a temperate native grassland. Journal of Ecology,2008,96:884-893.
    Moles AT, Warton DI, Warman L, et al.. Global patterns in plant height. Journal of Ecology,2009,97:923-932.
    Moser G, Hertel D, Leuschner C. Altitudinal change in LAI and stand leaf biomass in tropical montaneforests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems,2007,10:924-935.
    Mouchet MA, Villéger S, Mason NWH, et al.. Functional diversity measures: an overview of theirredundancy and their ability to discriminate community assembly rules. Functional Ecology,2010,24:867-876.
    Mouillot D, Villéger S, Scherer-Lorenzen M, et al.. Functional structure of biological communities predictsecosystem multifunctionality. PLoS One,2011,6: e17476.
    Naidoo R, Balmford A, Costanza R, et al.. Global mapping of ecosystem services and conservation priorities.Proceedings of the National Academy of Sciences,2008,105:9495-9500.
    Negrelle RR. The Atlantic forest in the Volta Velha Reserve: a tropical rain forest site outside the tropics.Biodiversity&Conservation,2002,11:887-919.
    Nishimua T, Suzuki E, Kohyama T, et al.. Mortality and growth of trees in peat-swamp and heath forests inCentral Kalimantan after severe drought. Plant Ecology,2007,188:165-177.
    Nogueira EM, Nelson BW, Fearnside PM, et al.. Tree height in Brazil's arc of deforestation‘: shorter trees insouth and southwest Amazonia imply lower biomass. Forest Ecology and Management,2008,255:2963-2972.
    Norden N, Letcher S, Boukili V, et al.. Demographic drivers of successional changes in phylogeneticstructure across life-history stages in plant community. Ecology,2011,93: s70-s82.
    O'Donnell AG, Seasman M, Macrae A, et al.. Plants and fertilisers as drivers of change in microbialcommunity structure and function in soils. Plant and Soil,2001,232:135-145.
    Olander LP, Vitousek PM. Biological and geochemical sinks for phosphorus in soil from a wet tropical forest.Ecosystems,2004,7:404-419.
    Ordo ez JC, van Bodegom PM, Witte J-PM, et al.. A global study of relationships between leaf traits,climate and soil measures of nutrient fertility. Global Ecology and Biogeography,2009,18:137-149.
    Orwin KH, Buckland SM, Johnson D, et al.. Linkages of plant traits to soil properties and the functioning oftemperate grassland. Journal of Ecology,2010,98:1074-1083.
    Paoli GD, Curran LM, Zak DR. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidencefor niche partitioning by tropical rain forest trees. Journal of Ecology,2006,94:157-170.
    Paoli GD, Currant LM, Zak DR. Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidencefor niche partitioning by tropical rain forest trees. Journal of Ecology,2006,94:157-170.
    Paquette A, Messier C. The effect of biodiversity on tree productivity: from temperate to boreal forests.Global Ecology and Biogeography,2011,20:170-180.
    Pei N, Lian JY, Erickson DL, et al.. Exploring tree-habitat associations in a Chinese subtropical forest plotusing a molecular phylogeny generated from DNA barcode loci. PloS one,2011,6: e21273.
    Pennington RT, Richardson JE, Lavin M. Insights into the historical construction of species‐rich biomesfrom dated plant phylogenies, neutral ecological theory and phylogenetic community structure. NewPhytologist,2006,172:605-616.
    Pereira JAA, Oliveira-Filho AT, Lemos-Filho JP. Environmental heterogeneity and disturbance by humanscontrol much of the tree species diversity of Atlantic montane forest fragments in SE Brazil.Biodiversity&Conservation,2007,16:1761-1784.
    Petchey O. On the statistical significance of functional diversity effects. Functional Ecology,2004,18:297-303.
    Petchey OL. Integrating methods that investigate how complementarity influences ecosystem functioning.Oikos,2003,101:323-330.
    Petchey OL, Gaston KJ. Dendrograms and measuring functional diversity. Oikos,2007,116:1422-1426.
    Petchey OL, Gaston KJ. Functional diversity: back to basics and looking forward. Ecology Letters,2006,9:741-758.
    Petchey OL, Hector A, Gaston KJ. How do different measures of functional diversity perform?Ecology,2004,85:847-857.
    Phillips OL, Malhi Y, Higuchi N, et al.. Changes in the carbon balance of tropical forests: evidence fromlong-term plots. Science,1998,282:439-442.
    Pidgen K, Mallik A. Ecology of Compounding Disturbances: The Effects of Prescribed Burning AfterClearcutting. Ecosystems,2012:1-12.
    Prinzing A, Reiffers R, Braakhekke WG, et al.. Less lineages–more trait variation: phylogeneticallyclustered plant communities are functionally more diverse. Ecology Letters,2008,11:809-819.
    Qian H, Wang S, Li Y, et al.. Breeding bird diversity in relation to environmental gradients in China. ActaOecologica,2009,35:819-823.
    R Development Core Team (2011) R: A language and environment for statistical computing. R Foundationfor Statistical Computing. Austria: Vienna.
    Rüger N, Huth A, Hubbell SP, et al.. Response of recruitment to light availability across a tropical lowlandrain forest community. Journal of Ecology,2009,97:1360-1368.
    Raevel V, Violle C, Munoz F. Mechanisms of ecological succession: insights from plant functional strategies.Oikos,2012,121:1761-1770.
    Rahbek C. The role of spatial scale and the perception of large-scale species-richness patterns. EcologyLetters,2005,8:224-239.
    Raich JW, Russell AE, Kitayama K, et al.. Temperature influences carbon accumulation in moist tropicalforests. Ecology,2006,87:76-87.
    Read L, Lawrence D. Litter nutrient dynamics during succession in dry tropical forests of the Yucatan:regional and seasonal effects. Ecosystems,2003,6:747-761.
    Reich PB, Ellsworth DS, Walters MB, et al.. Generality of leaf trait relationships: a test across six biomes.Ecology,1999,80:1955-1969.
    Reich PB, Tilman D, Isbell F, et al.. Impacts of biodiversity loss escalate through time as redundancy fades.Science,2012,336:589-592.
    Reich PB, Tilman D, Naeem S, et al.. Species and functional group diversity independently influencebiomass accumulation and its response to CO2and N. Proc Natl Acad Sci U S A,2004,101:10101-10106.
    Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning.Proceedings of the National Academy of Sciences,1997,94:13730.
    Reiss J, Bridle JR, Montoya JM, et al.. Emerging horizons in biodiversity and ecosystem functioningresearch. Trends in Ecology and Evolution,2009,24:505-514.
    Rolim SG, Jesus RM, Nascimento HE, et al.. Biomass change in an Atlantic tropical moist forest: the ENSOeffect in permanent sample plots over a22-year period. Oecologia,2005,142:238-246.
    Rowe RJ, Lidgard S. Elevational gradients and species richness: do methods change pattern perception?Global Ecology and Biogeography,2009,18:163-177.
    Rowe RJ, Lidgard S. Elevational gradients and species richness: do methods change pattern perception?Global Ecology&Biogeography,2009,18:163-177.
    Ruiz-Jaen MC, Potvin C. Can we predict carbon stocks in tropical ecosystems from tree diversity?Comparing species and functional diversity in a plantation and a natural forest. New Phytologist,2011,189:978-987.ímová I, Li YM, Storch D. Relationship between species richness and productivity in plants: the role ofsampling effect, heterogeneity and species pool. Journal of Ecology,2013,101:161-170.
    Saatchi S, Houghton R, Dos Santos Alvala R, et al.. Distribution of aboveground live biomass in the Amazonbasin. Global Change Biology,2007,13:816-837.
    Sasaki T, Okubo S, Okayasu T, et al.. Two-phase functional redundancy in plant communities along agrazing gradient in Mongolian rangelands. Ecology,2009,90:2598-2608.
    Schleuter D, Daufresne M, Massol F, et al.. A user's guide to functional diversity indices. EcologicalMonographs,2010,80:469-484.
    Schmid B, Joshi J, Schl pfer F. Empirical evidence for biodiversity-ecosystem functioning relationships.Princeton: Princeton University Press,2002.
    Schmidt MW, Torn MS, Abiven S, et al.. Persistence of soil organic matter as an ecosystem property.Nature,2011,478:49-56.
    Schreeg LA, Kress WJ, Erickson DL, et al.. Phylogenetic analysis of local-scale tree soil associations in alowland moist tropical forest. PloS one,2010,5: e13685.
    Schumacher J, Roscher C. Differential effects of functional traits on aboveground biomass in semi-naturalgrasslands. Oikos,2009,118:1659-1668.
    Shang W, Wu G, Fu X, et al.. Maintaining mechanism of species diversity of land plant communities. Thejournal of applied ecology,2005,16:562-573.
    Shipley B. Cause and correlation in biology: a user's guide to path analysis, structural equations and causalinference. London: Cambridge University Press,2002.
    Slik JWF, Bernard CS, Breman FC, et al.. Wood Density as a Conservation Tool: Quantification ofDisturbance and Identification of Conservation‐Priority Areas in Tropical Forests. ConservationBiology,2008,22:1299-1308.
    Spehn E, Hector A, Joshi J, et al.. Ecosystem effects of biodiversity manipulations in European grasslands.Ecological Monographs,2005,75:37-63.
    Srivastava DS, Cadotte MW, MacDonald AAM, et al.. Phylogenetic diversity and the functioning ofecosystems. Ecology Letters,2012,15:637-648.
    Srivastava DS, Vellend M. Biodiversity-ecosystem function research: Is it relevant to conservation? AnnualReview of Ecology, Evolution, and Systematics,2005:267-294.
    Stachowicz JJ, Graham M, Bracken MES, et al.. Diversity enhances cover and stability of seaweedassemblages: the role of heterogeneity and time. Ecology,2008,89:3008-3019.
    Staddon WJ, Trevors JT, Duchesne LC. Soil microbial diversity and community structure across a climaticgradient in western Canada. Biodiversity&Conservation,1998,7:1081-1092.
    Stephan A, Meyer AH, Schmid B. Plant diversity affects culturable soil bacteria in experimental grasslandcommunities. Journal of Ecology,2000,88:988-998.
    Steudel B, Hector A, Friedl T, et al.. Biodiversity effects on ecosystem functioning change alongenvironmental stress gradients. Ecology Letters,2012,15:1397-1405.
    Suding KN, Lavorel S, Chapin FS, et al.. Scaling environmental change through the community-level: atrait-based response-and-effect framework for plants. Global Change Biology,2008,14:1125-1140.
    Swenson NG, Enquist BJ, Thompson J, et al.. The influence of spatial and size scale on phylogeneticrelatedness in tropical forest communities. Ecology,2007,88:1770-1780.
    Tahmasebi Kohyani P, Bossuyt B, Bonte D, et al.. Importance of grazing and soil acidity for plantcommunity composition and trait characterisation in coastal dune grasslands. Applied VegetationScience,2008,11:179-186.
    Taylor BW, Flecker AS, Hall RO. Loss of a harvested fish species disrupts carbon flow in a diverse tropicalriver. Science,2006,313:833-836.
    Teketay D. Seed and regeneration ecology in dry Afromontane forests of Ethiopia: I. Seedproduction-population structures. Tropical Ecology,2005,46:29-44.
    Thomas S, Malczewski G. Wood carbon content of tree species in Eastern China: Interspecific variability andthe importance of the volatile fraction. Journal of environmental management,2007,85:659-662.
    Thompson K, Askew A, Grime J, et al.. Biodiversity, ecosystem function and plant traits in mature andimmature plant communities. Functional Ecology,2005,19:355-358.
    Tilman D. The ecological consequences of changes in biodiversity: a search for general principles.Ecology,1999,80:1455-1474.
    Tilman D. Plant strategies and the dynamics and structure of plant communities Princeton: PrincetonUniversity Press,1988.
    Tripler CE, Kaushal SS, Likens GE, et al.. Patterns in potassium dynamics in forest ecosystems. EcologyLetters,2006,9:451-466.
    Urquiza-Haas T, Dolman PM, Peres CA. Regional scale variation in forest structure and biomass in theYucatan Peninsula, Mexico: Effects of forest disturbance. Forest ecology and management,2007,247:80-90.
    Vamosi S, Heard S, Vamosi J, et al.. Emerging patterns in the comparative analysis of phylogeneticcommunity structure. Molecular Ecology,2009,18:572-592.
    Van Breugel M, Martínez-Ramos M, Bongers F. Community dynamics during early secondary succession inMexican tropical rain forests. Journal of Tropical Ecology,2006,22:663-674.
    Vendramini F, Díaz S, Gurvich DE, et al.. Leaf traits as indicators of resource‐use strategy in floras withsucculent species. New Phytologist,2002,154:147-157.
    Verdu M, Rey PJ, Alcantara JM, et al.. Phylogenetic signatures of facilitation and competition insuccessional communities. Journal of Ecology,2009,97:1171-1180.
    Vile D, Shipley B, Garnier E. A structural equation model to integrate changes in functionall strategiesduring old-field succession. Ecology,2006,87:504-517.
    Villéger S, Mason NWH, Mouillot D. New multidimensional functional indices for a multifacetedframework in functional ecology. Ecology,2008,89:2290-2301.
    Violle C, Navas M-L, Vile D, et al.. Let the concept of trait be functional! Oikos,2007,116:882-892.
    Walker LR, Del Moral R. Primary succession and ecosystem rehabilitation. London: Cambridge UniversityPress,2003.
    Wardle DA, Jonsson M. Biodiversity effects in real ecosystems-a response to Duffy. Frontiers in Ecologyand the Environment,2010,8:10-11.
    Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic communitystructure and trait evolution. Bioinformatics,2008,24:2098.
    Webb CO, Ackerly DD, McPeek MA, et al.. Phylogenies and community ecology. Annual Review ofEcology and Systematics,2002,33:475-505.
    Webb CO, Cannon CH, Davies SJ. Ecological organization, biogeography, and the phylogenetic structure oftropical forest tree communities. Tropical forest community ecology,2008:79-97.
    Webb CO, Donoghue MJ. Phylomatic: tree assembly for applied phylogenetics. Molecular EcologyNotes,2005,5:181-183.
    Webb CO, Losos JB, Agrawal AA. Integrating phylogenies into commmunity ecology. Ecology,2006,87:1-2.
    Webb CT, Hoeting JA, Ames GM, et al.. A structured and dynamic framework to advance traits‐basedtheory and prediction in ecology. Ecology Letters,2010,13:267-283.
    Westoby M, Falster DS, Moles AT, et al.. Plant ecological strategies: some leading dimensions of variationbetween species. Annual Review of Ecology and Systematics,2002,33:125-159.
    Whitmore T, Burslem D, Newbery D, et al.. Major disturbances in tropical rainforests. London: BlackwellScience Ltd.1998.
    Wiens JJ, Graham CH. Niche conservatism: integrating evolution, ecology, and conservation biology.Annual review of ecology, evolution, and systematics,2005:519-539.
    Wright IJ, Ackerly DD, Bongers F, et al.. Relationships among ecologically important dimensions of planttrait variation in seven neotropical forests. Annals of Botany,2007,99:1003-1015.
    Wright IJ, Reich PB, Westoby M, et al.. The worldwide leaf economics spectrum. Nature,2004,428:821-827.
    Wright JP, Naeem S, Hector A, et al.. Conventional functional classification schemes underestimate therelationship with ecosystem functioning. Ecology Letters,2006,9:111-120.
    Wright SJ, Yavitt JB, Wurzburger N, et al.. Potassium, phosphorus, or nitrogen limit root allocation, treegrowth, or litter production in a lowland tropical forest. Ecology,2011,92:1616-1625.
    Zach A, Horna V, Leuschner C, et al.. Patterns of wood carbon dioxide efflux across a2,000-m elevationtransect in an Andean moist forest. Oecologia,2010,162:127-137.
    Zavaleta ES, Pasari JR, Hulvey KB, et al.. Sustaining multiple ecosystem functions in grasslandcommunities requires higher biodiversity. Proceedings of The National Academy of Sciences,2010,107:1443-1446.
    Zhang JL, Cao KF. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies andplant growth rates across dipterocarp species. Functional ecology,2009,23:658-667.
    Zhang JL, Swenson NG, Chen SB, et al.. Phylogenetic beta diversity in tropical forests: Implications for theroles of geographical and environmental distance. Journal of Systematics and Evolution,2012,51:71-85.
    卜文圣,臧润国,丁易等.海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化.生物多样性,2013,21:278-287.
    曾庆波.热带森林生态系统研究与管理北京:中国林业出版社,1997.
    陈建会,邹晓明,杨效东.热带亚热带常绿阔叶林维持酸性土壤有效磷水平的磷转化过程.生态学报,2006,26:2294-2300.
    陈立新.人工林土壤质量演变与调控北京:科学出版社,2004.
    邓福英,臧润国.海南岛热带山地雨林天然次生林的功能群划分.生态学报,2007,27:3240-3249.
    丁佳,吴茜,闫慧等.地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响.生物多样性,2011,19:158-167.
    丁易,臧润国.海南岛霸王岭热带低地雨林植被恢复动态.植物生态学报,2011,35:577-586.
    方精云,王襄平,唐志尧.局域和区域过程共同控制着群落的物种多样性:种库假说.生物多样性,2009,17:605-612.
    广东省植物研究所.海南植物志(第四卷)北京:科学出版社,1977.
    何鹏,吴敏,韦家少.海南省胶园土壤肥力质量指标的时空变异特性研究.中国农学通报,2008,24:310-316.
    贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征.生态学报,1997,17:91-99.
    侯晓杰,汪景宽,李世朋.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响.生态学报,2007,2:655-661.
    胡玉佳,李玉杏.海南岛热带雨林.广州:广东高等教育出版社,1992.
    黄建雄,郑凤英,米湘成.不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响.植物生态学报,2010,34:309-315.
    蒋高明.全球大气二氧化碳浓度升高对植物的影响.植物学通报,1995,12:1-7.
    蒋有绪.海南岛热带林生物多样性及其形成机制北京:科学出版社,2002.
    蒋有绪,卢俊培.中国海南岛尖峰岭热带林生态系统北京:科学出版社,1991.
    李意德.海南岛热带山地雨林林分生物量估测方法比较分析.生态学报,1993,13:313-320.
    李意德,陈步峰,周光益.中国海南岛热带森林及其生物多样性保护研究:中国林业出版社,2002.
    罗天祥,石培礼,罗辑等.青藏高原植被样带地上部分生物量的分布格局(英文).植物生态学报,2002,6:1-5.
    马克平.生物多样性与生态系统功能的实验研究.生物多样性,2013,21:247-248.
    马克平,黄建辉,于顺利.北京东灵山地区植物群落多样性的研究.生态学报,1995,15:268-277.
    马维玲,石培礼,李文华等.青藏高原高寒草甸植株性状和生物量分配的海拔梯度变异.中国科学:生命科学,2010,6:533-543.
    孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能.植物生态学报,2007,31:150-165.
    裴男才.利用植物DNA条形码构建亚热带森林群落系统发育关系———以鼎湖山样地为例.植物分类与资源学报ISTIC,2012,34:263-270.
    沈泽昊,胡志伟,赵俊等.安徽牯牛降的植物多样性垂直分布特征.山地学报,2007,25:160-168.
    史瑞和,鲍士旦,秦怀英.土壤农化分析.第二版北京农业出版社,1996.
    唐志尧,方精云.植物物种多样性的垂直分布格局.生物多样性,2004,12:20-28.
    王伯荪.海南岛热带林生物多样性及其物种进化:科学出版社,2005.
    王国宏.祁连山北坡中段植物群落多样性的垂直分布格局.生物多样性,2002,10:7-14.
    吴彦,刘庆,乔永康等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响.2001,25:648-655.
    肖玉,谢高地,安凯等.基于功能性状的生态系统服务研究框架.植物生态学报,2012,36:353-362.
    徐新良,曹明奎.森林生物量遥感估算与应用分析.地球信息科学,2006,8:122-128.
    徐远杰,陈亚宁,李卫红等.伊犁河谷山地植物群落物种多样性分布格局及环境解释.植物生态学报,2010,34:1142-1154.
    许涵,李意德,骆土寿等.海南尖峰岭不同热带雨林类型与物种多样性变化关联的环境因子.植物生态学报,2013,37:26-36.
    尧婷婷,孟婷婷,倪健等.新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探.生物多样性,2010,18:188-197.
    余世孝,臧润国,蒋有绪.海南岛霸王岭垂直带热带植被物种多样性的空间分析.生态学报,2001,21:1438-1444.
    余作岳,彭少麟.热带亚热带退化生态系统植被恢复生态学研究.广州:广东科技出版社,1996.
    臧润国,丁易,张志东等.海南岛热带天然林主要功能群保护与恢复的生态学基础.北京:科学出版社,2010.
    张金发,郑重,金义兴.植物群落演替与土壤发展之间的关系.武汉植物学研究,1990,8:325-334.
    张全国,张大勇.生物多样性与生态系统功能:最新的进展与动向.生物多样性,2003,11:351-363.
    张万儒,杨光澄,屠星南中华人民共和国林业行业标准——森林土壤分析方法.北京:中国标准出版社,1999.
    赵常明,陈伟烈,黄汉东等.三峡库区移民区和淹没区植物群落物种多样性的空间分布格局.生物多样性,2007,15:510-522.
    赵振勇,王让会,尹传华等.天山南麓山前平原植物群落物种多样性及空间分异研究.西北植物学报,2007,27:784-790.
    周厚诚,任海,向言词等.南澳岛植被恢复过程中不同阶段土壤的变化.热带地理,2001,21:104-107,112.
    朱源,康慕谊,江源等.贺兰山木本植物群落物种多样性的海拔格局.植物生态学报,2008,32:574-581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700