用户名: 密码: 验证码:
蛋白质起源的小分子诱导/选择模型的实验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“生命是如何起源的”是自然科学要解决的三大核心问题之一。由于蛋白质既是一种重要的生物大分子,同时又是生命结构和生物功能的执行者,因此原始蛋白质的起源是生命起源的重要研究内容之一。尽管没有原始蛋白的化石遗迹可供参考,但是近些年飞速发展的各种“组学”却使人们能够通过借助各种“分子化石”来推测原始蛋白质的结构和功能特征。我们在分析小分子配体在蛋白质空间中的分布模式时发现配体与蛋白(结构域、折叠类型层次)之间的映射存在幂律关系,该现象被证明可以用“优先添加原则”予以解释,据此可以推断出配体与原始蛋白的结合顺序及所结合蛋白的折叠类型。由于该研究得出的配体与蛋白的结合顺序与公认的蛋白质结构起源顺序基本一致,我们提出一个大胆的猜想,即原始蛋白的产生是小分子配体诱导、选择的结果。本文旨在通过对早起源氨基酸组成蛋白质的结构和性质及辅因子对早起源氨基酸组成的随机肽构象转变的诱导作用研究,为小分子配体对原始蛋白质起源的诱导/选择模型提供初步的实验验证。
     研究目的:明确起源较早的氧化还原蛋白能否仅由早起源氨基酸构成;明确由四种早起源氨基酸组成的随机聚肽的二级结构特征;明确由VNM编码的早起源氨基酸子集组成随机多肽的二级结构特征;明确辅因子能否诱导早起源氨基酸组成的随机多肽产生构象转变。
     研究方法:采用理性设计方法将起源较早的黄素氧化还原蛋白2FZ5中的晚起源氨基酸用早起源氨基酸进行替换,据此构建了突变型黄素氧化还原蛋白原核表达载体,并对其进行了原核表达、纯化及相关氧化还原性质测定。通过N-内羧酸酐开环聚合反应合成了(Val~x/Glu~y/Lys~z/Ser~Z)n随机共聚肽,采用圆二色性光谱研究了随机共聚肽的二级结构特点及三种有机辅因子对随机共聚肽构象转变的影响。采用两轮组装的小盒式DNA编码文库经体外翻译生成由VNM编码的15种氨基酸组成的随机多肽,采用圆二色性光谱和bis-ANS荧光结合实验研究了随机多肽的二级结构和疏水结构域的特征,研究了五种辅因子对随机多肽构象转变和疏水结构域的影响。
     研究结论:实验结果表明突变型黄素氧化还原蛋白具有与野生型相似的结构特征,半醌型和氢醌型黄素氧化还原蛋白突变体较野生型的稳定性低,双电子氧化还原电位(E_(ox/hq))达到-360mV,表明仅由早起源氨基酸和有机辅因子构成的突变型黄素氧化还原蛋白具有氧化还原蛋白活性。(Val~x/Glu~y/Lys~z/Ser~Z)n随机共聚肽的二级结构包括无规则卷曲和α螺旋,添加ATP、NAD或NADH均未诱导产生β片层结构;低浓度的有机辅因子诱导β转角的产生,高浓度的有机辅因子倾向于使β转角转变为无规则卷曲或α螺旋。由VNM编码的15种早起源氨基酸子集组成的随机多肽不但具有较好的水溶性,而且具有典型的蛋白质二级结构特征和少量的疏水结构域。辅因子能够诱导随机多肽发生构象转变,而且各种辅因子诱导随机多肽发生构象转变的特点各不相同。ATP的诱导效应主要表现为β片层和无规则卷曲含量的减少,β转角和α螺旋含量的增加。NADP+的诱导效应表现为β片层的增加和无规则卷曲含量的减少,α螺旋和β转角的含量变化不大。NAD~+的诱导效应表现β片层的增加和α螺旋、β转角的减少,无规则卷曲含量变化不大。NADH的诱导效应表现为β片层略有增加和α螺旋略有减少,β转角和无规则卷曲含量变化不大。Mg~(2+)的诱导效应表现为β片层少量增加和β转角的略有减少,α螺旋和无规则卷曲含量变化不大。ATP、NAD~+和NADH能够诱导随机多肽产生更多的疏水结构域。
     研究意义:本论文的研究结果不但证实了起源较早的氧化还原蛋白可以仅由14种早起源氨基酸组成,而且发现由简约化的氨基酸子集组成的随机多肽具有蛋白质二级结构特征且具有可折叠性,辅因子能够诱导早起源氨基酸组成的随机多肽发生构象转变并产生更多的疏水结构域。上述实验结果不但能够为辅因子诱导蛋白质起源假说提供了实验验证,而且为蛋白质工程的相关研究提供了新的思路。
“How did life begin?” is one of three central topics in the natural science field whichrequired to be answered. Since protein is not only an important biomacromolecule, but alsothe performer of vitual movement. So, origin of proteins is one of the central topics in thestudy of origin of life. Although there is no fossile of primitive protein left, we can infer thecharacteristic of ancient protein with the help of “molecular fossile” accompanied by rapiddevelopment of all kinds of “omics”. Through analyzing the distribution patterns ofsmall-molecule ligands in protein space, we proposed that the primitive protein architectureswere generated by the induction/selection of small molecules. In this thesis, this hypothesiswas preliminarily valiadated by the study of characteristic and structure of ancient proteinconstructed by primitive amino acids, and the study of cofactors induced effects on theconformation transfer of random peptides consisting of primitive amino acids set.
     Objectives: To elucidate whether an ancient redox protein can be construsted by aprimitive amino acids set? Secondary structure characteristic of random polypeptidesconsisting of4kinds of primitive amino acids, secondary structure characteristic of randompolypeptides consisting of15kinds of amino acids which encode by VNM, and whethercofactors can induce transfer of the conformation of random polypeptides?
     Methods: Through substituting “Late amino acids” by “Early amino acids” of aflavodoxin by rational design, mutant flavodoxin recombinant vector was constructed and itscharacteristic properties were evaluated.(Val~x/Glu~y/Lys~z/Ser~Z) random co-polypeptides wassynthesized by N-carboxyanhydride open-ring reaction, the secondary structure characteristicof random co-polypeptides and the effect of organic cofactor on the conformation transitionof random co-polypeptides were determined by Circular Dichroism spectrum analysis. ADNA library encoding random polypeptides consisting of15kinds of primitive amino acidswas constructed by strategy of library in small cassette, consequentlyly a random peptideslibrary was obtained by in vitro translation. The secondary structure characteristic andhydrophobic domain of random polypeptides were determined by Circular Dichroismspectrum analysis bis-ANS binding assay. The effects of cofactors on the conformationtransition of random co-polypeptides were invested by Circular Dichroism spectrum analysis bis-ANS binding assay also.
     Results: Mutant flavodoxin has similar structural characteristics to wild-type protein,although the semiquinone and hydroquinone flavodoxin mutants possess lower stability incomparison with corresponding form of wild-type flavodoxin, the redox potential of doubleelectron reduction(E_(ox/hq))arrived at-360mV, indicating that flavodoxin mutant consititutedsolely by early amino acids can exert effectively electron transfer activity. The secondarystructure of (Val~x/Glu~y/Lys~z/Ser~Z) random co-polypeptides include α helix and random coil,there is no β sheet was induced by ATP, NAD and NADH. The β turn were induced by lowconcentration organic cofactors, the conformation transition of β turn, α helix and randomcoil were induced by higher concentration organic cofactors. Random polypeptides consistingof15kinds of primitive amino acids which encoded by VNM is not only soluable but alsohas a secondary structure characteristic of protein. Cofactors can induce conformationtransition of random polypeptides and the effect is different between different cofactors. Theinducing effect of ATP shows as decrease of β sheet and random coil, and the increasedcontents of α helix and β turn. The inducing effect of NADP+shows as increase of β sheetand decreased content of random coil, the contents of α helix and β turn changed slightly. Theinducing effect of NAD~+shows as increase of β sheet and decreased content of α helix and βturn, the contents of random coil changed slightly. The inducing effect of NADH shows asa slightly increased β sheet and a slightly decreased α helix, the contents of β turn andrandom coil changed very slightly. The inducing effect of Mg~(2+)shows as a slightly increasedβ sheet and a slightly decreased β turn, the contents of α helix and random coil changed veryslightly. ATP, NAD~+and NADH can induced the formation of hydrophobic domain ofrandom polypeptides.
     Significance: An ancient redox protein constructed by14kinds of primitive amino acidswas validated in this paper. Furthermore, it was finded that random polypeptides consisting ofreduced amino acids set has secondary structural characteristic of protein,15kinds ofprebiotic amino acids set is a foldable set, cofactors can induce the conformation transition ofrandom polypeptides, ATP, NAD~+and NADH can induce the formation of hydrophobicdomain of random polypeptides. These results not only provide an experimental verificationfor “small molecular induced the origin of protein” hypothesis, but also can provide a novel solution for protein engineering.
引文
[1] R A Stern, W Bleeker. Age of the world’s oldest rocks refined using Canada’s SHRIMP:the Acasta Gneiss Complex, Northwest Territories Canada [J]. Geosci Can,1998,25(1):27-31.
    [2] M T McCulloch, V C Bennet. Evolution of the early Earth: constraints from143Nd-142Nd isotopic systematic [J]. Lithos,1993,30(3-4):237-255.
    [3] S A Wilde, J W Valley, W H Peck, et al. Evidence from detrital zircons for the existenceof continental crust and oceans on the Earth4.4Ga ago [J]. Nature,2001,409:175-178.
    [4] J W Valley, W H Peck, E.M King, et al. a cool early Earth [J]. Geology,2002,30:351-354.
    [5] E G Nisbet.The Young Earth: An Introduction to Archaean Geology [M]. CambridgeUniversity Press, Cambridge,1987.
    [6] E G Nisbet, C M R Fowler. Some liked it hot [J]. Nature,1996,382:404-405.
    [7] M A Schidlowski.3,800million-year old record of life from carbon in sedimentary rocks[J]. Nature,1988,333:313-318.
    [8] S J Mojzsis, G Arrhenius, K. D. Mckeegan, et al. Evidence for life on Earth3800millionyears ago [J]. Nature,1996,384:55-59.
    [9] M T Rosing.13C-depleted carbon in>3700Ma seafloor sedimentary rocks from WestGreenland [J]. Science,1999,283:674–676.
    [10] A H Knoll, E S Barghoorn. Archean microfossils showing cell division from theswaziland system of South Africa [J]. Science,1977,198:396-398.
    [11] J W Schopf, B M Parker. Early Arhean (3.3billion to3.5billions years old) micro-fossils from Warrawoona Group, Australia [J]. Science,1987,237:70-73.
    [12] B Rasmussen. Filamentous microf ossils in a32352millions years old volcanogenicmassive sulfide deposit [J]. Nature,2000,405:676-679.
    [13] M M Tice, D R Lowe. Photosynthetic microbial mats in the3,616-Myr-old ocean [J].Nature,2004,431:549-552.
    [14] S Kiyokawa, T Ito, M Ikehara, et al. Middle Archean volcano-hydrothermal sequence:bacterial microfossil-bearing3.2-Ga Dixon Island Formation, coastal Pilbara terrane,Australia [J]. Geol Soc Am Bull,2006,118:3–22.
    [15] J W Schopf. Fossil evidence of Archaean life [J]. Phil Trans R Soc B,2006,361:869–885
    [16] D L Pinti. The origin and the evolution of the oceans [M]. In Lectures in Astrobiology.Springer-Verlag Press, Berlin,2005.
    [17] F M Robert, A Chaussidon. Palaeo temperature curve for the Precambrian oceans basedon silicon isotopes in cherts [J]. Nature,2006,443:969-972.
    [18] J F Kasting. Earth’s Early Atmosphere [J]. Science,1993,259:920-926.
    [19] J S Levine, T R Augustsson, M Natarajan. The prebiological paleoatmosphere: Stabilityand composition [J]. Origins of Life and Evolution of Biospheres,1982,12(3):245-259.
    [20] S Miyakawa, H Yamanashi, K Kobayashi, et al. Prebiotic synthesis from COatmospheres: Implications for the origins of life [J]. Proc Nat Acad Sci USA,2002,99(23):14628-14631.
    [21] C Sagan, C Chyba. The early Sun paradox: organic shielding of ultraviolet-labilegreenhouse gases [J].Science,1997,276:1217–1221.
    [22] J L Bada. How life began on Earth: a status report [J]. Earth and Planetary ScienceLetters,2004,226:1-15.
    [23] K Zahnle. Photochemistry of methane and the formation of hydrocyanic acid (HCN) inthe Earth’s early atmosphere [J]. J Geophys Res,1986,91:2819-2834.
    [24] H D Holland. The Chemical Evolution of the Atmosphere and Oceans [M]. PrincetonUniversity Press, Princeton,1984.
    [25] S L Miller, J L Bada. Submarine hot springs and the origin of life [J]. Nature,1988,334:609-611.
    [26] N H Sleep, K Zahnle. Carbon dioxide cycling and implications for climate on ancientEarth [J]. J Geophys Res,2001,106:1373-1399.
    [27] E G Nisbet, N H Sleep. The habitat and nature of early life [J]. Nature,2001,409(22):1083-1091.
    [28] A I Oparin. The Origin of Life [M]. Dover publications, New York,1938.
    [29] S L Miller. A production of amino acids under possible primitive earth conditions [J].Science,1953,117(3046):528-529.
    [30] A E Thomas, B M Rodeb. Chemical evolution from simple inorganic compounds tochiral peptides [J]. Chem Soc Rev,2012,41:5484-5489.
    [31] D. Canil, H Neill, D G Pearson, et al. Ferric iron in peridotites and mantle oxidationstates [J]. Earth Planet Sci Lett,1994,123:205-220.
    [32] D P Glavin, G Matrajt, J L Bada. A search for extraterrestrial amino acids in Antarcticmicrometeorites: implications for the exogenous delivery of organic compounds [J]. AdvSpace Sci,2004,33:106-113.
    [33] Z Martins, O Botta, M L Fogele, et al. Pascale ehrenfreund extraterrestrial nucleobasesin the Murchison meteorite [J]. Earth and Planetary Science Letters,2008,270:130-136.
    [34] C F Chyba, C Sagan. Endogenous production, exogenous delivery, and impact-shocksynthesis of organic molecules: an inventory for the origins of life [J]. Nature,1992,355:125-132.
    [35] D P Glavin, J L Bada. Survival of amino acids in micrometeorites during atmosphericentry [J]. Astrobiology,2001,1(3):259-269.
    [36] J B Corliss, D Ymond, L I Gordon, et al. Submarine thermal springs on the GalapagosRift [J]. Science,1979,203:1073-1083.
    [37] D S Kelley, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at30°N [J]. Nature,2001,412:145–149.
    [38] W Martin, J Baross, D Kelley, et al. Hydrothermal vents and the origin of life [J]. Naturereview microbiology,2008,6:805-814.
    [39] Q W Chen, C L Chen. The role of inorganic compounds in the prebiotic synthesis oforganic molecules [J]. Current Organic Chemistry,2005,9(10):1-10.
    [40] W Martin, M J Russell. On the origin of biochemistry at an alkaline hydrot hermal vent[J]. Philos Trans R Soc Lond,2007,367:1187-1925.
    [41] M M Hanczyc, S M Fujikawa, J W Szostak. Experimental models of primitive cellarcompartments: encapsulation, growth and division [J]. Science,2003,302:618-622.
    [42] C Huber, G W chtersh user. Peptides by Activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life [J]. Science,1998,281:670-672.
    [43] T M Mccollom, J S Seewald. Abiotic synthesis of organic compounds in deep seahydrothermal environments [J]. Chem Rev,2007,107:382-401.
    [44] N Lane, J F Allen, W Martin. How did LUCA make a living? Chemiosmosis in theorigin of life [J]. BioEssays,2010,9999:1-10.
    [45] R Robinson. Jump-starting a cellular world: Investigating the origin of life, from soup tonetworks [J]. PLoS Biol,2005,3(11): e396.
    [46] G W chtersh user. The Origin of Life and Its Methodological Challenge [J]. J TheorBiol,1997,187:483–494.
    [47] S A Kauffman. Investigation [M]. Oxford University Press, Oxford New York,2000.
    [48] S A Kauffman. The origins of order self-organization and selection in evolution [M].Oxford University Press, Oxford New York,1993.
    [49] D Segré, D Ben-Eli, D Lancet. Compositional genomes: prebiotic information transferinmutually catalytic noncovalent assemblies [J]. Proc Nat Acad Sci USA,2000,97:4112-4117.
    [50] L E Orgel. The implausibility of metabolic cycles on the prebiotic earth [J]. PLoS Biol,2008,6(1): e18.
    [51] L Zhang, A Peritz, E Meggers. A simple glycol nucleic acid [J]. J Am Chem Soc,2005,127:4174-4175.
    [52] G W chtersh user. Before enzymes and templates: theory of surface metabolism [J].Microbiol Rev,1988,52:452-484.
    [53] H J Morowitz, J D Kostelnik, J Yang, et al. The origin of intermediary metabolism [J].Proc Natl Acad Sci U S A,2000,97:7704-7708.
    [54] E Smith, H J Morowitz. Universality in intermediary metabolism [J]. Proc Natl Acad SciU S A,2004,101:13168-13173.
    [55] G D Cody, N Z Boctor, T R Filley, et al. Primordial carbonylated iron-sulfur compoundsand the synthesis of pyruvate [J]. Science,2000,289:1337–1340.
    [56] A Ricardo, M A Carrigan, A N Olcott, et al. Borate minerals stabilize ribose [J].Science,2004,303:196.
    [57] AW Schwartz, H Joosten, A B Voet. Prebiotic adenine synthesis via HCNoligomerization in ice [J]. Biosystems,1982,15:191-193.
    [58] A L Weber. The sugar model: autocatalytic activity of the triose-ammonia reaction [J].Origins of Life and Evolution of the Biosphere,2007,37:105-111.
    [59] S A Kauffman. Autocatalytic sets of proteins [J]. J Theor Biol,1986,119:1-24.
    [60] D H Lee, J R Granja, J A Martinez, et al. A self-replicating peptide [J]. Nature1996,382:525-528.
    [61] G Ashkenasy, R Jagasia, M Yadav, et al. Design of a directed molecular network [J].Proc Natl Acad Sci U S A,2004,101:10872-10877.
    [62] E Imai, H Honda, K Hatori, et al. Elongation of oligopeptides in a simulated submarinehydrothermal system [J]. Science,1999,283(5403):831-833.
    [63] K Sakthivel, W Notz, T Bui, et al. Amino acid catalyzed direct asymmetric aldolreactions: a bioorganic approach to catalytic asymmetric carbon-carbonbond-formingreactions [J]. J Am Chem Soc,2001,123:5260-5267.
    [64] R J Eilzabeth, S J Miller. Amino acids and peptides as asymmetric organocatalysts [J].Tetrahedron,2002,58:2481-2495.
    [65] S Honda, K Yamasaki, Y Sawada, et al.10residue folded peptide designed by segmentstatistics [J]. Structure,2004,12:1507-1518.
    [66] S Honda, T Akiba, Y S Kato, Yoshito Sawada, et al. Crystal structure of a ten-amino acidprotein [J]. J Am Chem Soc,2008,130:15327-15331.
    [67] V Vasasa, E Szathmáry, M Santosa. Lack of evolvability in self-sustaining autocatalyticnetworks constraints metabolism-first scenarios for the origin of life [J]. Proc NatlAcad Sci U S A,2010,107(4):1470-1475.
    [68] W Gilbert. Origin of life: The RNA world [J]. Nature,1986,319:618
    [69] F J Gerald. Ribozymes: Building the RNA world [J]. Current Biology,1996,6(8):965-967.
    [70] D C Jeffares, A M Poole, D Penny. Relics from the RNA World [J]. J Mol Evol,1998,46:18–36.
    [71] U Weber, H Beier, H J Gross. Another heritage from the RNA world: self-excision ofintron sequences from nuclear pre-tRNAs [J]. Nucleic Acids Research,1996,24,(12):2212-2219.
    [72] T A Steitz, P B Moore. RNA, the first macromolecular catalyst: The ribosome is aribozyme [J]. Trends Biochem Sci,2003,28:411-418.
    [73] M P Robertson, G F Joyce. The Origins of the RNAWorld [J]. Cold Spring HarbPerspect Biol,2012,4: a003608.
    [74] M W Powner, B Gerland, J D Sutherland. Synthesis of activated pyrimidineribonucleotides in prebiotically plausible conditions [J]. Nature,2009,459:239–242.
    [75] J P Ferris, G Ertem. Montmorillonite catalysis of RNA oligomer formation in aqueoussolution: A model for the prebiotic formation of RNA [J]. J Am Chem Soc,1993,115:12270-12275.
    [76] K Kawamura, J P Ferris. Kinetic and mechanistic analysis of dinucleotideand oligonucleotide formation from the50-phosphorimidazolide of adenosine onNa+-montmorillonite [J]. J Am Chem Soc,1994,116:7564-7572.
    [77] S Miyakawa, J P Ferris. Sequence and regioselectivity in the montmorillonite catalyzedsynthesis of RNA [J]. J Am Chem Soc,2003,125:8202-8208.
    [78] Z P Ding, K Kawamura, J P Ferris. Oligomerization of uridine phosphorimidazolides onmontmorillonite: A model for the prebioticsynthesis of RNA on minerals [J]. Origins ofLife and Evolution of the Biosphere,1996,26:151-171.
    [79] K Kawamura, J P Ferris. Clay catalysis of oligonucleotide formation:Kinetics of thereaction of the50-phosphorimidazolides of nucleotides with the non-basic heterocyclesuracil and hypoxanthine [J]. Origins of Life and Evolution of the Biosphere,1999,29:563-591.
    [80] J P Ferris, A R Hill, R Liu, et al. Synthesis of long prebiotic oligomers on mineralsurfaces [J]. Nature,1996,381:59-61.
    [81] J P Ferris. Montmorillonite catalysis of30–50mer oligonucleotides: laboratorydemonstration of potential steps in the origin of the RNA World [J]. Origins of Life andEvolution of the Biosphere,2002,32:311-332.
    [82] W Huang, J P Ferris. Synthesis of35-40mers of RNA oligomers from unblockedmonomers: A simple approach to the RNA world [J]. Chem Commun,2003,12:1458-1459.
    [83] W Huang, J P Ferris. One-step, regioselective synthesis of up to50-mers of RNAoligomers by montmorillonite catalysis [J]. J Am Chem Soc,2006,128:8914-8918.
    [84] A D G, de Roos. Modelling evolution on design-by-contract predicts an origin of Lifethrough an abiotic double-stranded RNA world [J]. Biology Direct,2007,2:12.
    [85] T Inoue, L E Orgel. Substituent control of the poly(C)-directed oligomerization ofguanosine50-phosphoroimidazolide [J]. J Am Chem Soc,1981,103:7666-7667.
    [86] D P Bartel, J W Szostak. Isolation of new ribozymes from a large pool of randomsequences [J]. Science,1993,261:1411-1418.
    [87] K D James, A D Ellington. The fidelity of template-directed oligonucleotide ligation andthe inevitability of polymerase function [J]. Origins of Life and Evolution of theBiosphere,1999,29:375-390.
    [88] W K Johnston, P J Unrau, M S Lawrence, et al. RNA-catalyzed RNA polymerization:Accurate and general RNA-templated primer extension [J]. Science,2001,292:1319-1325.
    [89] H S Zaher, P J Unrau. Selection of an improved RNA polymerase ribozyme withsuperior extension and fidelity [J]. RNA,2007,13:1017-1026.
    [90] M di Giulio. The split genes of Nanoarchaeum equitans are an ancestral character [J].Gene,2008,421:20-26.
    [91] M di Giulio. The origin of genes could be polyphyletic [J]. Gene,2008,426:39-46.
    [92] C B hler, P E Nielsen, L E Orgel. Template switching between PNA and RNAoligonucleotides [J]. Nature,2002,376,578-581.
    [93] J P Dworkina, A Lazcanob, S L Miller. The roads to and from the RNA world [J]. JTheor Biol,2003,222:127-134.
    [94] M Nashimoto. The RNA/protein symmetry hypothesis: experimental support for reversetranslation of primitive proteins [J]. J theor Biol,2001,209:181-187.
    [95] L E Orgel. Origin of life: A simpler nucleic acid [J]. Science,2000,290:1306-1307.
    [96] J C Chaput, J W Szostak. TNA synthesis by DNA polymerases [J]. J Am Chem Soc,2003,125:9274-9275.
    [97] P E Nielsen. Peptide nucleic acid and the origin of life [J]. Chem Biodivers,2007,4:1996-2002.
    [98] T A E Jakschitz, B M Rode. Chemical evolution from simple inorganic compounds tochiral peptides. Chem Soc Rev,2012,41:5484-5489.
    [99] L M Longo, M Blaber. Protein design at the interface of the pre-biotic and biotic worlds[J]. Archives of Biochemistry and Biophysics,2012,526(1):16-21.
    [100] D P Glavin, J P Dworkin, S A Sandford. Detection of cometary amines in samplesreturned by Stardust [J]. Meteorit Planet Sci2008,43:399-413
    [101] M H Engel, B Nagy. Distribution and enantiomeric composition of amino acids in theMurchison meteorite [J]. Nature,1982,296:837-840.
    [102] J R Cronin, C B Moore. Amino acid analyses of the Murchison, Murray and Allendecarbonaceous chrondites [J]. Science,1971,172:1327-1329.
    [103] A Shimoyama, C Ponnamperuma, K Yanai, Amino acids in the Yamato carbonaceouschondrite from Antarctica [J]. Nature,1979,282:394-396.
    [104] Y Wolman, W J Haverland, S L Miller. Nonprotein amino acids from spark dischargesand thek comparison with the Murchison meteorite amino acids [J]. Proc Natl Acad SciU S A,1972,69:809-811.
    [105] E T Parker, H J Cleaves, J P Dworkin et al. Primordial synthesis of amines and aminoacids in a1958Miller H2S-rich spark discharge experiment [J]. Proc Natl Acad Sci U SA,2011,108(14):5526-5531.
    [106] A P Johnson, H J Cleaves, J P Dworkin et al. The Miller volcanic spark dischargeexperiment [J]. Science,2008,322:404.
    [107] A D Keefe, S L Miller, G McDonald, et al. Investigation of the prebiotic synthesis ofamino acids and RNA bases from CO2using FeS/H2S as a reducing agent [J]. Proc NatlAcad Sci U S A,1995,92:11904-11906.
    [108] R J Hennet, N G Holm, M H Engel. Abiotic synthesis of amino acids underhydrothermal conditions and the origin of life: A perpetual phenomenon?[J].Naturwissenschaften,1992,79(8):361-365.
    [109] C Huber, G W chtersh user. α-hydroxy and α-amino acids under possible hadean,volcanic origin-of-life conditions [J]. Science,2006,314(5799):630-632.
    [110] H F Ji, L Shen, H Y Zhang. Low-lying energy levels of amino acids and its implicationsfor origin of life [J]. Journal of Molecular Structure: THEOCHEM,2005,756(1-3):109–112.
    [111] A L Weber, S L Miller. Reasons for the occurrence of the twenty coded protein aminoacids [J]. J Mol Evol,1982,17(5):273-284.
    [112] H Y Zhang. Exploring the evolution of standard amino-acid alphabet: when genomicsmeets thermodynamics [J]. Biochem Biophys Res Commun,2007,359(3):403-405.
    [113] P G Higgs, R E Pudritz. A thermodynamic basis for prebiotic amino acid synthesis andthe nature of the first genetic code [J]. Astrobiology,2009,9:483–490.
    [114] J Tze-Fei Wong. A co-evolution theory of genetic code [J]. Proc Natl Acad Sci U S A,1975,72(5):1909-1912.
    [115] J Tze-Fei Wong. Coevolution theory of the genetic code at age thirty [J]. BioEssays,2005,27(4):416-425.
    [116] E N Trifonov, I Gabdank, D Barash, et al. Primordia vita. Deconvolution from modernsequences [J]. Orig of Life and Evolution of Biospheres,2006,36(5-6):559-565.
    [117] E V Koonin, Y I Wolf, G P Karev. The structure of the protein universe and genomeevolution [J]. Nature,2002,420:218-223.
    [118] A E Todd, C A Orengo, J M Thornton. Evolution of function in protein superfamilies,from a structural perspective [J]. J Mol Biol,2001,307:1113-1143.
    [119] C T Porter, G J Bartlett, J M Thornton. The Catalytic Site Atlas: a resource of catalyticsites and residues identified in enzymes using structural data [J]. Nucleic Acids Res,2004,32(suppl1): D129-D133.
    [120] B G Ma, L Chen, H F Ji, et al. Characters of very ancient proteins [J]. Biochem BiophysRes Commun,2008,366(3):607-611.
    [121] G Caetano-Anollés, D Caetano-Anollés. An evolutionarily structured universe ofprotein architecture [J]. Genome Res,2003,13:1563-1571.
    [122] M Wang, S M Boca, R Kalelkar, et al. A phylogenomic reconstruction of the proteinworld based on a genomic census of protein fold architecture [J]. Complexity,2006,12(1):27-40.
    [123] G Caetano-Anollés, D Caetano-Anollés. Universal sharing patterns in proteomes andevolution of protein fold architecture and life [J]. J Mol Evol,2005,60(4):484-498.
    [124] G Caetano-Anollés, H S Kim, J E Mittenthal. The origin of modern metabolic networksinferred from phylogenomic analysis of protein architecture [J]. Proc Natl Acad Sci USA,2007,104(22):9358-9363.
    [125] H F Ji, H Y Zhang. Protein architecture chronology deduced from structures of aminoacid synthases [J]. J Biomol Struct Dyn,2007,24(4):321-323.
    [126] E N Trifonov. Early molecular evolution [J]. Israel J Ecol Evol,2006,52(3-4):375-387.
    [127] G Caetano-Anollés, M Wang, D Caetano-Anollés, et al. The origin, evolution andstructure of the protein world [J]. Biochem J,2009,417:621–637.
    [128] D Caetano-Anollés, K M Kim, J E Mittenthal, et al. Proteome evolution and metabolicorigins of translation and cellular life [J]. J Mol Evol,2011,72:14–33
    [129] H F Ji, D X Kong, L Shen, et al. Distribution patterns of small-molecule ligands in theprotein universe and implications for origin of life and drug discovery [J]. GenomeBiology,2007,8(8): R176.
    [130] L Caldinelli, S Iametti, A Barbiroli, et al. Relevance of the flavin binding to the stabilityand folding of engineered cholesterol oxidase containing noncovalently bound FAD [J].Protein Sci,2008,17(3):409-419.
    [131] P Curnow, P J Booth. The contribution of a covalently bound cofactor to the foldingand thermodynamic stability of an integral membrane protein [J]. J Mol Biol,2010,403(4):630-642.
    [132] Y Cao, H Li. Dynamics of protein folding and cofactor binding monitored bysingle-molecule force spectroscopy [J]. Biophys J,2011,101(8):2009-2017.
    [133] R X Wang, X L Fang, Y P Lu, et al. The PDB bind database: methodologies andupdates [J]. J Med Chem,2005,48(12):4111-4119.
    [134] C M Dobson, A ali, M Karplus. Protein folding: a perspective from theory andexperiment [J]. Angewandet Chemie International Edition,1998,37(7):868-893.
    [135] N Tokuriki, D S Tawfik. Protein dynamism and evolvability [J]. Science,2009,324(5924):203-207.
    [136] A D Keefe, J W Szostak. Functional proteins from a random-sequence library [J].Nature,2001,410(6829):715-718.
    [137] P Lo Surdo, M A Walsh, M Sollazzo. A novel ADP-and zinc-binding fold fromfunction-directed in vitro evolution [J]. Nat Struct Mol Biol,2004,11(4):382-383.
    [138] B K Davis. Molecular evolution before the origin of species [J]. Prog Biophys Mol Biol,2002,79(1-3):77-133.
    [139] K U Walter, K Vamvaca, D Hilvert. An active enzyme constructed from a9-amino acidalphabet [J]. J Biol Chem,2005,280(45):37742-37746.
    [140] F Baymann, E Lebrun, M Brugna, et al. The redox protein construction kit: pre-lastuniversal common ancestor evolution of energy-conserving enzymes [J]. Philos Trans RSoc Lond B,2003,358(1429):267-274.
    [141] J Castresana, D Moreira. Respiratory chains in the last common ancestor of livingorganisms [J]. J Mol Evol,1999,49(4):453-460.
    [142] K M Kim, G Caetano-Anollés. The evolutionary history of protein fold families andproteomes confirms that the archaeal ancestor is more ancient than the ancestors of othersuperkingdoms [J]. BMC Evol Biol,2012,12:13.
    [143] H F Ji, L Chen, H Y Zhang. Organic cofactors participated more frequently thantransition metals in redox reactions of primitive proteins [J]. Bioessays,2008,30(8):766-771.
    [144] H S Kim, J E Mittenthal, G Caetano-Anolles. MANET: tracing evolution of proteinarchitecture in metabolic networks [J]. BMC Bioinformatics,2006,7:351.
    [145] J Tze-Fei Wong. Evolution of the genetic code [J]. Microbiol Sci,1988,5(6):174-181.
    [146] E N Trifonov. The triplet code from first principles [J]. J Biomol Struct Dyn,2004,22(1):1-11.
    [147] S L Miller. Which organic compounds could have occurred on the prebiotic earth?[J].Cold Spring Harb Symp Quant Biol,1987,52:17-27.
    [148] H Y Zhang. Exploring the evolution of standard amino-acid alphabet: when genomicsmeets thermodynamics [J]. Biochem Biophys Res Commun,2007,359(3):403-405.
    [149] I K Jordan, F A Kondrashov, I A Adzhubei, et al. A universal trend of amino acid gainand loss in protein evolution [J]. Nature,2005,433(7026):633-638.
    [150] S G Mayhew. Studies on flavin binding in flavodoxins [J]. Biochim Biophys Acta,1971,235(2):289-302.
    [151] G P Curley, M C Carr, S G Mayhew, et al. Redox and flavin-binding properties ofrecombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem,1991,202(3):1091-1100.
    [152] A Lostao, C Gomez-Moreno, S G Mayhew, et al. Differential stabilization of the threeFMN redox forms by tyrosine94and tryptophan57in flavodoxin from Anabaena and itsinfluence on the redox potentials [J]. Biochemistry,1997,36(47):14334-14344.
    [153] S M Geoghegan, S G Mayhew, G N Yalloway, et al. Cloning, sequencing andexpression of the gene for flavodoxin from Megasphaera elsdenii and the effects ofremoving the protein negative charge that is closest to N(1) of the bound FMN [J]. Eur JBiochem,2000,267(14):4434-4444.
    [154] R J Lawson, C von Wachenfeldt, I Haq, Perkins J, Munro AW (2004) Expression andcharacterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP:biophysical properties and interactions with cytochrome P450BioI. Biochemistry43(39):12390-12409.
    [155] M Parthasarathy, J JR W Curtis. Sensitivity of circular dichroism to protein tertiarystructure class [J]. Nature,1983,305:831–832.
    [156] P Macheroux, B Kappes, S E Ealick. Flavogenomics-a genomic and structural view offlavin-dependent proteins [J]. FEBS J,2011,278(15):2625-2634.
    [157] S Alagaratnam, G van Pouderoyen, T Pijning, et al. A crystallographic study ofCys69Ala flavodoxin II from Azotobacter vinelandii: structural determinants of redoxpotential [J]. Protein Sci,2005,14(9):2284-2295.
    [158] S Frago, G Goni, B Herguedas, et al. Tuning of the FMN binding and oxido-reductionproperties by neighboring side chains in Anabaena flavodoxin [J]. Arch BiochemBiophys,2007,467(2):206-217.
    [159] R F Anderson. Energetics of the one-electron reduction steps of riboflavin, FMN andFAD to their fully reduced forms [J]. Biochim Biophys Acta,1983,722(1):158-162.
    [160] S G Mayhew. The effects of pH and semiquinone formation on the oxidation-reductionpotentials of flavin mononucleotide: A reappraisal [J]. Eur J Biochem,1999,265(2):698-702.
    [161] R P Swenson, G D Krey. Site-directed mutagenesis of tyrosine-98in the flavodoxinfrom Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reductionproperties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions[J]. Biochemistry,1994,33(28):8505-8514.
    [162] J Freigang, K Diederichs, K P Schafer, et al. Crystal structure of oxidized flavodoxin,an essential protein in Helicobacter pylori [J]. Protein Sci,2002,11(2):253-261.
    [163] S W H Fox, K Harada. The Thermal Copolymerization of Amino Acids Common toProtein [J]. J Am Chem Soc,1960,82(14):3745-3751.
    [164] C. Huber, W. Eisenreich, G W chtersh user. Synthesis of a-amino and a-hydroxy acidsunder volcanic conditions: implications for the origin of life [J]. Tetrahedron Letters,2010,51:1069-1071.
    [165] C Huber, W Eisenreich, S Hecht, et al. A Possible Primordial Peptide Cycle [J]. Science,2003,301(5635):938-940.
    [166] J Bujdák, B M Rode. Activated alumina as an energy source for peptide bondformation: Consequences for mineral-mediated prebiotic processes [J]. Amino Acids,2001,21:281–291.
    [167] J J Flores, C Ponnamperuma. Polymerization of Amino Acids under PrimitiveEarth Conditions [J]. J Mol Evol,1972,2(1):1-9.
    [168] J F Lambert. Adsorption and polymerization of amino acids on mineral surfaces: areview [J]. Origins of Life and Evolution of Biospheres,2008,38,(3):211-242.
    [169] M G R Schwendinger, B M Rode. Possible role of copper and sodium chloride inprebiotic evolution of peptides [J]. Anal Sci,1989,5:411-414.
    [170] K Plankensteiner, H Reiner, B M Rode. Catalytically increased prebiotic peptideformation: ditryptophan, dilysine, and diserine [J]. Origins of Life and Evolution ofBiospheres,2005,35(5):411-419.
    [171] L Leman, L Orgel, M R Ghadiri. Carbonyl sulfide-mediated prebiotic formation ofpeptides [J]. Science,2004,306(5694):283-286.
    [172] E R Blout, R H Karlson. Polypeptides Ⅲ the synthesis of high molecular weightpoly-r-benzyl-L-glutamates [J]. J Am Chem Soc,1956,78(5):941-946.
    [173] H Collet, C Bied, L Mion, et al. A new simple and quantitative synthesis ofα-aminoacid-N-carboxyanhydrides (oxazolidines-2,5-dione)[J]. Tetrahedron Letters,1996,37(50):9043-9046.
    [174] J R Hernández, H A Klok. Synthesis and ring-opening (co)polymerization of L-lysineN-carboxyanhydrides containing labile side-chain protective groups [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2003,41(9):1167-1187.
    [175] N M Tooney, G D Fasman. Conformation of serine polypeptides: Optical rotatorydispersion and infrared studies [J]. Biopolymers,1968,6(1):81-96.
    [176] J Lin, G Zhu, X Zhu, et al. Aggregate structure change induced by intramolecularhelix-coil transition [J]. Polymer,2008,49(5):1132-1136.
    [177] J Lin, N Liu, J Chen, et al. Conformational changes coupled with theisotropic-anisotropic transition Part1. Experimental phenomena and theoreticalconsiderations [J]. Polymer,2000,41(16):6189-6194.
    [178] W Dzwolak, V Smirnovas. A conformational a-helix to h-sheet transition accompaniesracemic self-assembly of polylysine: an FT-IR spectroscopic study [J]. Biophys Chem,2005,115(1):49-54.
    [179] Y J Goto. Anion and pH-dependent conformational transition of an amphiphilicpolypeptide [J]. J Mol Biol,1991,218(2):387-396.
    [180] R Rousseau, E Schreiner, A Kohlmeyer, et al. Temperature-dependent conformationaltransitions and hydrogen-bond dynamics of the elastin-like octapeptide gvg(vpgvg): amolecular-dynamics study [J]. Biophysical journal,2004,86(3):1393-1407.
    [181] M Zhang, L P Zhang, Y Q Wu. The pressure tolerance of different poly-l-lysineconformers in aqueous solution: Infrared spectroscopy and two-dimensional correlationanalysis [J]. Vibrational spectroscopy,2011,57:319-325.
    [182] K Xiong, L Ma, S A Asher. Conformation of poly-L-glutamate is independent of ionicstrength [J]. Biophys Chem,2012,162:1-5.
    [183] M Murariu, D E Stela, A Adochitei, et al. Silver-induced conformational changesof polypeptides: a CD study [J]. J Pept Sci,2011,17(7):512-519.
    [184] H D Nguyen, A J Marchut, C K Hall. Solvent effects on the conformational transitionof a model polyalanine peptide [J]. Protein Sci,2004,13(11):2909-2924.
    [185] T Chen, S Lin, J Lin, et al. Effect of electrical field on polypeptide phase behaviorinvolving a conformationally coupled anisotropic-isotropic transition [J]. Polymer,2007,48(7):2056-2063.
    [186] M S Celej, G G Montich, G D Fidelio. Protein stability induced by ligand bindingcorrelates with changes in protein flexibility [J]. Protein Sci,2003,12(7):1496-1506.
    [187] M J Cuneo, L S Beese, H W Hellinga. Ligand-induced conformational changes in athermophilic ribose-binding protein [J]. BMC Struct Biol,2008,8:50
    [188] D Seeliger, B L de Groot. Conformational transitions upon ligand binding:holo-structure prediction from apo conformations [J]. PLoS Comput Biol,2010,6(1):e1000634.
    [189] C Hyeon, P A Jennings, J A Adams, et al. Ligand-induced global transitions in thecatalytic domain of protein kinase A [J]. Proc Natl Acad Sci U S A,2009,106(9):3023-3028.
    [190] L Shen, H F Ji. Small Cofactors May Assist Protein Emergence from RNA World:Clues from RNA-Protein Complexes [J]. PLoS One,2011,6(7): e22494.
    [191] J Jurka, T F Smith. β-Turn-driven early evolution: The genetic code and biosynthesispathways [J]. J Mol Evol,1987,25(1):15-19.
    [192] P Y Chou, G D Fasman. Conformational parameters for amino acids in helical, β-sheet,and random coil regions calculated from proteins [J]. Biochemistry,1974,13(2):211-222.
    [193] G E Schulz, C D Barry, J Friedman, et al. Comparison of predicted and experimentallydetermined secondary structure of adenyl kinase [J]. Nature,1974,250(462):1409-1421.
    [194] P Y Chou, G D Fasman. Prediction of protein conformation [J]. Biochemistry,1974,13(2):222-245.
    [195] T T Takahashi, R W Roberts. In vitro selection of protein and peptide libraries usingmRNA display [J]. Nucleic Acid and Peptide Aptamers Methods and Protocols,2008,535(2):293-314.
    [196] A Yagodkin, A Azhayev, J Roivainen, et al., Improved synthesis of trinucleotidephosphoramidites and generation of randomized oligonucleotide libraries [J].Nucleosides Nucleotides and Nucleic Acids,2007,26(5):473-497.
    [197] K Kawakami, H Murakami, H Suga. Messenger RNA-programmed incorporation ofmultiple N-methyl-amino acids into linear and cyclic peptides [J]. Chem Biol,2008,15(1):32–42.
    [198] S Soramoto, S Ueno. Design of various high quality random libraries for in vitro proteinevolution [J]. Genome Informatics,2002,13:527-528.
    [199] T Ichiro, S Sayaka, U Shingo, et al. Multi-line split DNA synthesis: a novelcombinatorial method to make high quality peptide libraries [J]. BMC Biotechnol,2004,4:19.
    [200] G Cho, A D Keefe, R H Liu, et al. Constructing high complexity synthetic libraries oflong ORFs using in vitro selection [J]. J Mol Biol,2000,297(2):309-319.
    [201] D T F Dryden, A R Thomson, J H White. How much of protein sequence space hasbeen explored by life on Earth?[J]. J R Soc Interface,2008,5(25):953-956.
    [202] D S Riddle, J V Santiago, S T Bray-Hall, et al. Functional rapidly folding proteins fromsimplified amino acid sequences [J]. Nat Struct Biol,1997,10(4):805-809.
    [203] J A Silverman, R Balakrishnan, P B Harbury. Reverse engineering the (a/b)8barrel fold[J]. Proc Natl Acad Sci USA,2001,98(6):3092-3097.
    [204] S Akanuma, T Kigawa, S Yokoyama, et al. Combinatorial mutagenesis to restrict aminoacid usage in an enzyme to a reduced set [J]. Proc Natl Acad Sci USA,2002,99(21):13549-13553.
    [205] S Kamtekar, J M Schiffer, H Xiong, et al. Protein design by binary patterning of polarand nonpolar amino acids [J]. Science,1993,262(5140):1680-1685.
    [206] A Go, S Kim, J Baum, et al. Structure and dynamics of de novo proteins from adesigned superfamily of4-helix bundles [J]. Protein Sci,2008,17(5):821-832.
    [207] S C Patel, L H Bradley, S P Jinadasa, et al. Cofactor binding and enzymatic activity inan unevolved superfamily of de novo designed4-helix bundle proteins [J]. Protein Sci,2009,18(7):1388-1400.
    [208] M T Jumawid, T Takahashi, T Yamazaki, et al. Selection and structural analysis of denovo proteins from an a3b3genetic library [J]. Protein Sci,2009,18(2):384-398.
    [209] A Yamauchi, T Yomo, F Tanaka, et al. Characterization of soluble artificial proteinswith random sequences [J]. FEBS Lett,1998,421(2):147-151.
    [210] A R Davidson, R T Sauer. Folded proteins occur frequently in libraries of randomamino acid sequences [J]. Proc Natl Acad Sci USA,1994,91(6):2146-2150.
    [211] N Doi, K Kakukawa, Y Oishi, et al. High solubility of random-sequence proteinsconsisting of five kinds of primitive amino acids [J]. Protein Eng Des Sel,2005,18(6):279-284.
    [212] J Tanaka, N Doi, H Takashima, et al. Comparative characterization of randomsequenceproteins consisting of5,12, and20kinds of amino acids [J]. Protein Sci,2010,19(4):786-795.
    [213] P G Wolynes. As simple as can be?[J]. Nat Struct Biol,1997,4(11):871-874.
    [214] L R Murphy, A Wallqvist, R M Levy. Simplified amino acid alphabets for proteinfold recognition and implications for folding [J]. Protein Eng,2000,13(3):149-152.
    [215] K Fan, W Wang. What is the Minimum Number of Letters Required to Fold a Protein?[J]. J Mol Biol,2003,328(4):921-926.
    [216] C N Pace, J M Scholtz. A helix propensity scale based on experimental studies ofpeptides and proteins [J]. Biophys J,1998,75(1):422-427.
    [217] A G Street, S L Mayo. Intrinsic β-sheet propensities result from van der Waalsinteractions between side chains and the local backbone [J]. Proc Nat Acad Sci U S A,1999,96(16):9074-9076.
    [218] E G Hutchinson, J M Thornton. A revised set of potentials for β-turn formation inproteins [J]. Protein Sci,1994,3(12):2207-2216.
    [219] K Guruprasad, S Rajkumar. Beta-and gamma-turns in proteins revisited: a new set ofamino acid turn-type dependent positional preferences and potentials [J]. J Biosci,2000,25(2):143-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700