用户名: 密码: 验证码:
面向循环经济的汽车产品回收利用若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源短缺和环境污染的双重压力下,大量耗能排污的汽车产业面临着可持续发展的严峻挑战。循环经济作为一种全新的经济发展模式,是指导汽车产业可持续发展的理论基础。推行汽车产品回收利用工程是实现汽车产业循环经济发展的重要途径。当前我国汽车回收利用行业技术水平落后、管理体系混乱,存在诸多问题。节能减排是循环经济发展的主要目标,通过设计提高产品可回收利用性是发展循环经济的重要手段,完善管理体系是循环经济发展的重要保障。因此,以循环经济等理论为指导,开展汽车产品回收利用节能减排绩效评价、设计技术和管理对策等若干问题研究,具有十分重要的意义。
     本文以研究汽车产品回收利用促进汽车产业循环经济发展为主线,在理论分析和文献综述的基础上,首先通过构建模型、编写程序开展汽车产品回收利用节能减排绩效评价,然后从技术层面研究汽车产品可回收利用性设计的关键技术,最后从管理层面探讨提高汽车产品回收利用水平的相关建议。主要研究工作包括以下几个方面:
     在分析系统动力学建模理论方法和汽车报废量主要影响因素的基础上,构建了“汽车报废量系统动力学模型”,通过仿真运行预测了我国汽车报废量的发展变化规律,并运用历史检验法验证了模型的逼真度。
     在分析汽车材料全生命周期评价流程和节能减排要求的基础上,建立了“汽车原生与再生材料制品环境参数差异模型”,引用相关材料数据库中的数据开展了实证研究,定量对比分析了钢、铝等几种主要汽车原生材料与再生材料制品的能耗、排放参数。
     在报废量预测和材料环境参数分析的基础上,提出了汽车产品回收利用的节能减排绩效评价方法;结合报废车型比例、车型材料构成、材料再生率和综合成材率等相关数据分析,构建了“汽车产品回收利用节能减排绩效评价模型”,定量评价了汽车产品回收利用所产生的再生资源对降低能耗和减少排放的效果,论证了汽车产品回收利用对节能减排的巨大贡献;通过影响因素分析,探讨了提高回收利用节能减排绩效的思路。
     在分析汽车产品可回收利用性影响因素的基础上,从结构和材料二方面提出了汽车产品可回收利用性设计的相关准则;重点研究了汽车产品可拆解性设计和可回收性设计的关键问题;并以汽车仪表板连接结构的改进设计为实例,分析如何通过对产品结构的有效改进和材料的合理选用,从设计的根源上改善汽车产品的可回收利用性。
     针对我国汽车回收利用管理方面存在的实际问题,从汽车设计、回收拆解、零部件再制造等环节提出了完善汽车产品回收利用法律法规体系的相关建议;从管理模式、信息系统和激励约束机制等方面探讨了健全政策支持体系的思路。
     汽车产品回收利用是实现汽车行业节能减排目标、发展循环经济的有效途径。本文所提出的汽车产品回收利用的节能减排绩效评价方法较为合理,构建的回收利用节能减排绩效评价模型及相关的汽车报废量系统动力学预测模型和汽车原生与再生材料制品环境参数差异模型具有较高的逼真度,预测和评价结果已成为政府主管部门相关评价工作的基础依据;本文提出的可回收利用性设计准则在汽车企业的产品设计过程中得到了实际应用,为汽车企业开展可回收利用性设计提供了指南;本文所提管理建议具有一定的可操作性,为相关政府主管部门制定汽车产品回收利用政策法规和技术标准提供了翔实的参考依据,部分建议内容已经被正式采纳。本文的研究工作对提高我国汽车产品回收利用水平、促进循环经济发展具有一定的推动作用。
Under the pressure of resources shortage and environment pollution, automotive industry, as one consuming great amount of energy and one ejecting polluted substance highly, is facing the challenge of sustainable development. Circular economy, as a completely new economic development mode, is the theory for sustainable development of automotive industry, and the key to realize it is to carry out recovery project for automotive products. While in the current situation, such problems as the backward recovery technology and the disordered management system still occur. The goal of circular economy development is to save energy and decrease ejection, the crucial means of circular economy development is by improving the recoverability of products, and the vital guarantee of circular economy development is by perfecting the management system. Therefore, it is of great significance to study, with the guidance of circular economy theory, the key problems in the recovery of automotive products such as energy-saving and ejection-decreasing performance evaluation, its design and technology, and the management countermeasures.
     To study the recovery of automotive products so as to promote circular economy development of automotive industry, this dissertation, based on theoretical analysis and literature review, constructs relevant models and compiles programmes to study energy-saving and ejection-decreasing performance evaluation of automotive products. Then from the aspect of technology, it explores the recoverability design technology of automotive products, and finally from the aspect of management, it discusses the relevant management ideas on the recovery of automotive products. The main points of this dissertation are as follows:
     First, by analyzing the theoretical method of model-building in system dynamics and the factors affecting the amount of ELV(end-of-life vehicle), the dissertation, constructs a model which predicts the changes of the amount of ELV. Furthermore, it verifies the fidelity degree of the model by using the method of historical test.
     Second, by analyzing the life cycle of automotive materials and the need of energy-saving and ejection-decreasing, the disseration constructs a model of differences in environment parameter between raw automotive materials and recycled automotive materials. Refering to the data from the database about materials, it takes steel, aluminum and other major automotive materials as examples to analyze their energy consumption and emission parameters.
     Third, based on the prediction of the amount of ELV and the analysis on environment parameter of materials, it proposes some ways of evaluating energy-saving and ejection-decreasing performance in the recovery and utilization process. Together with the analysis on relevant data of predicted proportion of ELV of all kinds of vehicles, their material constitution, the reproduction of materials, and the finished product rate, this dissertation quantitatively assesses the effects of recycled materials on energy-saving and ejection-decreasing, thus confirms the great potential of saving energy and decreasing ejection by recovery and utilization. And then by analyzing the affecting factors, it explores the potential ways to improve energy-saving and ejection-decreasing performance in recovery.
     Fourthly, based on the analysis of factors affecting the recoverability of automotive, it puts forwards some pertinent norms for recoverability design from the aspects of vehicle construction and vehicle materials. Especially, it focuses on the DFD (Design for Disassembly) and DFR (Design for Recycle). Taking the revised design of fascia connection structure as an example, the dissertation discusses how to improve the product construction effectively and how to select materials properly, thus to promote the recoverability of automotive products from the root of design.
     Lastly, in order to solve the actual management problems in recovery of automotive industry, it gives some suggestions on how to perfect the legislation system on automotive design, disassembly and remanufacture, thus tables proposals to strengthen the recovery and utilization management of automotive products from the aspects of management mode, informative system and incentive and encouragement mechanism.
     Recovery of automotive products is a vital way to realize energy-saving and ejection-releasing and thus to develop circular economy. The performance evaluation methods proposed in this dissertaion about energy-saving and ejection-releasing are feasible, and the constructed model of energy-saving and ejection-releasing, the prediction model of the amount of ELV and the model of environment parameter difference between raw automotive materials and recycled automotive materials are of high fidelity, the results of which have been a basis for assessment by government authorities. What’s more, the recoverability design principles proposed in this dissertation have already been applied in the design process of automotive industry. Therefore, it is of great reference value for enterprises to draw up recoverability design policies. The policy suggestions proposed in this dissertation are not only workable but also reliable for relevant government branches to make policies on recoverability of sutomotive products. In fact, part of the proposals have been adopted officially. This study can, to a certain degree, average up the recovery level of automotive products in China and accelerate the development of circular economy.
引文
[1]中华人民共和国国家统计局.2008年中国国民经济和社会发展统计公报. http://cn.chinagate.cn/economics/2009-02/26/content_17338480.htm,2009. 2.26
    [2]中国汽车技术研究中心,中国汽车工业协会.中国汽车工业年鉴(2008).天津:中国汽车工业年鉴编辑部,2008
    [3]周育红,姜朝阳.我国汽车报废回收利用体系框架初探.环境科学与技术,2006,29(3):54-56
    [4]郎一环.全球资源态势与中国对策.武汉:湖北科学技术出版社,2000
    [5]杨履榕,祝圣训.我国再生资源循环经济的策略研究.资源开发与市场,2003,19(5):304-306
    [6]徐滨士,梁秀兵,李仁涵.绿色再制造工程的进展.中国表面工程,2001,(2):1-4
    [7]鲍晓峰,倪红.汽车报废回收环保问题凸出.中国环境报,2004-05-14
    [8]王晓光.发展循环经济的基本途径与对策研究.软科学,2003,17(1):31-34
    [9]胡鹏山,周伟.汽车回收工程与循环经济研究.中国资源综合利用,2000,(4):8-11
    [10]初丽霞,于杰,尹建中.循环经济的发展模式与政策措施.环境论坛,2002,(5):9-10
    [11]谢海云,孙力军,张文彬.可持续发展战略与循环经济.昆明理工大学学报,2000,25(2):7-8
    [12]刘志峰,刘光复.绿色设计.北京:机械工业出版社,1999
    [13]刘光复,刘学平,刘志峰.绿色设计的体系结构及实施策略.中国机械工程,2000,11(9):965-968
    [14]刘飞,曹华军.绿色制造的理论体系框架.中国机械工程,2000,11(9):961-96
    [15]向东,张根宝,汪永超等.绿色产品及其评价指标体系研究.计算机集成制造系统,1999,5(4):14-19
    [16]胡爱武.产品的绿色设计概念及其发展.机械设计与制造工程,2002,31(3):7-9
    [17] Stewart Coulter, Bert Bras, Gerald Winslow, et al. Design for Material Separation: Lessons from Automotive Recycling. Proceedings of the 1996 ASEM Design Engineering Technical Conference and Computers in Engineering Conference, August 18-22 1996,Irvine,California, USA
    [18] Kyonghun Lee, Design for Disassembly: A Destructive Method, Excerpts from the Technical Report I-CARVE-1995-01
    [19] GlennT J ohnson and Peter Dewhurst, An Investigation of the Economics ofSheet Metal Forming for Large Parts, Report# 84,March 1995
    [20] Homen de Mello L.S., Sanderson A.C. AND/OR graph representation of assembly plans. IEEE Transaction on Robotics and Automation, 1990, 6(2): 188-199
    [21] Homen de Mello L.S., Sanderson A.C. A correct and complete algorithm for the generation of mechanical assembly sequences. IEEE Transaction on Robotics and Automation, 1991, 7(2): 228-240
    [22] Wilder, B.W. Design for Disassembly: durable-goods makers build in recyclability. Modern Plastics, 1990, 67(12): 16-17
    [23] Leonard, L. Design for the Environment. Plastics Design Forum, 1991. 25-32
    [24]傅浩.面向拆卸与回收的设计:[上海交通大学博士论文].上海:上海交通大学,2000
    [25] Hong C. Zhang, Tsai-Chi Kuo and Samuel H.Huang, Recycling Model for End-Of-Life Products ,ASME,Japan/USA Symposium on Flexible Automation, Vol.2, 1996:1127-1130
    [26] Boothroyd, G., Alting. L. Design for assembly and disassembly. Annals of the CIRP, 1992, 41 (2): 625-636
    [27] Gupta G.M., McLean C.R. Disassembly of products. Computers and Industrial Engineering, 1996, 31(1-2): 225-228
    [28] Jan Emblemsvag and Bert Bras, Activity-Based Costing in Design for Product Retirement,ASEM,DE-Vol.69-2,Advances In Design Automation, Vol.2, 1994;351-361
    [29] G.Boothroyd, A Decade of DFMA Research, Report#77,July1994
    [30] Rosy W Chen, D. Navin-Chandra and F.Prinz, A Cost-Benefit Analysis Model of Product Design for Recyclability and its Application,1070-9886/94,1994 IEEE
    [31]王淑旺.基于回收元的回收设计方法研究:[合肥工业大学博士论文].合肥:合肥工业大学, 2004
    [32] IEEE EHSC, 1995, White Paper on Sustainable Development and Industrial Ecology. http://tab.computer.org/ehsc/ehswp.htm.
    [33] Penev, K.D., Ron, A.J. Determination of a disassembly strategy. International Journal of Production Research, 1996, 34 (2): 495-506
    [34] Stuart, J. A. and Sommerville R. M. Material selection for life cycle design. Proc. of the 21st IEEE International Symposium on Electronics and Environment , 1998: 151-157
    [35] Chen Rosy W.,Navin-Chandra D., Kurfess T., et al. A systematic Mechodologyof Material Selection with Environmental Considerations. Proc. of the 17th IEEE International Symposium on Electronics and Environment, 1994: 252-257
    [36] Chen Rosy W. A Method and Case Study of Integrating Engineering Analysis with LCA for Material Selection and Its Uncertainty. Proc. of the 18th IEEE International Symposium on Electronics and Environment, 1995: 88-93
    [37] Vaajoensuu Eero, Dammert Taina, et al. DFE Materials and Processes. Mechanical Life Cycle Handbook: good Environmental Design and Manufacturing. New York: Marcel Dekker, 2002. 429-460
    [38]傅浩,蔡建国.具有环境意识的材料选择.机械设计与研究,2000,(3):18-20
    [39]宋守许,刘志峰,刘光复.绿色产品设计的材料选择.机械科学与技术,1996,1(15): 40-44
    [40]张良,刘光复,刘志峰.面向绿色设计的客户驱动型二级材料选择方法.合肥工业大学学报(自然科学版),2006,29(2):209-212
    [41] Ashby. M. F. Materials Selection in Mechanical Design. Pergamon Press. Oxford, 1992
    [42] WEAVER P M, ASHBY M F, BURGESS S, et al. Selection of materials to reduce environmental impacn: a case study on refrigerator insulation. Materials and Design, 1996, 17(1):11-17
    [43] LEIGH H. Materials selection for optimal environmental impact in mechanical design. Materials and Design, 1998, 19:133-143
    [44] Ermolaeva N S, Castro M B G, Kandachar P V. Materials selection for an automotive structure by integrating structural optimization with environmental impact assessment. Materials and Design, 2004, 25:689-698
    [45]黄海鸿,刘光复,刘志峰,潘君齐.绿色设计中的材料选择多目标决策.机械工程学报,2006,42(8):131-136
    [46]武英.具有环境意识的材料选择系统的研究和开发:[清华大学硕士论文].北京:清华大学精密仪器与机械学系,2004.
    [47] Sapuan S.M. A knowledge-based system for materials selection in mechanical engineering design. Materials and Design, 22(2001): 687-695
    [48] Amen R., Vomacka P. Case-based reasoning as a tool for materials selection. Materials and Design, 22(2001): 353-358
    [49] Shibaike Narito. Incorporating Environmentally Conscious Materials Selection in CAD System. Proc. of the 24th IEEE International Symposium on Electronics and Environment, 2001: 1098-1101
    [50] Bock L. Material-process selection methodology: design for manufacturing andcost using logic programming. Cost Engineering, 1991, 33 (5): 9-14
    [51]李湘洲.国内外报废汽车回收利用现状与趋势.再生资源研究,2005,(2):22-24
    [52]戈雯.西方怎样回收汽车.产业导向,2000,(8):24-25
    [53]任子明.日本对汽车的回收利用.国外科技动态,2000,(8):20-21
    [54]王爱平,王成烹,叶炳玲等.报废汽车回收利用研究(一).中国物资再生,1998,(5):6-11
    [55]王爱平,王成烹,叶炳玲等.报废汽车回收利用研究(二).中国物资再生,1998,(6):5-15
    [56]王爱平,王成烹,叶炳玲等.报废汽车回收利用研究(三).中国物资再生,1998,(7):13-22
    [57]王爱平,王成烹,叶炳玲等.报废汽车回收利用研究(四).中国物资再生,1998,(8):16-26
    [58]沈伟潮.汽车产品LCED回收阶段的研究:[华东理工大学硕士论文].上海:华东理工大学,2004
    [59]施国昌.支持汽车产品LCED环境评价方法及数据库技术研究:[华东理工大学硕士论文].上海:华东理工大学,2005
    [60]赵树恩.汽车零部件拆卸序列自动生成的理论研究及实现:[重庆大学硕士论文].重庆:重庆大学,2005
    [61]张钰.废旧汽车回收利用项目管理研究:[天津大学硕士论文].天津:天津大学,2006
    [62]吴丹.基于EPR的报废汽车回收体系研究:[重庆大学硕士论文].重庆:重庆大学,2007
    [63] FORRESTER J W. Industrial Dynamics: A Breakthrough for Decision Makers. Harvard Business Review, 1958,36(4):37-66
    [64] FORRESTER J W. Industrial Dynamics. Cambridge MA: Productivity Press,1961
    [65] FORRESTER J W. Principles of Systems. Cambridge MA: Productivity Press,1968
    [66] FORRESTER J W. Urban Dynamics. Cambridge MA: Productivity Press,1969
    [67] STERMAN J D. Deterministic Chaos in an Experimental Economic System. Journal of Economic Behavior and Organization,1989,12:1-28
    [68] MEADOWS D H, MEADOWS D L, RANDERS J. Beyond the Limits: Confronting Global Collapse, Envisioning A Sustainable Future . Post Mills VT: Chelsea Green,1992
    [69]王其藩.系统动力学.北京:清华大学出版社,1998
    [70]贾仁安,丁荣华.系统动力学—反馈动态性复杂分析.北京:高等教育出版社,2002
    [71]王其藩.高级系统动力学.北京:清华大学出版社,1995
    [72]中国人口与发展研究中心信息服务部. 2008年中国主要人口数据. http://www.cpirc.org.cn/tjsj/tjsj_cy_detail.asp?id=10410,2009.2.26
    [73]国家经济贸易委员会,国家发展计划委员会,公安部,国家环境保护总局.关于调整汽车报废标准若干规定的通知.http://www.hpnet.com.cn,2007.4.24
    [74]国家发展和改革委员会产业政策司.我国汽车市场中长期(2005-2020)预测研究.北京,2006
    [75]国务院发展研究中心课题组.中国经济的阶段性变化?面临的问题和发展的前景. http://www.drcnet.com.cn/DRCnet.common.web, 2002.4.22
    [76]杨建新,王如松,刘晶茹.中国产品生命周期影响评价方法研究.环境科学学报,2001,(2):234-237
    [77]孙启宏,万年青,范与华.国外生命周期评价(LCA)研究综述.世界标准化与质量管理,2000,(12):23-25
    [78]向东,张根保,汪永超等.材料绿色特性的寿命循环评价研究.机械工程材料,1999,(2):5-8
    [79]干勇,仇圣桃.先进钢铁生产流程进展及先进钢铁材料生产制造技术.中国有色金属学报,2004,(S1):25-29
    [80]张国祥.浅议铝材生产工艺流程及质量控制措施.民营科技,2008,(7):17
    [81]李兆坚.可再生材料生命周期能耗算法研究.应用基础与工程科学学报,2006,(1):50-58
    [82]方能虎.报废汽车中玻璃的回收再利用.中国资源综合利用,2000,(5):18-19
    [83]李名林.汽车材料禁用和限用标准研究.汽车工艺与材料,2006,(6):38-41
    [84]易宏彬,周劲松.基于可持续发展的汽车再制造工程.现代制造工程,2003,(2):70-71
    [85]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.中华人民共和国国家标准(GB/T 19515-2004)道路车辆可再利用性和可回收利用性计算方法.北京:中国标准出版社, 2004
    [86]黄江杰,杨维平,刘官海.汽车产品的可拆卸设计研究.淮阴工学院学报,2006,15(5):41-43
    [87]徐顺利,薛学进,李鸣鸣.面向装配及拆卸的产品设计.中国机械工程,2000,9(9):1020-1021
    [88]赵树恩,李帼钰,张东生等.废旧车辆可拆卸性技术研究.陕西工学院学报,2003,19(4):29-32
    [89]陈涛,李文彬.模块化技术在国外汽车工业中的应用.汽车工业研究,2003,(11):39-41
    [90]储江伟.汽车再生工程.北京:人民交通出版社,2007
    [91] Zhang Hong C, Kuo Tsai C. A graph-based approach to disassembly model for end-of-life product recycling. 1996 IEEE/CPMT Int’l Electronics Manufacturing Technology Symposium. Austin, TX, USA, 1996. 247-254
    [92] Suzuki Tatsuya, Zanma Tadanao, Inaba Akio, et al. Learning control of disassembly Petri net– an approach with discrete event system theory. In: Proceedings of the 1996 IEEE International conference on Robotics and Automation. Minneapolis, Minnesota, USA, 1996. 184-191
    [93]郭茂,蔡建国,童劲松.基于Petri网的产品拆卸模型研究.中国机械工程,2000,11(9):1007-1009
    [94] Pnueli Y, Zussman E. Evaluating the end-of-life value of a product and improving it by redesign. International Journal of Production Research, 1997, 35(4): 921-942
    [95] Kang J G, Lee D H, Xirouchakis P, et al. Parallel disassembly sequencing with sequence- dependent operation times. Annals of the CIRP, 2001, 50(1): 343-346
    [96] Ong N S, Wong Y C. Automatic subassembly detection from a product model for disassembly sequence generation. International Journal of Advanced Manufacturing Technology, 1999, (15): 425-431
    [97]蔡雪原,胡于进,胡军军等.产品回收过程中最大收益的确定.机械科学与技术,2001,20(1):80-83
    [98] Satoshi Kanai, Ryphta Sasaki, Takeshi Kishinami. Graph-based information modeling of product-process interactions for disassembly and recycle planning. In: Proceedings of First International Symposium on Environmentally Conscious Design and Inverse Manufacturing. Tokyo, Japan, 1999. 772-777
    [99]刘坚民.报废汽车回收拆解技术.北京:化学工业出版社,2006
    [100]王忠良,尤明福.安全气囊的报废处理.汽车技术,2002,(9):41-43
    [101]方海峰.汽车安全气囊的回收利用研究.资源再生,2008,(3):60-62
    [102]张石.氟利昂(CFC)的替代品方案.中外轻工科技,2000,(4):11-13
    [103]方海峰.车用空调制冷剂的回收利用研究.资源再生,2008,(1):25-28
    [104]刘光复,刘志峰.绿色设计与制造.北京:机械工业出版社,1999
    [105]鲁博,张林文,曾竟成.天然纤维复合材料.北京:化学工业出版社,2005
    [106]王璐琳,何莉萍,田永等.车用天然纤维复合材料的研究进展.材料导报,2007,(8):1-3
    [107]周达飞,吴张永,王婷兰.汽车用塑料-塑料在汽车中的应用.北京:化学工业出版社,2003
    [108]冯美斌.从SAE2004年会看汽车材料发展趋势.汽车工艺与材料,2004,(6):45-51
    [109]冯美斌,宿东宁,敖炳秋等.我国汽车新材料技术发展现状分析与建议.汽车工艺与材料,2007,(5):41-46
    [110]郭廷杰.发达国家汽车用废塑料的再生利用简介.再生资源研究,2003,(5):38-40
    [111]江镇海.报废汽车中塑料的回收再利用.中国资源综合利用,2003,(9):28-29
    [112]庾晋,白杉.废旧轮胎回收利用现状和利用途径.橡塑技术与装备,2003,(9):11-18
    [113]蒋文玖.废弃玻璃的回收再利用.上海建材,2003,(3):35-36
    [114]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,2002
    [115]李亮,李桂林.论我国生产者责任延伸制度的实施.华东经济管理, 2008,(9):66-69
    [116]储江伟,金晓红,崔鹏飞等.国际汽车拆解信息系统的特点和应用.汽车技术, 2007,(2): 43-45
    [117]方海峰,黎宇科,郑乃金.解析《报废汽车回收拆解企业技术规范》.汽车与配件, 2009(20):45-47
    [118]方海峰,候华亮.落实循环经济促进法推动汽车零部件再制造产业发展.汽车与配件, 2008,(37):24-27
    [119]胡鹏山,周伟.汽车回收工程与循环经济研究.中国资源综合利用.2000,(4) :8-11
    [120]李兴虎.汽车材料中有毒重金属及其对环境的危害.汽车技术, 2005,(3):36-38
    [121]欧育湘,韩廷解.溴系阻燃剂与环境保护及人类健康.汽车技术, 2005,(5):1-4
    [122]果荔.信息产业部电子信息产品污染防治标准工作组近况.信息技术与标准化,2005,(10):4-5
    [123]李名林,刘丽娟.汽车重金属禁用研究.汽车工艺与材料,2006,(7):37-42
    [124]李晓欣,朱东生.欧盟RoHS指令的有害物质替代研究.电机电器技术,2005,(1):34-36
    [125]贾建军.长虹无铅工艺技术研究及应用.电子工艺技术,2005,26(2):63-67
    [126]罗娜.欧盟WEEE和RoHS指令浅析.中国电力教育,2006,(2):4-6
    [127]李名林.全球汽车申报物质清单与材料数据申报系统研究.汽车工程,2007, 29(3):262-265

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700