用户名: 密码: 验证码:
金属双栅的电磁透射特性及其潜在应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚波长金属狭缝(小孔)阵列中基于表面等离激元的异常透射特性引起人们的广泛兴趣和深入研究,并且在光子集成器件、光调控技术和光逻辑器件方面有着广泛的应用前景。单层栅结构已被深入研究和理解,双层及多层结构也在理论上和实验上有报道。本研究组在红外及可见光波段,对由两层全同的亚波长金属栅组成的双层结构进行了研究,详细分析了其电磁透射特性,各透射峰模式及特有的透射抑制现象。本文以这些研究为基础,利用更加简单省时的传输矩阵法进一步深入讨论了由不同厚度完美金属栅组成的双层结构的电磁透射特性,并利用此结构的特殊电磁特性实现了折射率传感器和光二极管的设计。
     第一章全面介绍了异常透射效应的发现和研究历史。叙述了各种亚波长微结构中的研究工作,详细介绍了多层亚波长栅结构电磁性质。近年来,还将研究波段从红外及可见光拓展到了微波波段,并发现了该波段中许多特殊的性质。本章最后,介绍了本研究组在红外及可见光波段对亚波长金属双栅电磁透射特性的研究,这些均为本论文的研究基础。
     第二章详细介绍了适用于研究多层金属栅结构透射谱的传输矩阵法,它比其它算法更加简单快捷。文中根据实际情况(如两栅的厚度不同及可见光波段范围内狭缝中波矢并非真空中波矢),对传输矩阵法做了具体的调整和完善。
     第三章利用传输矩阵法详细地研究了不同厚度的完美金属栅组成的双层结构的电磁透射特性。从透射谱和场分布讨论了不同透射峰的模式和物理机制。并在透射谱上发现了不随栅厚度改变的透射抑制线,根据其电磁场分布特征,建立简单模型来理解其物理机制,并获得了透射抑制发生时波长、纵向间隔及横向位移之间的解析关系。
     第四章介绍了利用金属双栅透射抑制现象的光二极管。透射抑制现象及其简化模型可以得到单向抑制条件。亚波长金属微结构阵列中增强透射的三个条件可以用来实现反向的高透。基于这两个原理设计出的金属双栅结构的光二极管可以实现零级的单向传输。
     第五章提出了金属双栅结构的反射式折射率传感器。F-P腔模式及衍射消逝波耦合作用的相互竞争,导致在某个间距范围内金属双栅具有特殊的反射特性。在此范围内,改变两栅间介质的折射率变化,零反射率对应极高的角度灵敏度,因此可以通过测量某一特定波长零反射时入射角度以确定介质的折射率,这在生物分子及生化反应探测领域应该具有潜在应用价值。
Subwavelength metallic slit (aperture) arrays attract great interest and extensive study, due to the extraordinary transmission phenomenon caused by the excitation of surface plasmon polaritons, which has potential applications in Photonic integrated circuit, photonic control technology, optical logic device and so on. Single metallic grating has been studied in detail, and dual-grating structure has been investigated theoretically and experimentally. Our group investigated the electromagnetic transmission properties of dual-metallic grating (DMG) structure and analyzed the high transmission and the transmission suppression (TS) phenomenon. This thesis discuss the electromagnetic transmission properties of dual-metallic grating composed of single metallic gratings (SMG) of different thickness under perfect electric conductor condition. The transfer matrix method is used as the algorithm, which has the advantages of simpleness and time-saving. Due to the specific electromagnetic properties of the DMG structures, the optical diode and the reflex optical sensor are proposed.
     Chapter I gives the introduction of extraordinary electromagnetic transmission. Various subwavelength structures are investigated, such as multilayer grating structures. The interested spectral regime is expanded from visible regime to microwave regime, in which unique properties are observed. At the end of this chapter, we give a summary regarding to the electromagnetic properties of the DMG structures in infrared and visible regimes in our group.
     Chapter II describes the Transfer Matrix Method (TMM), which is used to calculate the transmission property of the multilayer metallic grating structure in detail. Compared with other algorithm, TMM is simple and time-saving. We modify TMM, according to the actual conditions. When two SMGs, which construct the DMG structure, have different thicknesses, we rewrite the formula in infrared and visible regimes.
     ChapterⅢinvestigates the transmission properties of DMG by using TMM. With the transmission spectra and the field distributions, the mechanism of the high transmission is revealed. TS lines are observed in transmission spectra, which are independent of the thicknesses of SMG. Based on the field distributions, a simple model is proposed to understand the TS phenomenon, and an analytic expression is developed as functions of wavelength, longitude separation and lateral displacement.
     Chapter IV proposes an optical diode based on the TS phenomenon of DMG. We predict the unidirectional optical transmission in the dual-metal grating structures composed of two gratings with different periods, in the absence of anisotropy and nonlinearity. The results indicate that under normal incidence, all the diffracted orders of the transmitted waves could be completely suppressed in a direction, while could be highly transmitted in the opposite direction. By choosing the pertinent grating thickness, period, and surface structure of gratings, such a structure exhibits zero-order nonreciprocal transmission (suppression) behavior.
     Chapter V focuses on a reflex optical sensor based on DMG with high angular sensitivity. The competition between the F-P resonance and the diffracted evanescent wave coupling in the DMG structure results in the specific reflection properties in certain range of longitude separation. When the refractive index of the material in the separation has a little change, the zero-reflection incident angle exhibits a large shift, implying that such a reflex optical sensor possesses high sensitivity. The reflex sensor has potential applications in biomolecule detection and monitoring of biochemical reaction.
引文
[1]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays", Nature (London) 391,667 (1998).
    [2]L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays", Phys. Rev. Lett.86,1114 (2001).
    [3]K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes", Phys. Rev. Lett.92,183901 (2004).
    [4]K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength hole:experiment and theory", Phys. Rev. B 72,045421 (2005).
    [5]J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits", Phys. Rev. Lett.83,2845 (1999).
    [6]Q. Cao and Philippe Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits", Phys. Rev. Lett.88,057403 (2002).
    [7]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal and T. W. Ebbesen, "Beam light from a subwavelength aperture", Science 297,820 (2002).
    [8]F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen and L. Martin-Moreno, "Multiple paths to enhances optical transmission through a single subwavelength slit", Phys. Rev. Lett.90,213901 (2003).
    [9]L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations", Phys. Rev. Lett.90,167401 (2003).
    [10]Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen", Phys. Rev. Lett. 86,5601 (2001).
    [11]L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson and et al, "Surface plasmons at single nanoholes in Au films", Appl. Phys. Lett.85,467 (2004).
    [12]W. L. Barnes, A. Dereux and T. W. Ebbessen, "Surface plasmon subwavelength optics", Nature (London) 424,824 (2003).
    [13]P. R. Villeneuve, Phys. World 11,28 (1998).
    [14]E. Altewischer, M. P. van Exter and J. P. Woerdman, "Plasmon-assisted transmission of entangled photons", Nature (London) 418,304 (2002).
    [15]I. I. Smolyaninov, A. V. Zayats, A. Gungor and C. C. Davis, "Single-photon tunneling via localized surface plasmons", Phys. Rev. Lett.88,187402 (2002).
    [16]B. Hou, J. Mei, M. Z. Ke, W. J. Wen, Z. Y. Liu, J. Shi and P. Sheng, "Tuning Fabry-Perot resonances via diffraction evanescent waves", Phys. Rev. B 76,054303 (2007).
    [17]H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays", Opt. Express 12,3629 (2004).
    [18]H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. R. A. Alkemade, H. Blok, G. W't Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission:Young's experiment revisited", Phys. Rev. Lett.94,053901 (2005).
    [19]A. Barbara, P. Quemerais, E. Bustarret and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings", Phys. Rev. B 66,161403 (2002).
    [20]C. Janke, J. G. Rivas, C. Schotsch, L. Bechmann, P. Haring Bolivar and H. Kurz, "Optimization of enhanced terahertz transmission through arrays of subwavelength apertures" Phys. Rev. B 69,205314 (2004).
    [21]M. J. Lockyear, A. P. Hibbins and J. R. Sambles, "Microwave transmission through a single subwavelength annular aperture in a metal plate", Phys. Rev. Lett.94,193902 (2005).
    [22]Y. G. Ma, X. S. Rao, G. F. Zhang and C. K. Ong, "Microwave transmission modes in compound metallic gratings", Phys. Rev. B 76,085413 (2007).
    [23]H. J. Lezec, "Beaming light from a subwavelength aperture", Science 107,1895 (2002).
    [24]F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals", Phys. Rev. B 66,155412 (2002).
    [25]Y. M. Strelniker, "Theory of optical transmission through elliptical nanohole arrays", Phys. Rev. B 76,085409 (2007).
    [26]J. T. Shen and P. M. Platzman, "Properties of a one-dimensional metallophotonic crystal", Phys. Rev. B 70,035101 (2004).
    [27]H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai and J. A. Taylor, "Optical transmission through double-layer metallic subwavelength slit arrays", Opt. Lett.31,516 (2006).
    [28]Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai and H. B. Chan, "Controlling the phase delay of light transmitted through double-layer metallic subwavelength slit arrays'", Opt. Lett.33,1410 (2008).
    [29]W. J. Wen, L. Zhou, B. Hou, C. T. Chan and P. Sheng, "Resonant transmission of microwaves through subwavelength fractal slit in a metallic plate", Phys. Rev. B 72,153406 (2005).
    [30]A. P. Hibbins, M. J. Lockyear, I. R. Hooper and J. R. Sambles, "Waveguide arrays as plasmonic metamaterials:transmission below cutoff',Phys. Rev. Lett.96,073904 (2006).
    [31]J. B. Pendry, L. Martin-Moreno and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces", Science 305,847 (2004).
    [32]Chen. Cheng, Jing. Chen, Qi-Yang Wu, Fang-Fang Ren, Ji Xu, Ya-Xian Fan and Hui-Tian Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits", Appl. Phys. Lett.91,111111 (2008).
    [33]Chen Cheng, Jing Chen, Da-Jian Shi, Qi-Yang Wu, Fang-Fang Ren, Ji Xu, Ya-Xian Fan, Jian-Ping Ding and Hui-Tian Wang, "Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures", Phys. Rev. B 78,075406 (2008).
    [34]M. I. Markovic, et al. Appl Opt.29,3479 (1990); OPTIFDTD, Version 5.0, Technical Background and Tutorials, Optiwave Co.
    [35]M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen and B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays", Appl. Phys. Lett.93,221909(2008).
    [1]M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction", J. Opt. Soc. Am.71,811 (1981).
    [2]M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings", J. Opt. Soc. Am. A 3,1780 (1986).
    [3]M. G. Moharam, E. B Grann, D. A. Pommet and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings", J. Opt. Soc. Am. A 12,1068(1995).
    [4]M. G. Moharam, D. A. Pommet, E. B. Grann and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings:enhanced transmittance matrix approach", J. Opt. Soc. Am. A 12,1077 (1995).
    [5]L. Philippe and M. G. Michael, "Highly improved convergence of the coupled-wave method for TMpolarization", J. Opt. Soc. Am. A 13,779 (1996).
    [6]A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius and H. Gissen, "Optical properties of planar metallic photonic crystal structures:experiment and theory", Phys. Rev. B 70, 125113(2004).
    [7]J. M. Elson and P. Tran, "Dispersion in photonic media and diffraction from grating:a different modal expansion for the R-matrix propagation technique", J. Opt. Soc. Am. A 12,1765 (1995).
    [8]T. Delort and D. Maystre, "Finite-element method for gratings", J. Opt. Soc. Am. A 10,2592 (1993).
    [9]G. Bao, Z. M. Chen and H. J. Wu, "Adaptive finite-element method for diffraction gratings", J. Opt. Soc. Am. A 22,1106 (2005).
    [10]K. Dossou, M. A. Byrne and L. C. Botten, "Finite element computation of grating scattering matrices and application to photonic crystal band calculations", J. Comp. Phys.219,120 (2006).
    [11]G. W. Chern and L. A. Wang, "Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings", J. Opt. Soc. Am. A 16,2675 (1999).
    [12]G. J. Liu, Q. Li, G. L. Jin and B. M. Liang, "Transfer matrix method analysis of apolized gratings couplers", Opt. Comm.235,319 (2004).
    [13]J. T. Shen and P. M. Platzman, "Properties of a one-dimensional metallophotonic crystal", Phys. Rev. B 70,035101 (2004).
    [14]OPTIFDTD, Version 5.0, Technical Backgroud and Tutorials, Optiwave Co.
    [15]K. S. Kunz, et al. The finite difference time domain method for electromagnetic (CRC Press LLC, USA,1993).
    [16]L. D. Landau, et al. Electrodynamics of Continuous Media (Pergamon, New York,1960), Sec 67.
    [1]J. T. Shen and P. M. Platzman, "Properties of a one-dimensional metallophotonic crystl", Phys. Rev. B 70,035101 (2004).
    [2]C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan and H. T. Wang, "Controllable electromagnietic transmission based on dual-metallic grating structures composed of sub wavelength slits", Appl. Phys. Lett.91,111111 (2008).
    [3]C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding and H. T. Wang, "Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures", Phys. Rev. B 78,075406 (2008).
    [4]T. Matsui, A. Agrawal, A. Nahata and Z. V. Vardeny, "Transmission resonances through aperiodic arrays of Subwavelength apertures", Nature (London) 446,517 (2007).
    [5]T. Xu, C. L. Du, C. T. Wang and X. G. Luo, "Subwavelength imaging by metallic slab lens with nanoslits", Appl. Phys. Lett.91,201501 (2007).
    [6]F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals", Phys. Rev. B 66,155412 (2002).
    [7]Z. J. Sun, Y. S. Jung and H. K. Kim, "Role of surface plasmon in the optical interaction in metallic gratings with narrow slits", Appl. Phys. Lett.83,3021 (2003).
    [8]H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong and H. Tao, "Beam manipulating by metallic nano-slits with variant widths", Opt. Express 13,6815 (2005).
    [9]C. T. Wang, C. L. Du and X. G. Luo, "Refining the model of light diffraction from a Subwavelength slit surrounded by grooves on a metallic film", Phys. Rev. B 74,245403 (2006).
    [10]I. Avrutsky, Y. Z. and VI. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film", Opt. Lett.25,595 (2000).
    [11]A. P. Hibbins, M. J. Lockyear, I. R. Hooper and J. R. Sambles, "Waveguide arrays as plasmonic metamaterials:Transmission below cut off", Phys. Rev. Lett.96,257402 (2006).
    [12]E. N. Economon, "Surface plasmons in thin films", Phys. Rev.182,539 (1969).
    [13]J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, "Transmission resonances on metallic grating with very narrow slits", Phys. Rev. Lett.83,2845 (1999).
    [14]Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen", Phys. Rev. Lett. 86,5601 (2001).
    [15]OPTIFDTD, Version 5.0, Technical Backgroud and Tutorials, Optiwave Co.
    [16]A. Taflove, et al. Computational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House, Norwood,2000).
    [1]J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Talph and D. Branning, "Demonstration of an all-optical quantum controlled-NOT gate", Nature 426,264 (2003).
    [2]E. Knill, R. Laflamme and G. J. Milburn, "A scheme for efficient quantum computation with linear optics", Nature 409,46 (2001).
    [3]K. Gallo and G. Assanto, "All-optical diode in a periodically poled lithium niobate waveguide", Appl. Phys. Lett.79,314 (2001).
    [4]M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling and C. M. Bowden, "Thin-film nonlinear optical diode", Appl. Phys. Lett.66,2324 (1995).
    [5]M. Scalora, H. P. Dowling, C. M. Bowden and M. J. Bloemer, "The photonic band edge optical diode", J. Appl. Phys.76,2023 (1994).
    [6]S. F. Mingaleev, "Nonlinear transmission and light localization in photonic-crystal waveguides", J. Opt. Soc, Am. B 19,2241 (2002).
    [7]A. Alberucci and G. Assanto, "All-optical isolation by directional coupling", Opt. Lett.33, 1641 (2008).
    [8]X. S. Lin, W. Q. Wu, H. Z. and K. F. Zhou, "Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects", Opt. Express 14,2429 (2006).
    [9]A. E. Miroshnichenko, I. P. and Y. S. Kivshar, "Tunable all-optical switching in periodic structures with liquid-crystal defects", Opt. Express 14,2839 (2006).
    [10]S. Mujumdar and H. Ramachandran, "Use of a graded gain random amplifier as an optical diode", Opt. Lett.26,929 (2001).
    [11]M. W. Feise, I. V. Shadrivov and Y. S. Kivshar, "Bistable diode action in left-handed periodic structures", Phys. Rev. E 71,037602 (2005).
    [12]M. Vanwolleghem, X. Checoury, W. Smigaj, B. Gralak, L. Magdenko, K. Postava, B.Dagens, P. Beauvillain and J. M. Lourtioz, "Unidirectional band gaps in uniformly magnetized two-dimensional magnetophotonic crystals", Phys. Rev. B 80,121102(R) (2002).
    [13]Z. F. Yu, G. Veronis, Z. Wang and S. H. Fan, "One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal", Phys. Rev. Lett.100,023902 (2008).
    [14]X. H. Jia, "Performance analysis and design of tapered and chirped nonlinear Bragg gratings for application to optical isolators", Phys. Rev. E 74,056611 (2006).
    [15]A. E. Serebryannikov, "One-way diffraction effects in photonic crystal grating made of isotropic materials", Phys. Rev. B 80,155117 (2009).
    [16]A. E. Serebryannikov and E. Ozbay, "Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts", Opt. Express 17,278 (2009).
    [17]A. E. Serebryannikov and E. Ozbay, "Unidirectional transmission in non-symmetric gratings containing metallic layers", Opt. Express 17,13335 (2009).
    [18]C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan and H. T. Wang, "Controllable electromagnietic transmission based on dual-metallic grating structures composed of sub wavelength slits", Appl. Phys. Lett.91,111111 (2008).
    [19]C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding and H. T. Wang, "Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures", Phys. Rev. B 78,075406 (2008).
    [20]J. Xu, C. Cheng, Z. Zhen, J. Cheng, Q. Bai, C. Liu and H. T. Wang, "Electromagnetic transmission in configurations composed of two one-dimensional perfect-electric-conductor metal gratings", Chin. Opt. Lett. (in press).
    [21]F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit", Phys. Rev. Lett.90,213901 (2003).
    [22]L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K, M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays", Phys. Rev. Lett.86,1114(2001).
    [23]J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits", Phys. Rev. Lett.83,2845 (1999).
    [24]Q. Cao and Philippe Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits", Phys. Rev. Lett.88,057403 (2002).
    [25]A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations", Opt. Express 12,3694 (2004).
    [26]H. B. Chan, Z. Marcet, K. Woo and D. B. Tanner, "Optical transmission through double-layer metallic Subwavelength slit arrays", Opt. Lett.31,516 (2008)..
    [27]Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai and H. B. Chan, "Controlling the phase delay of light transmitted through doubole-layer metallic Subwavelength slit arrays", Opt. Lett.33,1410 (2008).
    [1]W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface Plasmon Subwavelength optics'", Nature (London) 424,824 (2003).
    [2]J. Homola, S. S. Yee and G. Gauglitz, "Surface plasmon resonance sensors:review", Sensors and Actuators B 54,3 (1999).
    [3]J. M. Brochman, B. P. Nelson and R. M. Corn, "Surface Plasmon resonance imaging measurements of ultrathin organic films", Annu. Rev. Phys. Chem.51,41 (2000).
    [4]X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter and Y. Z. Sun, "Sensitive optical biosensors for unlabeled targets:A review", Analytica Chmica Acta 620,8 (2008).
    [5]E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light", Z. Naturforsch 23A,2135 (1968).
    [6]J. Dostalek, J. Homola and M. Miler, "Rich information format surface plasmon resonance biosensor based on array of diffraction gratings", Sensors and Actuator B 107,154 (2005).
    [7]J. Homola, I. Koudela and S. S. yee, "Surface plasmon resonance based on diffraction gratings and prism couplers:sensitivity comparison", Sensors and Actuators B 54,16 (1999).
    [8]G. G. Nenningera, P. Tobiska, J. Homola and S. S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors", Sensor and Actuators B 74,145 (2001).
    [9]J. T. Hastings, J. Guo, P. D. Keathley, P. B. Kumaresh, Y. Wei, S. Law and L. G. Bachas, "Optimal self-referenced sensing using long-and short-range surface plasmons", Opt. Express 15, 17661 (2007).
    [10]D. Sarid, "Long-range surface plasma waves on very thin metal films", Phys. Rev. Lett.47, 1927(1981).
    [11]P. Adam, J. Dostalek and J. Homola, "Multiple surface plasmon spectroscopy for study of biomolecular systems", Sensors and Actuators B 113,774 (2006).
    [12]J. Dostalek and J. Homola, "Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions", Sensors and Actuators B 129,303 (2008).
    [13]A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silber nanoparticles", J. Am. Chem. Soc.124,10596 (2002).
    [14]L. Pang, G. M. Hwang, B. Slutsky and Y. Fainman, "Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor", Appl. Phys. Lett.91,123112 (2007).
    [15]Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao and Z. L. Wang, "Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal, Appl. Phys. A 92,291 (2008).
    [16]X. D. Hoa, A. G. Kirk and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors:A review of recent progress", Biosens. Bioelectron 23,151 (2007).
    [17]H. F. Lu, Z. Q. Cao, H. G. Li and Q. S. Shen, "Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide", Appl. Phys. Lett.85,4579 (2004).
    [18]R. Slavik, J. Homola, J. Ctyroky and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance", Sensors and Actuators B 74,106 (2001).
    [19]C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan and H. T. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of sub wavelength slits", Appl. Phys. Lett.91,111111 (2008).
    [20]C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding and H. T. Wang, "Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures", Phys. Rev. B 78,075406 (2008).
    [21]J. A. Porto, F. J. Garcia-Vidal and J. B. Pendry, "Transmission resonances on metallic grating with very narrow slits", Phys. Rev. Lett.83,2845 (1999).
    [22]J. T. Shen and P. M. Platzman, "Properties of a one-dimensional metallophotonic crystal", Phys. Rev. B 70,035101 (2004).
    [23]J. T. Shen, Peter B. Catrysse and S. H. Fan, "Mechanism for designing metallic metamaterials with a High Index of refraction", Phys. Rev. Lett.94,197401 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700