用户名: 密码: 验证码:
基于碳源因素的倒置/常规A~2/O工艺性能比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规A2/O工艺呈厌氧/缺氧/好氧的布置形式,好氧硝化液内回流到系统的缺氧区进行反硝化,经泥水分离后的大部分污泥回流到厌氧区,部分污泥作为剩余污泥排出系统。倒置A2/O工艺是将常规A2/O工艺的厌氧、缺氧环境倒置,并取消常规A2/O工艺硝化液内回流,适当加大污泥回流比,反应流程呈缺氧/厌氧/好氧的布置形式。倒置A2/O工艺是被实践证实的具有高效脱氮除磷性能的成熟工艺,以倒置A2/O工艺理念指导建设的污水处理厂相对于传统脱氮除磷工艺不仅节省污水处理厂的基建投资,还在运行过程中表现出节能降耗的优势。
     为了更好地揭示“厌氧/缺氧”空间位置变化对系统脱氮除磷性能及碳源代谢规律的影响,本论文在前期已有研究成果基础上,从碳源负荷及碳源类型两个方面对倒置A2/O工艺和常规A2/O工艺进行平行对比研究。通过对倒置A2/O工艺与常规A2/O工艺的小试试验结果、脱氮除磷反应机制及好氧条件下微生物代谢活性的平行对比分析,研究了倒置A2/O工艺与常规A2/O工艺碳源利用效率、脱氮除磷性能以及微生物代谢活性之间的规律性联系,从碳源因素角度揭示了倒置A2/O工艺具有高效氮磷脱除性能与节能技术优势的原因,对倒置A2/O工艺的进一步推广应用提供科学的理论指导。
     主要研究内容及结果如下:
     1、两工艺系统的小试试验研究表明,两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺系统有机物、氮磷脱除性能均优于常规A2/O工艺系统,并且在碳源因素条件不佳的情况下,倒置A2/O工艺系统较常规A2/O工艺系统的优势更加显著。倒置A2/O工艺系统在碳源负荷及碳源类型条件方面表现出更广的适用性。
     在有机物、氨氮的脱除性能方面,两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺系统均略优于常规A2/O工艺系统。在反硝化脱氮性能方面,在两种碳源负荷条件下,倒置A2/O工艺系统均优于常规A2/O工艺系统,且在低碳源负荷条件下,倒置A2/O工艺系统的脱氮性能较常规A2/O工艺系统的优势更加显著;在两种碳源类型条件下,倒置A2/O工艺系统均略优于常规A2/O工艺系统。在除磷性能方面,两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺系统均优于常规A2/O工艺系统,且在碳源因素条件不佳情况下,倒置A2/O工艺系统的除磷性能较常规A2/O工艺系统的优势更加显著。
     2、两工艺系统的脱氮机制研究表明,两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺系统脱氮性能及其脱氮反应对碳源的利用效率均优于常规A2/O工艺系统,在碳源因素条件不佳时,倒置A2/O工艺系统脱氮性能较常规A2/O工艺系统的优势更明显。
     在硝化性能方面,两种不同碳源负荷及碳源类型条件下,在氨氮硝化反应的主要阶段,倒置A2/O工艺系统的平均比硝化速率均明显高于常规A2/O工艺系统;在整个好氧阶段,常规A2/O工艺系统的平均氨氮浓度均高于倒置A2/O工艺系统,倒置A2/O工艺系统的硝化能力均优于常规A2/O工艺系统。在反硝化脱氮性能方面,在VFA数量充足时,两工艺系统脱氮效率相当。在VFA数量不足,但总有机物碳源充足,两工艺系统脱氮效率相当;在VFA数量不足,且总有机物碳源也不足,倒置A2/O工艺系统脱氮效率明显优于常规A2/O工艺系统。在碳源利用效率方面,两工艺系统达到同等脱氮效率时,常规A2/O工艺系统需要更多的碳源数量或更优质的碳源种类;在碳源数量或碳源种类越是不利的情况下,倒置A2/O工艺系统脱氮性能较常规A2/O工艺系统的优势越是明显。
     3、两工艺系统除磷机制研究表明,两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺系统微生物除磷性能及其除磷反应对碳源利用效率均优于常规A2/O工艺系统,在碳源因素条件不佳时,倒置A2/O工艺系统除磷性能较常规A2/O工艺系统的优势更明显。
     在非曝气段,两种不同碳源负荷及碳源类型条件下,常规A2/O工艺系统虽然消耗了大量的碳源在其厌氧段末端合成了较多的胞内物质,并达到了较高的释磷水平,但是却被缺氧环境低效吸磷反应大量消耗,尤其在VFA不足时,导致进入好氧段之前,其系统微生物胞内物质含量及释磷水平反而低于倒置A2/O工艺系统,充分说明常规A2/O工艺系统在非曝气阶段对碳源存在低效利用或浪费的突出问题。在好氧快速吸磷阶段,无论常规A2/O工艺系统微生物胞内物质含量在好氧起始时刻高于或是低于倒置A2/O工艺系统,其系统微生物利用胞内物质的吸磷速率均低于倒置A2/O工艺系统。
     4、两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺系统微生物较常规A2/O工艺系统微生物在好氧段均具有更高的的代谢活性,且在碳源因素不佳时,倒置A2/O工艺性能的优势更显著。微生物代谢活性的提高是在相同有机物及氮磷去除负荷条件下,倒置A2/O工艺系统宏观上表现出高效与节能性能的原因所在,这为在工程应用上进一步挖掘倒置A2/O工艺潜能指明了方向。
     通过对两工艺系统微生物好氧反应的脱氢酶活性、电子传递体系活性、比耗氧呼吸速率的对比研究表明,两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺系统微生物好氧反应的脱氢酶活性、电子传递体系活性、比耗氧呼吸速率平均值均明显高于常规A2/O工艺系统,表明倒置A2/O工艺系统微生物具有明显较高的生化反应活性。通过Biolog方法对两工艺系统微生物碳源代谢活性的对比研究表明,两种不同碳源负荷及碳源类型条件下,倒置A2/O工艺活性污泥微生物对糖类、氨基酸等常见碳源的降解能力和平均利用速率均优于常规A2/O工艺,表明倒置A2/O工艺系统微生物在碳源代谢方面具有更高的活性。
Conventional A2/O process is arranged in the order of anaerobic/anoxic/aerobic zones. The nitrifying liquid from the aerobic zone is returned to the anoxic zone to perform denitrification, most sludge from the secondary clarifiers is returned to the anaerobic zone and little of them leave the system in the form of excessive sludge. The reversed A2/O process, which exchanges the anaerobic and anoxic zones of conventional A2/O process, is arranged in the order of anoxic/anaerobic/aerobic. Such a configuration allows the nitrification liquid backflow to be canceled and guarantee the nitrogen removal efficiency by increasing the sludge reflux ratio properly. Reversed A2/O process has been proved by plentiful practice to be able to remove phosphorus and nitrogen efficiently. Compared to wastewater treatment plants (WWTPs) employed conventional A2/O process, many WWTPs designed according to the reversed A2/O process conception can either save investment during construction or economize running cost during daily operation.
     To reveal how the change of "anaerobic/anoxic" zones affect the system on denitrification and phosphorus removal performance and carbon source metabolism, the paper focused on carbon source load and carbon source type with a parallel comparative study on the reversed A2/O process and the conventional A2/O process on the basis of the existing research results. By parallel comparative study on the pilot scale experiment, the different nitrogen and phosphorus removal mechanism and the microbes' activity under aerobic conditions, the paper revealed the carbon source utilization efficiency, nitrogen phosphorus removal performance and the regularity link between microbial metabolic activity of the inverted A2/O process and conventional A2/O process. The theory basis of high efficiency and energy saving of the reversed A2/O process was founded, which may provide theoretical guidance to further optimization of the reversed A2/O process.
     The main results are as follows:
     1. During the pilot scale experiment, organic removal performance and ammonia nitrogen removal performance and phosphorus removal performance, reversed A2/O process system was superior to conventional A2/O process system in both two kinds of different carbon source under the condition of load and type. And under poor conditions of carbon source, the reversed A2/O process system showed significant advantages. Reversed A2/O process system showed wider applicability in terms of carbon source and carbon source load types.
     As far as the organic and ammonium removal performance is concerned, the reversed A2/O process always performed better than the conventional A2/O process under the two carbon load conditions and two carbon type conditions; as far as the denitrification efficiency is concerned, the reversed A2/O process always showed better efficiency than the conventional A2/O process under the two carbon load conditions and the gap is more apparent when lower carbon load conditions is adopted, the reversed A2/O process always showed little better efficiency than the conventional A2/O process under the two carbon type conditions; when it comes to the phosphorus removal, the reversed A2/O process always did better than the conventional A2/O process under the two carbon load conditions and carbon type conditions and the advantage of reversed A2/O process is more notable when the carbon sources are less favorable. So, the reversed A2/O process system showed wider applicability of nitrogen and phosphorus removal performance in terms of carbon source and carbon source load types, and under poor conditions of carbon source, the reversed A2/O process system showed significant advantages.
     2. Denitrification mechanism study shows that reversed A2/O process system was superior to conventional A2/O process system in denitrification performance and denitrification reaction of carbon source utilization efficiency under different carbon source type and carbon source load. Under poor conditions of carbon source, the reversed A2/O process system showed significant advantages in denitrification performance.
     As far as nitrification performance is concerned, comparison research of the nitrification performance under the conditions of different carbon source type and carbon source load revealed that the average specific nitrification rate of the reversed A2/O process was significantly higher than that of conventional A2/O process during the main stage of the ammonia nitrogen nitrification. It is indicated that, the nitrification ability of the reversed A2/O process system was superior to conventional A2/O process system; As far asdenitrifying denitrification performance is concerned, reversed A2/O process system was similar denitrification efficiency to conventional A2/O process system when sufficient VFAs are provided. When the carbon source is insufficient, the reversed A2/O process showed similar performance to the conventional A2/O process when relatively insufficient carbon sources are provided, but great better performance when absolutely insufficient carbon sources are provided; As far as carbon sources use efficiency is concerned, to achieve the same denitrification efficiency, conventional A2/O process system needed more carbon sources or more high-quality carbon source types. Therefore, under the two different conditions of carbon source type and carbon source load, the reversed A2/O process system showed higher carbon sources use efficiency. The more unfavorable circumstances of carbon source quantity or carbon source type is provided, the superior denitrification performance reversed A2/O process system showed than conventional A2/O process system.
     3. Phosphorus removal mechanism study shows that:Reversed A2/0process system was superior to conventional A2/O process system in phosphorus removal performance under the condition of two different carbon source load and carbon source type. Under poor conditions of carbon source, the reversed A2/O process system showed significant advantages in phosphorus removal performance.
     During the anaerobic and anoxic stages, although conventional A2/O process system consumes carbon source to synthesize intracellular substances in anoxic zone and reaches a higher level of phosphorus release, but the intracellular substances was mostly consumed by low phosphorus absorb reaction in anaerobic zone especially in poor condition of VFA. Because of that itsmicrobial intracellular substances and phosphorus release level was lower than reversed A2/O process system. This fully shows that conventional A2/O process system exist inefficient use of carbon source or waste problems in anaerobic and anoxic stages. During rapidly phosphorus absorption in the aerobic stages, whether microbial intracellular substances of conventional A2/O process system is higher or lower than reversed A2/O process system, its phosphorus uptake rate of microorganism using intracellular substances is lower than reversed A2/O process system.
     4. Reversed A2/O process system microorganisms had higher carbon source utilization efficiency and metabolic capability than conventional A2/O process system microorganisms under two different carbon source type and carbon source load conditions, with the same condition of organic matter and nitrogen removal or phosphorus removal load, the reversed A2/O process system needed shorter aerobic time or consumed less energy, and showed a better energy-saving performance.
     The comparison study on the microbes'dehydrogenase activity, electron transport system activity and specific oxygen uptake rate during aerobic stage shows that:compared to the conventional A2/O process system, the reversed A2/O process system had significantly higher levels of biochemical reactivity under two different carbon source type and carbon source load conditions. The comparison study on carbon source metabolic activity of microorganisms'taken from the two process systems by using Biolog method shows that: under two different conditions of carbon source type and carbon source load conditions, activated sludge microorganisms in the reversed A2/O process was superior to conventional A2/O process on the degradation of the common carbon sources such as sugars and amino acids, as well as the average utilization rate. The microbes in reversed A2/O process system had higher activity in terms of carbon metabolism.
引文
[1]张杰,程炜.我国水环境现状和水循环措施及对策的初步探讨[J].能源环境保护.2007,21(6).
    [2]中华人民共和国环境保护部.2011年中国环境状况公报[R].北京,2012.
    [3]国家海洋局.2012年中国海洋环境状况公报[R].,2012.
    [4]徐亚同.废水中氮磷的处理[M].1.上海:华东师范大学出版社,1996:99-103.
    [5]王淑梅,刘艳辉.湖泊水库水体富营养化的危害及污染控制措施[J].吉林水利.2009(10).
    [6]国家环境保护总局,国家质量监督检验检疫总局.城镇污水处理厂污染物排放标准[S].北京,2002.
    [7]丛晓东,吕勇,王肇君.污水生物脱氮除磷新技术[J].广东化工.2012(06):152-154.
    [8]崔晨,王伯铎,张秋菊,等.污水生物脱氮除磷新工艺的研究[J].地下水.2011(02):59-62.
    [9]李婷婷,张宇坤,曹天昊,等.短程生物脱氮过程菌群调控影响因素研究进展[J].水处理技术.2013(01):19-23.
    [10]李发东,张妍,李静.地下水硝酸盐去除中反硝化微生物的研究进展[J].中国生态农业学报.2013(01):110-118.
    [11]郭周芳,罗阳,周洪涛,等.城市污水生物脱氮除磷新技术[J].水科学与工程技术.2011(03):27-28.
    [12]王耀龙,魏云霞,李晓丽,等.废水脱氮技术研究进展[J].环境工程.2010(S1):119-123.
    [13]康志伟.废水生物脱氮新技术及研究进展[J].科协论坛(下半月).2012(01):124-125.
    [14]逯清清,胡真虎.短程硝化反硝化生物脱氮技术及工艺研究进展[J].西南给排水.2012(05):50-53.
    [15]姚阔为,杨健,聂静,等.短程硝化-反硝化生物脱氮技术研究[J].油气田环境保护.2006(04):19-21.
    [16]孙志伟,王庆年.同时硝化/反硝化生物脱氮技术的研究概况[J].甘肃科技. 2010(02):50-53.
    [17]Zeng R J, Lemaire R, Yuan Z, et al. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor [J]. Biotechnology and Bioengineering.2003,84(2):170-178.
    [18]王泞,沈雁群,高冲,等MBBR同步硝化反硝化生物脱氮技术研究进展[J].湖北民族学院学报(自然科学版).2011(01):8-12.
    [19]马凯,彭继峰.同步硝化反硝化技术的提出及其影响因素分析[J].安徽建筑工业学院学报(自然科学版).2010(04):67-71.
    [20]Mulder A, van de Graaf A A, Robertson L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology.1995, 16(3):177-183.
    [21]孟庆功,许达.新型生物脱氮途径-厌氧氨氧化研究进展[J].中国资源综合利用.2010(11):35-37.
    [22]Park H, Rosenthal A, Jezek R, et al. Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities [J]. Water Research.2010,44(17):5005-5013.
    [23]白莉,杨云龙.生物脱氮新技术[J].科技情报开发与经济.2003(07):101-102.
    [24]Hu B L, Shen L D, Xu X Y, et al. Anaerobic ammonium oxidation (anammox) in different natural ecosystems [J]. Biochemical Society Transactions.,39:1811-1816.
    [25]Tang C, Zheng P, Wang C, et al. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water Research.2011,45(1):135-144.
    [26]亢悦.影响厌氧氨氧化反应的主要因素及其研究进展[J].广州化工.2012(11):50-52.
    [27]李亚峰,张晓宁,陈文通,等.碳源对厌氧氨氧化脱氮性能影响的试验研究[J].环境工程.2013(01):35-38.
    [28]Isaka K, Sumino T, Tsuneda S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions[J]. Journal of Bioscience and Bioengineering.2007,103(5):486-490.
    [29]梁伟刚.厌氧氨氧化(Anammox)生物脱氮工艺在污泥水处理中的应用[J].净水技术.2011(03):44-46.
    [30]Winkler M K H, Kleerebezem R, van Loosdrecht M C M. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures[J]. Water Research.2012,46(1):136-144.
    [31]Monballiu A, Desmidt E, Ghyselbrecht K, et al. Enrichment of anaerobic ammonium oxidizing (Anammox) bacteria from OLAND and conventional sludge:Features and limitations[J]. Separation and Purification Technology.2013,104(0):130-137.
    [32]Gao F, Zhang H, Yang F, et al. The contrast study of anammox-denitrifying system in two non-woven fixed-bed bioreactors (NFBR) treating different low C/N ratio sewage[J]. Bioresource Technology.2012,114(0):54-61.
    [33]Daverey A, Su S, Huang Y, et al. Nitrogen removal from opto-electronic wastewater using the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process in sequencing batch reactor[J]. Bioresource Technology.2012,113(0): 225-231.
    [34]Wang C, Lee P, Kumar M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant[J]. Journal of Hazardous Materials.2010,175(1-3):622-628.
    [35]邵友元,姚创,汪义勇,等.生物废水处理中除磷机理及工艺分析[J].化学与生物工程.2007,24(10).
    [36]Pijuan M, Guisasola A, Baeza J A, et al. Aerobic phosphorus release linked to acetate uptake:Influence of PAO intracellular storage compounds[J]. Biochemical Engineering Journal.2005,26(2-3):184-190.
    [37]高治国,杨严,陈文通.污水生物除磷技术的发展进程[J].辽宁化工.2011(02):134-136.
    [38]刘晓亮,李亚新.生物除磷机理与新工艺[J].山西建筑.2006(01):191-192.
    [39]Oehmen A, Lemos P C, Carvalho G, et al. Advances in enhanced biological phosphorus removal:From micro to macro scale[J]. Water Research.2007,41(11):2271-2300.
    [40]王琴,陈银广.活性污泥合成聚羟基烷酸(PHAs)的研究进展[J].环境科学与技术.2007(05):111-114.
    [41]Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding[J]. Biotechnology and Bioengineering.2004,85(6):569-579.
    [42]Maurer M, Gujer W, Hany R, et al. Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems[J]. Water Research.1997,31(4): 907-917.
    [43]Jun H, Shin H. Substrates transformation in a biological excess phosphorus removal system[J]. Water Research.1997,31(4):893-899.
    [44]Satoh H, Ramey W D, Koch F A, et al. Anaerobic substrate uptake b y the enhanced biological phosphorus removal activated sludge treating real sewage[J]. Water Science and Technology.1996,34(1-2):9-16.
    [45]Mino T, van Loosdrecht M C M, Heijnen J J. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Water Research.1998,32(11): 3193-3207.
    [46]Fuhs G W, Chen M. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microbial Ecology.1975,2(2):119-138.
    [47]Streichan M, Golecki J R, Schon G. Polyphosphate-accumulating bacteria from sewage plants with different proceses for biological phosphorus removal[J]. FEMS Microbiology Letters.1990,73(2):113-124.
    [48]H D M, van Loosdrecht M C M, A S. Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate[J]. Water science And Technology.1985(17):119-125.
    [49]Seviour R J, Mino T, Onuki M. The microbiology of biological phosphorus removal in activated sludge system[J]. FEMS MICROBIOLOGY REVIEWS.2003,27(1):99-127.
    [50]Wagner M, Erhart R, Manz W, et al. Developement of an ribsomal-RNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in-situ monitoring in activated sludge[J]. Appllied Environment and Microbiology.1994,60(3): 792-800.
    [51]Made I. Morphology in situwith rRNA targeted probe and respiratory quinine profile of enhanced biological and non-enhanced biological phosphorus removal sluge[Z]. Vancouver: 1998831-836.
    [52]Kampfer. Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group-and-genus-specific rRNA-targeted oligonucleotide probes[J]. Microbial ecology. 1996(32):101-121.
    [53]Beacham A M, Seviour R J, Lindrea K C, et al. Genospecies diversity of acinetobacter isolates obtained from a biological nutrient removal pilot plant of a modified uct configuration [J]. Water Research.1990,24(1):23-29.
    [54]Bond P L, Hugenholtz P, Keller J, et al. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing bactch reactors[J]. Applied and Environmental Microbiology.1995,61(5):1910-1916.
    [55]Bond P L, Erhart R, Wagner M, et al. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems[J]. Applied and Environmental Microbiology.1999,65(9):4077-4084.
    [56]Hesselmann R P X, Werlen C, Hahn D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic and Applied Microbiology.1999,22(3):454-465.
    [57]Crocetti G R, Hugenholtz P, Keller J, et al. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J]. Appllied Environment and Microbiology.2000,66(3): 1175-1182.
    [58]Liu W T, Nielsen A T, Wu J H, et al. In situ identification of polyphosphate-and polyhydroxyalkanoate-accumulating traits for microbial population in a biological phosphorus removal process[J]. Environment Microbiology.2001,3(2):110-122.
    [59]Zilles J L, Peccia J, Noguera D R, et al. Involvement of Rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants[J]. Appllied Environment and Microbiology.2002,68(6):2763-2769.
    [60]Saunders A M, Oehmen A, Blackall L L, et al. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants[J]. Water Science and Technology.2003, 47(11):37-43.
    [61]Kong Y, Nielsen J L, Nielsen P H. Microautoradiographic Study of Rhodocyclus-Related Polyphosphate-Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants[J]. American Society for Microbiolgy.2004,70(9): 5383-5390.
    [62]Gu A Z, Saunders A M, Neethling J B, et al. Investigation of PAOs and GAOs and their effects on EBPR performance at full-scale wastewater treatment plants in US[R]. Washington, DC, USA:WEFTEC,2005.
    [63]He S, Gu A Z, Mcmahon K D. The role of Rhodocyclus-like organisms in biological phosphorus removal:factors influencing population structure and acivity.[Z]. Washington, DC, USA:2005.
    [64]Gu A Z, Saunders A M, Neethling J B, et al. Investigation of PAOs and GAOs and their effects on EBPR performance at full-scale wastewater treatment plants in US[Z]. Washington, DC, USA:2005.
    [65]Wong M T, Mino T, Seviour R J, et al. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan[J]. Water Research.2005,39(13):2901-2914.
    [66]万金保,王建永.反硝化除磷理论及运用现状[J].水处理技术.2008(03):7-10.
    [67]T K, G S, van Loosdrecht M C M. Biological phosphorus removal from wastewater by anaerobic-aerobic sequencing batch reactor[J]. Water science And Technology.1993,5-6(17): 241-242.
    [68]马娟,彭永臻,王丽,等.反硝化除磷技术及其影响因素分析[J].工业水处理.2009(4).
    [69]Hoffmann, Martin, Choi. Envioronment applications of semiconductor photocatalysis[J]. Chemical reviews.1995,1(95):69-96.
    [70]孙梦,张培玉,张晨.城市污水的除磷技术分析[J].水处理技术.2010(08):16-20.
    [71]夏宏生,向欣.废水除磷技术及进展分析[J].环境科学与管理.2006(01):125-128.
    [72]彭轶,彭永臻,吴昌永.A~2/O工艺中的反硝化除磷[J].环境工程学报.2008(06):752-756.
    [73]王亚宜,彭永臻,王淑莹,等.反硝化除磷理论、工艺及影响因素[J].中国给水排水.2003(01):33-36.
    [74]陈腾殊,白少元,徐建宇,等.反硝化除磷机理及影响因素研究[J].水科学与工程技术.2010(04):46-49.
    [75]张存珍,韩猛.废水生物除磷及回收新技术[J].农业与技术.2012(03):128-130.
    [76]Mulkerrins D, Dobson A D W, Colleran E. Parameters affecting biological phosphate removal from wastewaters[J]. Environment International.2004,30(2):249-259.
    [77]王冬波,李小明,曾光明,等.内循环SBR反应器无厌氧段实现同步脱氮除磷[J].环境科学.2007(03):534-539.
    [78]马亚莉,袁林江.SBR无厌氧段生物强化除磷的诱导研究[J].中国给水排水.2009(11):8-11.
    [79]李菲菲,袁林江,陆林雨.单一好氧环境下的强化生物除磷研究[J].环境科学.2010(09):2113-2117.
    [80]陈光秀,袁林江,韩玮.生物脱氮系统中无厌氧释磷的生物除磷工艺[J].环境科学学报.2008(09):1800-1806.
    [81]张爽,姜蔚,徐桂芹,等.固定化硝化菌在不同温度下对氨氮的去除效能研究[J].环境科学与管理.2008,33(5).
    [82]刘长青,毕学军,张峰,等.低温对生物脱氮除磷系统影响的试验研究[J].水处理技术.2006(08):18-21.
    [83]侯红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响[J].中国给水排水.2005(12):19-23.
    [84]王建如,刘祖文,朱强,等.改良型Carrousel氧化沟工艺脱氮除磷影响因素分析[J].有色金属科学与工程.2011(01):51-54.
    [85]吴代顺,桂丽娟,侯红勋,等COD、MLSS、pH值及污泥驯化对脱氮除磷的影响[J].中国给水排水.2012(13):117-120.
    [86]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998:69.
    [87]方茜,韦朝海,张朝升,等.碳氮磷比例失调城市污水的同步脱氮除磷[J].环境污染治理技术与设备.2005(11):46-50.
    [88]上海市政工程设计研究总院.室外排水设计规范[S].新华书店北京发行所,上海市建设和交通委员会,2006.
    [89]张波.生物脱氮除磷工艺系统的几个重要问题[J].青岛建筑工程学院学报.1998(01):2-7.
    [90]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水.2000(12):1-4.
    [91]曹贵华,黄勇,潘杨.常规生物脱氮除磷工艺中问题及对策[J].水处理技术.2009(03):102-106.
    [92]吴昌永.A~2/O工艺脱氮除磷及其优化控制的研究[D].哈尔滨工业大学,2010.
    [93]Randall, Barnard, Stensel. Design and Retrofit of wastewater Treatment Plants of Biological Nutrient Removal[M]. Lancaster, Pennsylvania:Technomics Publishing,1992.
    [94]Federation W E. Design of Municipal Wastewater Treatment Plants, Manual of Practice[M]. NO.8 ed. Alexandria, Virginia:1992.
    [95]I S R. Phosphorus and Nitrogen Removal from Municipal Wastewater:Principles and Practice[M].2 ed. Michigan:1991.
    [96]余辉群.生物脱氮原理水与废水技术研究[M].北京:中国建筑工业出版社,1997:457-485.
    [97]张波.城市污水生物脱氮除磷技术工艺与机理研究[D].上海:同济大学,1999.
    [98]张波,苏玉民.倒置A~2/O工艺的氮磷脱除功能[J].环境工程.1999(02):7-10.
    [99]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水. 1997(03):7-10.
    [100]毕学军,张波.倒置A^2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程.2006,24(3).
    [101]毕学军,高廷耀.缺氧/厌氧/好氧工艺的脱氮除磷研究[J].上海环境科学.1999,18(1):19-21.
    [102]张波,高廷耀.倒置A^2/O工艺的原理与特点研究[J].中国给水排水.2000,16(7):11-15.
    [103]苗纪伟,何群彪,周增炎,等.倒置A^2/O工艺在城市污水处理中的生产性应用[J].河南师范大学学报:自然科学版.2004,32(1).
    [104]傅钢,董滨,周增炎,等.倒置AAO工艺的设计特点与运行参数[J].中国给水排水.2004,20(9).
    [105]黄理辉,张波,毕学军,等.倒置A^2/O工艺的生产性试验研究[J].中国给水排水.2004,20(6).
    [106]王振江,武鹏崑,毕学军.倒置A^2/O生物脱氮除磷工艺的生产性试验[J].中国给水排水.2006,22(19):36-38.
    [107]甘晓明,邢绍文,徐高田,等.倒置A^2/O污水处理工艺的特点及应用实例[J].环境工程学报.2007,1(6).
    [108]朱五星,汪诚文,施汉昌.倒置AAO工艺中物料及能量流向的研究[J].环境工程学报.2007,1(3).
    [109]刘长青,张峰,毕学军,等.倒置A^2/O与改良A^2/O工艺生产性试验比较[J].水处理技术.2008,34(5).
    [110]刘伟岩,李军,宋玮华,等.碳源对缺氧/厌氧/好氧工艺脱氮除磷效果的影响[J].中国给水排水.2009(13):55-57.
    [111]张辰,谭学军.复合倒置A~2/O工艺优化运行参数研究[J].给水排水.2009(11):25-28.
    [112]彭明国,薛春阳,陈毅忠,等.分点进水对倒置A~2/O工艺脱氮除磷效果的影响[J].环境工程学报.2010(12):2793-2796.
    [113]侯亚辉,高健磊,吕晶晶,等.进水配比对前置缺氧A~2/O工艺脱氮除磷处理的影响研究[J].河南科学.2011(01):92-94.
    [114]Ahn J, Daidou T, Tsuneda S, et al. Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay[J]. Water Research.2002,36(2):403-412.
    [115]Kang X S, Liu C Q, Zhang B, et al. Application of reversed A2/O process on removing nitrogen and phosphorus from municipal wastewater in China[J]. Water Science and Technology.2011,63(10):2138-2142.
    [116]Dai Y, Yuan Z, Jack K, et al. Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source[J]. Journal of Biotechnology.2007,129(3):489-497.
    [117]Dai Y, Yuan Z, Wang X, et al. Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources[J]. Water Research.2007,41(9):1885-1896.
    [118]Chuang S H, Quyang C F, Wang Y B. Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition[J]. Water Research.1997,30(12): 2961-2968.
    [119]尹军.消化污泥脱氢酶活性检测的若干问题[J].中国给水排水.2000,16(10).
    [120]胡子斌.TTC—脱氢酶活性常温萃取测定法及应用[J].工业水处理.2001,21(10).
    [121]尹军,谭学军,任南琪.用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J].环境科学.2005,26(1).
    [122]陈健波,施东文,奚旦立,等.基于SBR工艺的活性污泥呼吸速率在线软测量的研究[J].环境工程.2005,23(3).
    [123]Garland, Mills. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied Environment Microbiology.1991,8(57):2351-2359.
    [124]De Fede K L, Panaccione D G, Sexstone A J. Characterization of dilution enrichment cultures obtained from size-fractionated soil bacteria by BIOLOG(?) community-level physiological profiles and restriction analysis of 16S rRNA genes[J]. Soil Biology and Biochemistry.2001,33(11):1555-1562.
    [125]De Fede K L, Sexstone A J. Differential response of size-fractionated soil bacteria in BIOLOG(?) microtitre plates[J]. Soil Biology and Biochemistry.2001,33(11):1547-1554.
    [126]杨永华,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志2000,20(2).
    [127]Fang C, Radosevich M, Fuhrmann J J. Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses[J]. Soil Biology and Biochemistry.2001,33(4-5):679-682.
    [128]Choi K, Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods.1999,36(3):203-213.
    [129]Kaiser S K, Guckert J B, Gledhill D W. Comparison of activated sludge microbial communities using BiologTM MicroPlates[J]. Water Science and Technology.1998,37(4-5): 57-63.
    [130]席劲瑛,胡洪营,等.Biolog方法在环境微生物群落研究中的应用[J].微生物学报.2003,43(1).
    [131]李亚静,陈修辉,孙力平,等.丙酸/乙酸比值对反硝化除磷的影响[J].中国给水排水.2011(01):79-81.
    [132]高景峰,彭永臻,王淑莹,等.不同碳源及投量对SBR法反硝化速率的影响[J].给水排水.2001(05):55-58.
    [133]Chuang S H, Ouyang C F, Yuang H C, et al. Effects of SRT and do on nutrient removal in a combined as-biofilm process[J]. Water Science and Technology.1997,36(12):19-27.
    [134]高尚,戴兴春,陈曦,等.PHB监测A~2/O工艺除磷及负荷率耦合关系的研究[J].环境科学.2008(11):3093-3097.
    [135]吴光学,管运涛.SRT及碳源浓度对厌氧/好氧交替运行SBR工艺中PHB的影响[J].环境科学.2005(02):126-130.
    [136]吉芳英,罗固源,袁春华.除磷脱氮SBR系统的污泥特性分析[J].中国给水排水.2003(06):16-19.
    [137]高岩,戴兴春,陈曦,等.城市合流污水A-2/O处理系统中TTC-ETS活性监测研究[J].环境科学.2009(06):1711-1715.
    [138]尹军,吴相会,王晓玲,等.用TTC-ETS和INT-ETS表征微生物活性[J].中国给水排水.2008(07):8-11.
    [139]尹军,王雪峰,王建辉,等.SBR工艺活性污泥比耗氧速率与控制参数的关系[J].环境污染与防治.2007(07):481-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700