用户名: 密码: 验证码:
抗真菌活性水稻内生菌的筛选及美达霉素生物合成中糖基化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物资源(无论是菌体本身还是其活性代谢产物)在农、林、医、药等各行业都有重要的利用价值,筛选更有应用价值的微生物资源或研究其天然代谢产物的生物合成途径是当今微生物资源开发利用的两大重要研究领域。在农业生防方面,选择更多、更好、性能稳定的、对寄主安全的、能作为外源基因载体的内生菌一直是生防工作者奋斗的目标;而作为有应用价值的抗生素类化合物,研究其合成代谢机制则是进行抗生素结构和活性优化的基础,展开这两方面的研究具有重要的现实意义。
     该文从两个方面展开了研究工作:(一)以开发生防内生菌为目的,分离到一株对多种农业病原真菌有抑制作用的水稻内生细菌CHM-1 (Bacillus licheniformis CHM-1),对其分类地位、抑菌活性、内生定殖、防病效果与寄主的关系进行了研究;(二)对链霉菌AM-7161 (Streptomyces sp. AM-7161)产生的芳香聚酮类抗生素美达霉素(Medermycin)生物合成途径的糖基化现象从分子水平上进行研究。具体工作内容如下:
     (一)具有抑制植物病原真菌活性的水稻内生细菌分离及相关性质研究:
     (1)在多年水稻和油菜轮作的田块取样,分离多株内生细菌,筛选出对几种重要的植物病原真菌抑制活性最强的CHM-1菌株;
     (2)通过离体、活体的植物病原真菌抑制作用的测定,初步探讨了该菌株对几种植物病原真菌的抑制作用及作用机理,并进行了对玉米小斑病(Bipolaris.maydis)、水稻纹枯病(Rhizoctonia solani)活体防效测定,发现CHM-1菌株对玉米小斑病和水稻纹枯病的防治效果分别为70.22%、62.79%;
     (3)从形态学特征、生理生化反应、代谢类型、分子生物学等各个水平对CHM-1进行了分类鉴定,初步鉴定为一株解淀粉芽孢杆菌(Bacillus licheniformis CHM-1);
     (4)为了将其作为候选的生防菌株开发利用,本文利用双抗标记法研究CHM-1在水稻和油菜内的定殖作用,发现其在水稻和油菜内的定殖不仅不会给两种作物带来危害,反而对其具有明显的促生作用。
     (二)聚酮抗生素美达霉素生物合成途径中糖基化修饰的研究:
     (1)通过同源性分析确定:链霉菌AM-7161的美达霉素生物合成基因簇中存在6个与脱氧六碳糖合成相关的糖基合成酶基因(med-ORF14、15、16、17、19、20)以及一个与C—糖基转移酶基因同源的基因med-OKF8。推测这7个基因完成美达霉素结构中安哥拉糖胺的合成以及C—糖苷键的形成:
     (2)通过构建这7个基因的共表达系统,在宿主天蓝色链霉菌B135 (Streptomyces coelicolorB135)提供糖基受体的情况下,进行共表达系统的异源表达,或在一个通用天蓝色链霉菌细胞((Streptomyces coelicolor CH999)中进行异源表达,同时与产生糖基供体的菌株B135进行共培养(即单菌株培养或双菌株共培养),并通过LC/MS检测发酵产物,发现这7个基因的共表达可以导致聚酮糖基受体(由宿主体内积累的或共培养体系中另一个菌株提供)转化成带有糖基的结构,说明这7个基因共同参与脱氧糖胺的合成和转移过程;
     (3)利用PCR-Targeting介导的链霉菌基因突变操作系统(RedirectTM)将med-OKF8从美达霉素完整的生物合成基因簇中敲掉,获得了突变基因簇,进行异源表达,获得突变菌株;然后再克隆med-OKF8连接到链霉菌表达型载体上,经过原生质体转化导入突变基因簇异源表达细胞,获得回补菌株。通过LC/MS产物分析野生型菌株、突变菌株及互补菌株的发酵产物,发现在med-ORF8敲掉的突变株中确实没有美达霉素的产生,而在回补菌株中,又检测出了美达霉素的存在,这说明med-ORF8在美达霉素的C-糖基化过程中是必不可少的基因:
     (4)本文构建了五个有关,ned-ORF8基因的原核表达体系,从中筛选出了最优化的表达体系,并进行了诱导条件的探索,确定了med-ORF8高效可溶性表达的体系和诱导条件,这为下一步弄清楚,ned-ORF8的底物识别特异性以及酶学性质研究奠定基础。
Many microorganisms with biological activity against pathogenic organisms could accumulate a vast number of bioactive compounds with structural and functional diversity. Isolation of more new microbes with potential application in crop protection and clinical therapy and elucidation of biosynthetic mechanism of bioactive natural products have been of great interest.
     The present study focused on two aspects:firstly, in order to get more microbes possessing the powerful characteristics such as stability, high effect and safety to hosts when used to control fungal diseases on crops, an endophytic bacteria from the rice with strong antifungal activity was screened and identified, and its colonized action and effect on the hosts were also studied; Secondly, in order to elucidate the mechanism of C-glycosylation of an aromatic antibiotic medermycin with antibacterial and antitumor activity, the function of several medermycin biosynthetic genes related to C-glycosylation was investigated:
     1.Here, several endophytic bacterial strains were isolated from the field rotated by rice and cole for many years.Among the isolated strains, CHM-1 was found to have the highest antifungal activity. The inhibitory effect of CHM-1 and its action mechanism on several kinds of plant pathogenic fungi were investigated by in vivo and in vitro tests, and the control efficacy was also determined against Bipolaris maydis and Rhizoctonia solani in vitro. On the basis of the comprehensive taxonomic data from morphological, physiological and biochemical characteristics, and 16S rDNA sequence analysis, CHM-1 was identified to be Bacillus licheniformis. In order to develop CHM-1 as a candidate for biocontrol in agriculture, the colonized action of this isolate was further probed in rice and cole by double-resistance tag. The results showed that CHM-1 has no any harm to the investigated plant hosts, and promotes strongly the growth of hosts.
     2.In the biosynthetic gene cluster of medermycin, there are six genes (med-ORF14,15,16,17, 19,20) proposed to encode glycosylsynthases and one C-glycosyltransferase-homologous gene med-ORF8,which are proposed for the glycosyl-synthesis and-transferring of a novel angolasamine during medermycin biosynthesis. A multigene coexpression system containing 7 genes as above was introduced into a streptomyces host which could offer a sugar acceptor. The LC/MS analysis on the resultant metabolites revealed that this coexpression system could covert the sugar acceptor into a glycosylated structure.Knock out and complementation experiments of med-ORF8 using PCR-Targeting RedirectTM technology indicated that med-ORF8 is an indispensable gene in the process of C-glycosylation of medermycin. But substrate specificity and enzymatic properties of Med-ORF8 remains obscured. Therefore, in order to obtain Med-ORF8 protein enough for further enzymatic characterization in vitro, several prokaryotic expression systems concerned with med-ORF8 gene were established, then an optimized system was screened to express efficiently soluble Med-ORF8 protein.
引文
1.丁建清.利用生物多样性保护生物多样性.生物防治,1996,4(4):222-227
    2.杨海莲等.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报,2000,30(2)245-251
    3.姚琳.微生物生物防治的研究综述.生物防治,2009,(5):123-125
    4.张文燕.我国农药产业发展新趋势.农用化学用品周刊,2000,10(3),125-130
    5.刘士旺.生防绿色木霉工程菌的构建及其诱导植物抗病性研究.浙江大学博士学位论文,2003
    6.刘云霞.植物内生细菌的研究与应用.植物保护,1994,20(5):30-32
    7.郭良栋.内生真菌研究进展.微生物系统,2001,20(1):148-152
    8. Kloepper J W, Beauchamp C J, et al., Canadian Journal ofMicrobiology.1992,38:1219-1232
    9.杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报,2000,30(2):106-110
    10. Keel C, Defago G,et al., Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact (Edns. A.C. Gange, V.K. Brown). Multitrophicinteractions in terrestrial system. Bla.. Sci,1997,27-47
    11.刘振宇,柳韶华,赵春青等.枯草芽孢杆菌(Bacillus subtilis)对桑炭疽病菌的抑制作用.蚕业科学,2005,31(4):409-412
    12.穆常青,潘玮,陆庆光等.枯草芽孢杆菌对稻瘟病的防治效果评价及机制初探.中国生物防治,2006,22(2):158-160.
    13. Siddiqui I A, Shaukat S S. Trichoderma harzianum Enhancesthe Production of Nematicidal Compounds in Vitro and Improves Biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in Tomato. Lett. App. Microbiol,2004,38 (2):169-175.
    14. Vizcaino J A, Sanz L, Cardoza R E, et al., Detection of Putative Peptide Synthetase Genes inTrichoderma Species:Application of this Method to the Cloning of a Gene from T. harzianum CECT 2413. FEMS. Microbiol. Lett.,2005,244(1):139-148
    15. Buchenauer H. Biological control of soil borne disease by rhizobacteris. Crop. Prop,1995,44: 440-501
    16. Tjamos S E, Flemetakis E, Paplomatas E J, et al., Induction of resistance to Verticillium dahliae in A rabidopsis thaliana by the biocontrol agent K2165 and pathogenesis related proteins gene exp ression. Mol. Pla. Micro. Inter,2005,18 (6):555-561
    17. Van Loon L C, Bakker P A. Induced systemicresistance as a mechanism of disease suppression by rhizobacteria//Siddiqui Z A,.PGPR:Biocontrol and Biofertilization. Dordrecht:Springer: 2005,39-66
    18.Yedidia I, Benhamou N, Kapulnik Y, et al.,Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite-Trichoderma harzianum strain T2203. Plant. Phy. Biochem,2000,38:863-873
    19. Yedidia I, Shoresh M, Kerem Z, et al.,Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderm a asperellum (T2203) and accumulation of phytoalexins. Appl. Environ.Microbio,2003,69:7343-7353
    20.柯佳颖,陈寅山,饶小珍.凝集素及其生物学作用.宁德师专学报:自然科学版,2005,17(11):24-27.
    21.Gan Y, Meng L Y, Fan M W, et al., A study of the Physicochemical and Biological Properties of Mutanase from Trichoderma harzianum. Zhonghua Kou Qiang Yi Xue Za Zhi.2006,41(1):33-36.
    22. Hansen D H, Mar C.Serum-activated Assembly and Membrane Translocation of an Endogenous Curr. Biol,2001,11 (5):356-360
    23. Imberty K, Anne T. Structural Basis of High-Afflycan Recognition by Bacterial and Fungal Lectins. Current Onion in StructuralBiology,2005,15 (5):525-534.
    24. Benhamou N, Belanger R R, Paulitz T C, et al., Induction of differential host responses by Pseudomonas fluorescens in RiT-DNA-transformed pea roots after challenge with Fusarium oxysporum f. sp. pisi and Pythiumultium. Phytopathol,1996,86:1174-1185
    25.Dubeikovsky A N, Mordukhova E K. Growth Promotion of black current soft wood cuttings by recombinant strain Pseudomonus fluorescens BSP 53 a synthesizing anincreased amount of indole 3-acetic acid. Soil. Biol. Biochem,1993,25:1277-1281
    26. Surette M A, Sturz A V. Bacterial endophytes inprocessing carrots (Daucus carota L.var.sativus):theirlocalization, population density biodiversity and their effects on plant growth. Plant and Soil,2003,253:381-390
    27. Nejad P, Johnson P A. Endophytic bacteria induce growth promotion and wilt disease suppression in oil seed rape and tomato. Biol Control,2000,18:208-215
    28.何红.辣椒内生枯草芽孢杆菌(Bacillus subtilis)防病促生作用的研究.福建农林大学,博士学位论文,2003.
    29.陈忠义,张杰,黄大防.植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报,2003,33(2):79-103
    30.潘康成,冯兴等.益生芽孢杆菌Pab02和PSA38 16SrRNA序列分析鉴定.中国畜牧兽医协会微生态学会论文集,2008
    31. Sambrook J, Russell D. Mol. Clon:A Laborator Manual.cold spring harbor.2001
    32. Coombs J T, Franco C M. Visualization of an endophyticst reptomyces species in wheat seed.Appl Environ Microbiol,2003,69 (7):4260-42621
    33.罗明,芦云,张祥林,程钟剑.内生拮抗细菌在哈密瓜植株体内的传导定殖和促生作用研究.西北植物学报,2007,27(4),0719-0725
    34.刘志恒,姜成林主编.线菌现代生物学与生物技术,群学出版社,2004
    35. kiesser H M, Kiesser T, Hopwood D A, et al., A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome.. JBacteriol,1992,174:5496-5507
    36. lin Y S, Kiesser H M, Hopwood D A,et al.,The chromosomal DNA of streptomyces lividans 66 is linear. Mol Microbiol,1993,10:923-933
    37. Pandza K, Pflalzer G, Cullum J, et al.,Physical mapping shows that the unstable oxytetracyline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome. Microbiol, 1997,143:1493-1501
    38. Goodfellow M, Cross T, Williams S T, et al.,The Biology of the Actinomyces. Academic Press, 1984
    39. Leblond P, Decaris B. New insights into genetic instablity of of stremtomyces.FEMS Microbiol Lett,1994,123:225-232
    40. Karkasovsky M, Kormanec J, Kollarova M, et al., RNA polymerase hetergenicity in streptomyces avermitilis permits investigation of two novel giant linear plasmid,pSA1 and pSA2. Microbiol Lett,1994,140:1367-1371
    41.Leskiw B K, Mah R, Lawlor E J and Chater K F. Accumulation of bldA-specified transfer RNA is temporally regulated in streptomyces coelicolor A3(2). JBacteriol,1993,175:1995-2005
    42.李爱英.变铅青链霉菌DNA异常修饰系统的分子生物学研究.华中农业大学博士学位论文,2000
    43. Hopwood D A, Chater K F, Dowding J E, et al., Recent adwance in streptomyces coelicolor genetics. Bacteriol Rev,1973,37:371-405
    44. Nodwell J, Yang M, Kuo D, et al., Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in S treptomyces coelicolor. Gene,1999, 151 (2):569-573.
    45. Chater K. A morphological and genetic mapping study of white colony mutants of Streptomyces coelicolor J. Gen. Microbiol,1972,72 (1):9-12
    46. Ryding N, Bibb M, Molle V, et al., New sporulationloci in Streptomyces coelicolor A3 (2). J Bacteriol.1999,181(17):5419-5423
    47. Gehring A M, Yoo N J, Losick R, et al., RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor. J Bacteriol,2001,183 (20):5991-6000.
    48.雷健,赫卫清,王以光.链霉菌形态分化和次级代谢调控机制的研究进展.药物生物技术,2007,14(3):225-229
    49. Doull J L, Vining LC. Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2):suppressive effects of nitrogen and phosphate. Appl. Micro. Biotech,1990,32:449-453.
    50. Umeyama T, Lee P C, Ueda K, et al., system involved in the response of aerial mycelium formation to glucose in treptomyces griseus. Microbiology,1999,145(9):2281-2286.
    51. Aigle B, Pang X, Decaris B, et al., Involvement of Alp, A new member of the Streptomyces antibiotic regulatory protein family, inregulation of the duplicated type II polyketidesythase alp gene cluster in Streptomyces ambofaciens. J. Bacteriol.2005,187 (7):2491-2498
    52. Altenbuchner J, Cullum J. DNA amplification and an unstable arginin gene in streptomyces lividanse 66. Mol.Gen. Genet,1985,201:192-197
    53. Leblond P, Decaris B. New insights into genetic instablity of of stremtomyces. FEMS. Microbio.lLett,1994,123:225-232
    54. zhou X, Deng Z, Hopwood D A, et al., Characterrization of HAU3, a wide host-range temperate streptomyces phage that form plaques on derivatives of streptomyces lividan s66, but not on the wild-type. J. Bacteriol,1994,176:2096-2099
    55. Zhou X, Deng Z, Hopwood D A, et al., streptomyces lividans66 contains a gene for phage resistance which is similal to the phage lambdaea59 endounclease gene. Mol. Microbiol,1994, 12:789-797
    56. Chen C W, Lin Y S, Yang Y L, et al., The linear chromosome of streptomyces:Structure and Dynamics. Actinomycetol,1994,8:103-112
    57. Birch A, Hausler A, Hutter R, et al., Genome rearrangement and genetic instablity in streptomyces spp. J. Bacteriol,1990,172:4138-4142
    58. Ichinose K, Ozawa M, Itou K, et al., Cloning sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161:towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiology,2003,149:1633-1645
    59.孙宇辉,邓子新.聚酮化合物及其组合生物合成.中国抗生素杂志,2006,1(31):6-14
    60.曹孟婵,张部昌.大环内酯类抗生素糖基合成及生物学功能.中国抗生素杂志,2007,3(32):140-145
    61.黄惠娟,乔建军.聚酮类抗生素组合生物合成.细胞生物学杂志,2007,29:692-696
    62.尚珂,胡又佳,朱春宝,朱宝泉.脱氧糖组合生物合成的研究进展.中国医药工业杂志,2007,38(4):304-308
    63. Julia S.,Christian H. Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J. Biotechnol.2006,124:690-703
    64. Donadio S, Staver M J, Mc Alpine J B, et al., Modular organization of genes required for complex polyketide biosynthesis. Science,1991,252:675-679
    65. Katz L, Donadio S. polyketide synthesis:prospects for hybride antibiotics. Annu.Rev.Microbiol, 1993,47:875-912
    66. Hopwood D A. Forty years of genetics with Streptomyces from in vivo through in vitro to in silico. Microbiology,1999,145:2183-2202
    67. Hopwood D A. Genetic contributions to understanding polyketide synthases. Chem. Rev,1997,97: 2465-2498
    68. Xue Y, Zhao L, Liu H W, et al., A gene cluster for macrolide antibiotic biosynthesis in streptomyces venezuelae:architecture of metabolic diversity. Proc.Natl. Acad. Sci,1998, 95:12111-12116
    69. Bililign T, Hyun C G, Williams J S, et al., The hedamycin locus implicates a novel aromatic PKS priming mechanism. Chem Biol,2004,11(7):959~969.
    70. Hantke K, Nicholson G, Rabsch W, et al., Salmochelins siderophores of Salmonella enterica and uropathogenic Escherichia coli strains are recognized by the outer membrane receptor IroN. Proc.Natl. Acad. Sci,2003,100(7):3677~3682
    71. Schimana J, Fiedler H P, Groth I, et al., Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tu 6040 Taxonomy fermentation isolation and biological activities. J. Antibiot (Tokyo),2000,53(8):779-787
    72. Li A, Itoh T, Taguchi T, et al., Functional studies on a ketoreductase gene from Streptomyces sp. AM-7161 to control the stereochemistry in medermycin biosynthesis. Bioorg & Med.Chem,2005, 13(24):6856-63
    73. Salaski E J, Krishnamurthy G, Ding W, et al., Pyranonaphthoquinone Lactones:A New Class of AKT Selective Kinase Inhibitors Alkylate a Regulatory Loop Cysteine. Med. Chem.,2009,52 (8): 2181-2184
    74. Margaret A, Brimble R D, Malcolm D, et al., Synthesis of 3-azido-2,3,6-trideoxy-D-arabino-hexopyranosyl pyranonaphthoquinone analogues of medermycin. Org. Biomol. Chem,2003,1: 1690-1700
    75. Funa N, Ohnishi Y, Fujii I, et al., A new pathway for polyketide synthesis in microorganisms. Nature,1999,400:897-899
    76. Moore B S, Hopke J N. Discovery of a new bacterial polyketide biosynthetic pathway. Chembio, 2001,2:35-38
    77.王以光主译,抗生素多学科研究入门,人民卫生出版社,1997
    78. Hopwood D A. Genetic contributions to understanding polyketide synthases. Chem. Rev.,1997, 97 (7):2465-2470
    79.白林泉,邓子新.微生物次级代谢产物生物合成基因簇与药物创新.中国抗生素杂志,2006,2(31):80-86
    80. Barton W A, Lesniak J, Biggins JB, et al., Structure mechanism and engineering of a nucleotidy lyl transferase as a first step toward glyorandomization. Nat. Struct. Biol.,2001,8 (6):545-550
    81. Hu Z, Bao K, Zhou X, et al., Repeated polyketide synthase modules involved in the biosynthesis of a hetaene macrolide by Streptomyces sp. Mol. Microbiol,1994,14 (1):163-167
    82. Chen S, Huang X, Zhou X, et al., Organizational and mutational analysis of acomplete FR20086 candicidin gene cluster encoding a structurally related polyene complex. Chem. Biol.,2003,10 (11):1065-1070
    83. Borisova S A, Zhao L, Sherman D H, et al., Biosynthesis of desosamine:construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett.,1999,1:133-136
    84. Madduri K, Kennedy J, Rivola G, et al., Production of the antitumor drug epirubicin and its precursor by a genetically engineered strain of streptomyces peucetius. Nat. Biotechnol.,1998, 16:69-74
    85.胡又佳,朱春宝,朱宝泉.组合生物合成研究进展.中国抗生素杂志.,2001,26(5):321-329
    86.张树政等译,瓦尔基等著.糖生物学基础,科学出版社,2003
    87.孔繁炸编著.糖化学.科学出版社,2005
    88. Jay S, Su J, Niranjan P, et al., Functional analysis of DesVIII homologues involved in glycosylation of macrolide antibiotics by interspecies complementation. Gene,2007,386: 123-130
    89.代焕琴,王浩鑫,沈月毛.抗生素糖基转移酶研究进展.中国抗生素杂志,2007,5(32):257-262
    90. Unligil U M, Rini J M. Curr oppon in Struct. Biol,2000,10:510-517
    91. Breton C, Snajdrova L, Jeanneau C, et al., Structures and mechanisms of glycosyltransferases. Glycobiology,2006,16(2):29R-37R
    92. Rose'n M L, Edman M, Sjostrom M, et al., Exploiting the reversibility of natural product Glycosyltransferase-catalyzed reactions. Science,2004,279(37):38683-38692
    93. Sauerzapfe B, Namdjou D J, Schumacher T, et al., Characterization of recombinant fution constructs of human β-1,4-galactosyltransferase and the lipade pre-propeptide from staphylococcus hyicus. Mol. Catalsis B:Enzym,2008,50:128-140
    94. Chiu C P, Watts A G, Lairson L L, et al., Structural analysis of the sialyltransferase Cst II from Campylobacter jejuni in complex with a substrate analog. Nat.Struct. Mol. Biol.,2004,11: 163-170
    95. Hu Y, Walker S. Remarkable structural similarities between diverse Glycosyltransferases. Chem.Biol.,2006,9:1287-1296
    96. Liang D, Qiao J. Phylogenetic analysis of antibiotic Glycosyltransferases. J. Mol. Evol.,2007,64: 342-353
    97. Bai L, Li L, Xu H, et al., Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem. Biol.2006,13:387-397
    98. Zhang C, Griffith B, Fu Q, et al., Exploiting the reversibility of natural product Glycosyltransferase-catalyzed reactions. Science,2006,313:1291-1294
    99. Jay S., Su J, Niranjan P, et al., Functional analysis of DesⅧ homologues involved in glycosylation of macrolide antibiotics by interspecies complementation. Gene,2007,386: 123-130
    100. Zhao P. Bai L, Ma J, et al., Amide N-Glycosylation by Asm25, an N-Glycosyltransferase of Ansamitocins. Chem. Biol.,2008,15(8):863-874
    101. Onaka H, Asamizu S, Igarashi Y, et al., Cytochrome P450 homolog is responsible for C-N bond formation between aglycone and deoxysugar in the staurosporine biosynthesis of Streptomyces sp. TP-A0274. Biosci. Biotech. Biochem.,2005,69 (9):1753-1759
    102. Fischbach M A, Lin H, Liu D R, et al., In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl. Acad. Sci.,2005,102(3):571-576
    103. Fedoryshyn M, Nurealam M, Zhu L, et al., Surprising production of a new urdamycin derivativeby S.fradiae. Biotechnol.,2007,130:32-38
    104. Durr C, Hoffmeister D, Wohlert S E, et al., The glycosyltransferase UrdGT2 catalyzes both C-and O-glycosidic sugar transfers. Angew. Chem.In.,2004,43(22):2962-2965
    105. Hoffmeister D, Drager G, Ichinose K, et al., The C-Glycosyltransferase UrdGT2 is unselective toward and configured nucleotide-bound rhodinoses. Am.. Chem. Soc.,2003,125 (16): 4678-4679
    106. Yunt Z, Reinhardt K, Li A, et al., Cleavage of Four Carbon-Carbon Bonds during Biosynthesis of the Griseorhodin A Spiroketal Pharmacophore. J. Am.. Chem. Soc.,2009,131 (6): 2297-2305
    107. He J, Hertweck C. Biosynthetic Origin of the Rare Nitroaryl Moiety of the Polyketide Antibiotic Aureothin:Involvement of an Unprecedented N-Oxygenase J. Am.Chem. Soc.,2004,126, 3694-3695
    108. Chen W, Huang T, He X, Meng Q, You D, Bai L, Li J, Wu M, Li R, Xie Z, Zhou H, Zhou X, Tan H, Deng Z. Characterization of the polyoxin biosynthetic gene cluster from Streptomyces cacaoi and engineered production of polyoxin H. J Biol Chem.2009,284(16):10627-10638

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700