用户名: 密码: 验证码:
厌氧发酵产酸微生物种群生态及互营关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产酸微生物是有机物厌氧发酵过程中一类重要的微生物,其产生的挥发性有机酸(VFAs)是主要的中间产物之一,也是有机化工行业重要生产原料。而且,产酸过程与有机物降解和沼气的产生都有密切联系,产酸微生物与水解微生物、产甲烷微生物,甚至产酸微生物之间均有复杂的互营关系。近年来,高通量测序技术的发展突飞猛进,正成为微生物生态研究者们经常使用的生物技术。与传统测序方法通过对DNA片断中碱基的特异性切割不同,高通量测序技术能一次并行,对几十万到几百万条DNA分子进行序列测定。在产酸反应器中,为研究产酸微生物种群生态,添加产甲烷抑制剂是一种常用的技术方法,它能够阻止产甲烷菌利用乙酸的同时,不影响产酸微生物的生长。
     本论文利用稳定性同位素标记和高通量测序等环境微生物学技术,研究了产酸微生物在厌氧发酵过程中所起的作用、明确了各产酸菌的种群结构以及它们之间的互营关系、阐明了不同功能菌群在生产VFAs中各自的贡献、并通过菌群结构与数量的调节,增强互营产酸以达到乙酸高产的目的。在此基础上,找出该工艺的最优操作条件,并建立动力学模型,为污泥厌氧发酵过程的研究丰富了理论与应用基础。主要的研究结果如下:
     1葡萄糖厌氧降解中产酸微生物种群生态
     单糖降解是有机物厌氧发酵中重要步骤,然而,对于BES抑制产甲烷情况下,厌氧污泥对葡萄糖降解起关键性作用的微生物研究则较少。利用DNA-SIP、克隆文库及高通量测序技术,考察污泥厌氧产酸与产甲烷两种模式下,微生物群落的演替情况后发现:未抑制产甲烷的厌氧发酵中占优势的是梭状芽孢杆菌(Clostridia),其丰度占到总细菌分类的51.88%,而芽孢杆菌(Bacilli)则在抑制产甲烷的厌氧发酵中占绝对优势,丰度占50%;未抑制产甲烷培养中Peptococcaceae、Syntrophomonadaceae以及Syntrophobacterale这三个菌属的丰度明显大于抑制产甲烷培养,说明产氢产乙酸菌与产甲烷菌的互营关系在厌氧产甲烷体系中发挥着重要作用。
     2产氢产乙酸菌与同型产乙酸菌的互营关系
     在污泥厌氧产酸体系中,通过加入丁酸盐强化产氢产乙酸过程可以显著提高同型产乙酸反应的活性。同型产乙酸反应的吉布斯自由能降至-15KJ/mol左右,同型产乙酸菌数量明显大于其它反应器;同型产乙酸菌的存在可“拉动”产氢产乙酸过程,但这种互营关系是有限的。在H2分压为3.2KPa,4g/L的丁酸和6g/L的乙酸体系中,产氢产乙酸和同型产乙酸的协同作用停止;在反应吉布斯自由能达到临界值时,产氢产乙酸菌与同型产乙酸菌可利用协同作用产生乙酸。在人为强化产氢产乙酸反应的情况下,协同作用中产氢产乙酸菌与同型产乙酸菌产生乙酸的比例为7:3。
     3富集同型产乙酸菌对产酸微生物生态的影响
     在厌氧污泥中选择性培养同型产乙酸,通过检测培养过程中有机酸、顶空气体以及关键酶活来鉴定同型产乙酸菌的富集情况。对富集前后的污泥进行高通量测序后发现,富集前的污泥多样性极大,其中厚壁菌门(Firmicutes)和变形菌门(Proteobacteria)分别占到32.3%和42.9%。而富集后的污泥则集中在梭状芽孢杆菌属(Clostridium),占总细菌的41.3%。另外富集前污泥中含有少量古菌(47OTU),富集后污泥则未检测到古菌存在。
     4强化同型产乙酸工艺条件优化
     设计单因素影响实验,研究种泥浓度、底物浓度和pH值等条件对富集同型产乙菌的污泥在厌氧发酵过程中有机酸分布及乙酸累积的影响,结果表明,碱性条件有利于产乙酸菌的生长,但影响产氢产乙酸菌,尤其是丁酸降解菌的反应。产氢产乙酸菌和同型产乙酸菌的互营作用在6天后广泛存在,而且不同pH条件下,丙酸降解菌和丁酸降解菌的反应情况不竟相同;底物浓度过大,产氢产乙酸与同型产乙酸的互营机制受到抑制。
     5强化同型产乙酸工艺的动力学模型
     在ADM1模型基础上,构建强化同型产乙酸工艺的动力学模型,通过简化后的动力学模型与实验数据的模拟验证表明,拟合结果较为理想,可作为强化同型产乙酸工艺的设计依据。
Acidogenic fermentation is a critical step in the process of anaerobicfermentation of organic matter. Volatile organic acids (VAFAs) is not only one of themain intermediate product, but also an important raw material for the organicchemical industry. Prductions of VAFAs is closely contact with organic matterdegradation and biogas generation. Hydrolysis microorganisms&acidogenicmicroorganisms, methane-producing microorganisms&VFAs-producingmicroorganisms have complex mutual camps relations. In recent years,high-throughput sequencing technology has been used by a growing number ofmicro-organisms workers and has been a very promising biotechnology. Unliketraditional sequencing methods with nucleotide specificity of the DNA fragments,high-throughput sequencing technology can parallel sequence to hundreds ofthousands to millions of DNA molecules. In VFAs-producing reactor, VFAs-producing microorganism population ecology was study. The methanogenicinhibitor addtion which does not affect the acid-producing microorganisms, volatilefatty acids and other intermediate metabolites is a common technique method.
     For our study, VFAs-producing microorganisms from the population andcommunity levels in the anaerobic fermentation was used by environment molecularmicrobial ecology technology, such as high-throughput sequencing, the populationstructure of the VFAs-producing bacteria was determined, the contribution ofvarious flora acetic acid was clarified, the yield of VFAs production was enhancedby flora structure and regulation. On these basis the optimal operating conditions ofthe process was identified, and a dynamic model was constructed. This study shouldenrich the theory and application of the anaerobic fermentation process.. The mainfindings are as follows:
     1Glucose-degrading microorganisms in activated sludge under methanogenicconditions
     Monosaccharide degradation is an important step in the anaerobic fermentationof organic matter, the case for BES inhibition of methanogenesis, anaerobic sludgeglucose degradation plays a critical role in microbial less. The modes of anaerobicacid production and the production of methane was studied by DNA-SIP, clonelibrary and high-throughput sequencing technology, The results showed thatClostridia was dominant in the inhibition of methane-producing anaerobic fermentation, whose abundance accounted for51.88%of the total bacteria andBacilli was dominant in the inhibition of methanogenic anaerobic fermentation,whose abundance accounted for50%; The abundance of Peptococcaceae,Syntrophomonadaceae and Syntrophobacterale genus in the methanogenic culture issignificantly larger than the culture of inhibit methanogenis. The trophic linkbetween hydrogen-producing acetogenic bacteria and methanogenic bacteria p lay animportant role in anaerobic methane-producing system.
     2Trophic link between syntrophic acetogens and homoacetogens
     In the anaerobic system, strengthen acetogenic reaction. by adding formate cansignificantly improve the activity of the hydrogen-producing process. Isotypeproducing acetic acid of the Gibbs free energy is reduced to-15KJ/mol, the sametype of acetogenic bacteria count was significantly greater than the other reactor; thepresence of acetic acid bacteria of the same type of production to "pull" thehydrogen production process, but this trophic link is limited. In the system of H2pressure was3.2KPa, butyric acid was4g/L and acetic acid was6g/L, the Gibbsfree energy reaches a critical value, the trophic link between syntrophic acetogensand homoacetogens was stopped; The acetate can be producted by the syntrophicacetogens/homoacetogens synergism and the proportion of acetate producted bysyntrophic acetogens and homoacetogens is7:3
     3Acidogenic microbial ecology in the enrichment of
     Homoacetogens was enriched by selective culture. At the same time, organicacids, the headspace gas and the activities of key enzymes was detected in theculture process. Homoacetogens was identified by compared the high-throughputsequencing at the befor and after enrichment and Firmicutes and Proteobacteriaaccounted for32.3%and42.9%respectively. Clostridium of the enriched sludgerepresent41.3%of the total bacteria. Archaea in original sludge was found (47OTU)and does not detected in enrichment sludge.
     4Conditions optimization to the system of homoacetogens enrichment
     The single-factor experiments were conducted to study the effects of substrateconcentrations, sludge concentration and pH value conditions in the enrichment ofhomoacetogens. The distribution of organic acid and the accumulation of acetic acidin the anaerobic fermentation process was studied. The results showed that thealkaline conditions conducive to the production of acetic acid, but hydrogenproduction bacteria, especially butyric acid degrading bacteria was inhibited.Production of hydrogen production bacteria and homoacetogens was widely present at just6days, and propionic and butyric acid degrading bacteria reaction was notactually the same at different pH conditions; The concentration of substrate was sohigh that the trophic link between syntrophic acetogens and homoacetogens issuppressed.
     5The kinetic model of the system of homoacetogens enrichment
     The kinetic model of homoacetogens enrichment based on ADM1model wasbuilded and the kinetic model was simulated and verified to experimental data. Theresult showed that the this model can be used as the basis to design the process ofhomoacetogens enrichment.
引文
[1]Bernstein L, Bosch P, Canziani O, et al. IPCC,2007: climate change2007: synthesis report.Contribution of working groups I [J]. II and III to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change. Intergovernmental Panel on Climate Change, Geneva.,2007:
    [2]Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson.1998MarjoryStephenson Prize Lecture [J]. Microbiology (Reading, England),1998,144(9):2377-2406.
    [3]Holtzapple M T, Granda C B. Carboxylate platform: the MixAlco process part1: comparison of threebiomass conversion platforms [J]. Applied biochemistry and biotechnology,2009,156(1):95-106.
    [4]Zhang P, Chen Y, Zhou Q. Waste activated sludge hydrolysis and short-chain fatty acids accumulationunder mesophilic and thermophilic conditions: Effect of pH [J]. Water research,2009,43(15):3735-3742.
    [5]任南琪,秦智,李建政.不同产酸发酵菌群产氢能力的对比与分析[J].环境科学,2003,24(1):70-74.
    [6]李建政,王卫娜,马超等.丁酸甲烷发酵优势菌群的选育及其丁酸降解特性[J].科技导报,2008,26(11):49-52.
    [7]Nie Y Q, Liu H, Du G C, et al. Acetate yield increased by gas circulation and fed-batch fermentation in anovel syntrophic acetogenesis and homoacetogenesis coupling system [J]. Bioresource technology,2008,99(8):2989-2995.
    [8]Xu K, Liu H, Li X, et al. Typical methanogenic inhibitors can considerably alter bacterial populationsand affect the interaction between fatty acid degraders and homoacetogens [J]. Applied Microbiology andBiotechnology,2010,87(6):2267-2279.
    [9]Kaeberlein T, Lewis K, Epstein S S. Isolating "uncultivable" microorganisms in pure culture in asimulated natural environment [J]. Science,2002,296(5570):1127.
    [10]刘君寒,胡光荣,李福利等.厌氧消化系统微生物菌群的研究进展[J].工业水处理,2011,31(10):10-14.
    [11]Ahring B. Perspectives for anaerobic digestion [J]. Biomethanation,2003:1-30.
    [12]许科伟.污泥厌氧消化过程中乙酸累积的微生态机理研究[D]:[博士学位论文].无锡:江南大学,2010.
    [13]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].科学出版社,2005.
    [14]聂艳秋.废水产氢产酸/同型产乙酸耦合系统厌氧发酵产酸工艺及条件优化[D]:[博士学位论文].无锡:江南大学,2009.
    [15]Müller N, Worm P, Schink B, et al. Syntrophic butyrate and propionate oxidation processes: fromgenomes to reaction mechanisms [J]. Environmental Microbiology Reports,2010,2(4):489-499.
    [16]Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiology andMolecular Biology Reviews,1997,61(2):262-280.
    [17]郭蔚,刘成,邹少兰等.同型乙酸菌研究进展及应用前景[J].应用与环境生物学报,2007,12(6):874-877.
    [18]Drake H L, Küsel K, Matthies C. Ecological consequences of the phylogenetic and physiologicaldiversities of acetogens [J]. Antonie van Leeuwenhoek,2002,81(1):203-213.
    [19]Drake H, Küsel K. How the diverse physio logic potentials of acetogens determine their in situ realities[J]. Biochemistry and physiology of anaerobic bacteria,2003:171-190.
    [20]Drake H L, Daniel S L, Küsel K, et al. Acetogenic bacteria: what are the in situ consequences of theirdiverse metabolic versatilities?[J]. Biofactors,1997,6(1):13-24.
    [21]Diekert G, Wohlfarth G. Metabolism of homoacetogens [J]. Antonie van Leeuwenhoek,1994,66(1):209-221.
    [22]公维佳,李文哲,刘建禹.厌氧消化中的产甲烷菌研究进展[J].东北农业大学学报,2007,37(6):838-841.
    [23]林代炎,林新坚,杨菁等.产甲烷菌在厌氧消化中的应用研究进展[J].福建农业学报,2008,23(1):106-110.
    [24]单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003,23(6):42-46.
    [25]祖波,祖建,周富春等.产甲烷菌的生理生化特性[J].环境科学与技术,2008,31(3):5-7.
    [26]Visser A, Beeksma I, Zee F, et al. Anaerobic degradation of volatile fatty acids at different sulphateconcentrations [J]. Applied Microbiology and Biotechnology,1993,40(4):549-556.
    [27]赵阳国.生态因子对硫酸盐还原系统中微生物群落动态影响的表征[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2006
    [28]McInerney M J, Sieber J R, Gunsalus R P. Syntrophy in anaerobic global carbon c ycles [J]. Currentopinion in biotechnology,2009,20(6):623-632.
    [29]Thauer R K, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria [J].Microbiology and Molecular Biology Reviews,1977,41(1):100.
    [30]McInerney M J, Struchtemeyer C G, Sieber J, et al. Physiology, ecology, phylogeny, and genomics ofmicroorganisms capable of syntrophic metabolism [J]. Annals of the New York Academy of Sciences,2008,1125(1):58-72.
    [31]Imachi H, Sekiguchi Y, Kamagata Y, et al. Non-sulfate-reducing, syntrophic bacteria affiliated withDesulfotomaculum cluster I are widely distributed in methanogenic environments [J]. Applied andEnvironmental Microbiology,2006,72(3):2080-2091.
    [32]Nauhaus K, Albrecht M, Elvert M, et al. In vitro cell growth of marine archaeal‐bacterial consortiaduring anaerobic oxidation of methane with sulfate [J]. Environmental Microbiology,2007,9(1):187-196.
    [33]Niemann H, Elvert M. Diagnostic lipid biomarker and stable carbon isotope signatures of microbialcommunities mediating the anaerobic oxidation of methane with sulphate [J]. Organic Geochemistry,2008,39(12):1668-1677.
    [34]Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediatinganaerobic oxidation of methane [J]. Nature,2000,407(6804):623-626.
    [35]Karakashev D, Batstone D J, Trably E, et al. Acetate oxidation is the dominant methanogenic pathwayfrom acetate in the absence of Methanosaetaceae [J]. Applied and Environmental Microbiology,2006,72(7):5138.
    [36]Mayumi D, Mochimaru H, Yoshioka H, et al. Evidence for syntrophic acetate oxidation coupled tohydrogenotrophic methanogenesis in the high‐temperature petroleum reservoir of Yabase oil field (Japan)[J]. Environmental Microbiology,2011:
    [37]Xu K, Liu H, Chen J. Effect of classic methanogenic inhibitors on the quantity and diversity ofarchaeal community and the reductive homoacetogenic activity during the process of anaerobic sludgedigestion [J]. Biores Technol,2010,101:2600-2607.
    [38]Talbot G, Topp E, Palin M, et al. Evaluation of molecular methods used for establishing the interactionsand functions of microorganisms in anaerobic bioreactors [J]. Water research,2008,42(3):513-537.
    [39]Riviere D, Desvignes V, Pelletier E, et al. Towards the definition of a core of microorganisms involvedin anaerobic digestion of sludge [J]. Isme Journal,2009,3(6):700-714.
    [40]贾仲君.稳定性同位素核酸探针技术DNA-SIP原理与应用[J].微生物学报,2011,51(12):1585-1594.
    [41]Meselson M, Stahl F W. The replication of DNA in Escherichia coli [J]. Proceedings of the NationalAcademy of Sciences,1958,44(7):671-682.
    [42]Whitby C, Hall G, Pickup R, et al.13C incorporation into DNA as a means of identifying the activecomponents of ammonia‐oxidizer populations [J]. Letters in applied microbiology,2001,32(6):398-401.
    [43]Radajewski S, Webster G, Reay D S, et al. Identification of active methylotroph populations in anacidic forest soil by stable-isotope probing [J]. Microbiology,2002,148(8):2331.
    [44]许冠东. Genome Sequencer FLX引领快速基因组[J].微生物学通报,2008,35(1):149-151.
    [45]徐晓宇,刘和.454测序法在环境微生物生态研究中的应用[J].生物技术通报,2010,(001):73-77.
    [46]Gomez E, Martin J, Michel F C. Effects of organic loading rate on reactor performance and archaealcommunity structure in mesophilic anaerobic digesters treating municipal sewage sludge [J]. WasteManagement&Research,2011,29(11):1117-1123.
    [47]Hatamoto M, Imachi H, Yashiro Y, et al. Diversity of anaerobic microorganisms involved in long-chainfatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing [J]. ApplEnviron Microb,2007,73(13):4119-4127.
    [48]Hatamoto M, Imachi H, Yashiro Y, et al. Detection of active butyrate-degrading microorganisms inmethanogenic sludges by RNA-based stable isotope probing [J]. Appl Environ Microb,2008,74(11):3610-3614.
    [49]Ning Y Y, Jin D W, Sheng G P, et al. Evaluation of the stability of hydrogen production and microbialdiversity by anaerobic sludge with chloroform treatment [J]. Renewable Energy,2012,38(1):253-257.
    [50]Hamberger A, Horn M A, Dumont M G, et al. Anaerobic consumers of monosaccharides in amoderately acidic fen [J]. Appl Environ Microb,2008,74(10):3112.
    [51]Wüst P K, Horn M A, Drake H L. Clostridiaceae and Enterobacteriaceae as active fermenters inearthworm gut content [J]. The ISME Journal,2010,5(1):92-106.
    [52]Conrad R, Klose M. Selective inhibition of reactions involved in methanogenesis and fatty acidproduction on rice roots [J]. FEMS microbiology ecology,2000,34(1):27-34.
    [53]Bligh E, Dyer W. A rapid method of total lipids extraction and purification [J]. Can J Biochem phvsiol,1959,37:911-917.
    [54]国家环境保护局《水和废水监测分析方法》编委会.《水和废水监测分析方法》(第四版)[M].北京:中国环境科学出版社,2002.
    [55]Dubois M, Gilles K, Hamilton J, et al. Colorimetric method for determination of sugars and relatedsubstances [J]. Anal Chem,1956,28:350-356.
    [56]刘晓玲.城市污泥厌氧发酵产酸条件优化及其机理研究[D]:[博士学位论文].无锡:江南大学,2009
    [57]Kotsyurbenko O, Friedrich M, Simankova M, et al. Shift from acetoclastic to H2-dependentmethanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilicMethanobacterium strain [J]. Applied and Environmental Microbiology,2007,73(7):2344-2348.
    [58]Lueders T, Pommerenke B, Friedrich M W. Stable-isotope probing of microorganisms thriving atthermodynamic limits: syntrophic propionate oxidation in flooded soil [J]. Applied and EnvironmentalMicrobiology,2004,70(10):5778-5786.
    [59]Penning H, Conrad R. Carbon isotope effects associated with mixed-acid fermentation of saccharidesby Clostridium papyrosolvens [J]. Geochimica et cosmochimica acta,2006,70(9):2283-2297.
    [60]Rocchini D. Algorithmic Foundation of Spectral Rarefaction for Measuring Satellite ImageryHeterogeneity at Multiple Spatial Scales [J]. Sensors,2009,9(1):303-310.
    [61]Garcia J L, Patel B K C, Ollivier B. Taxonomic, phylogenetic, and ecological diversity ofmethanogenic Archaea [J]. Anaerobe,2000,6(4):205-226.
    [62]甘艳露,周婵,夏黎等.水稻残体厌氧分解过程中间产物脂肪酸的微生物互养氧化降解机理研究进展[J].安徽农业科学,2010,(022):11706-11709.
    [63]Krakat N, Schmidt S, Scherer P. Mesophilic fermentation of renewable biomass: does hydraulicretention time regulate methanogen diversity?[J]. Applied and Environmental Microbiology,2010,76(18):6322-6326.
    [64]Drake H L, Horn M A, Wüst P K. Intermediary ecosystem metabolism as a main driver ofmethanogenesis in acidic wetland soil [J]. Environmental Microbiology Reports,2009,1(5):307-318.
    [65]Tang Y Q, Matsui T, Morimura S, et al. Effect of temperature on microbial community of aglucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation [J]. Journal ofbioscience and bioengineering,2008,106(2):180-187.
    [66]Hamberger A, Horn M A, Dumont M G, et al. Anaerobic consumers of monosaccharides in amoderately acidic fen [J]. Appl Environ Microb,2008,74(10):3112-3120.
    [67]Ahmed I, Yokota A, Yamazoe A, et al. Proposal of Lysinibacillus boronitolerans gen. nov sp nov., andtransfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov and Bacillus sphaericus toLysinibacillus sphaericus comb. nov [J]. International journal of systematic and evolutionary microbiology,2007,57:1117-1125.
    [68]Baik K S, Lim C H, Park S C, et al. Bacillus rigui sp. nov., isolated from wetland fresh water [J].International journal of systematic and evolutionary microbiology,2010,60(9):2204-2209.
    [69]Yao H, Ren Y, Wei C, et al. Biodegradation characterisation and kinetics of m-cresol by Lysinibacilluscresolivorans [J]. Water SA (Online),2011,37(1):15-20.
    [70]Godon J J, Zumstein E, Dabert P, et al. Molecular microbial diversity of an anaerobic digestor asdetermined by small-subunit rDNA sequence analysis [J]. Applied and Environmental Microbiology,1997,63(7):2802-2813.
    [71]Kendall M M, Boone D R. The order Methanosarcinales [J]. The prokaryotes. A handbook on thebiology of bacteria,2006,3:244-256.
    [72]Klemps R, Schoberth S M, Sahm H. Production of acetic acid by Acetogenium kivui [J]. AppliedMicrobiology and Biotechnology,1987,27(3):229-234.
    [73]Ucisik A S, Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions:The effect of sludge type and origin on the production and composition of volatile fatty acids [J]. Waterresearch,2008,42(14):3729-3738.
    [74]Ji Z, Chen Y. Using Sludge Fermentation Liquid To Improve Wastewater Short-CutNitrification-Denitrification and Denitrifying Phosphorus Removal via Nitrite [J]. Environmental science&technology,2010,44(23):8957-8963.
    [75]黄海峰,杨开,王晖.厌氧生物处理技术及其在城市污水处理中的应用[J][J].中国资源综合利用,2005,6(1):
    [76]王晋,刘和,许科伟等.污泥厌氧消化过程中产氢产乙酸/同型产乙酸协同产酸研究[J].环境科学,2011,32(6):1673-1678.
    [77]刘和,许科伟,王晋等.污泥厌氧消化产酸发酵过程中乙酸累积机制[J].微生物学报,2010,(10):1327-1333.
    [78]Liu X, Liu H, Chen Y, et al. Effects of organic matter and initial carbon–nitrogen ratio on thebioconversion of volatile fatty acids from sewage sludge [J]. Journal of Chemical Technology&Biotechnology,2008,83(7):1049-1055.
    [79]Amann R. In situ identification of microorganisms by whole cell hybridization with rRNA-targetednucleic acid probes [M]. Kluwer Academic Publications, UK,1995.
    [80]李艳娜,许科伟,堵国成等.厌氧生境体系中产氢产乙酸细菌的FISH定量解析[J].微生物学报,2007,47(6):1038-1043.
    [81]Hansen K H, Ahring B, Raskin L. Quantification of syntrophic fatty acid--oxidizing bacteria in amesophilic biogas reactor by oligonucleotide probe hybridization [J]. Appl Environ Microbiol,1999,65:4767-4774.
    [82]Harmsen H, Kengen H, Akkermans A, et al. Detection and localization of syntrophicpropionate-oxidizing bacteria in granular sludge by in situ hybridization using16S rRNA-basedoligonucleotide probes [J]. Appl Environ Microbiol,1996,62:1656-1663.
    [83]Ahring B K, Westermann P. Product inhibition of butyrate metabolism by acetate and hydrogen in athermophilic coculture [J]. Applied and Environmental Microbiology,1988,54(10):2393.
    [84]Jackson B E, McInerney M J. Anaerobic microbial metabolism can proceed close to thermodynamiclimits [J]. Nature,2002,415(6870):454-456.
    [85]李建昌,张无敌.氢分压对种间氢转移的影响[J].云南师范大学学报:自然科学版,2006,25(5):21-25.
    [86]McInerney M, Mackie R, Bryant M. Syntrophic association of a butyrate-degrading bacterium andmethanosarcina enriched from bovine rumen fluid [J]. Applied and Environmental Microbiology,1981,41(3):826-828.
    [87]Xu K, Liu H, Chen J. Effect of classic methanogenic inhibitors on the quantity and diversity ofarchaeal community and the reductive homoacetogenic activity during the process of anaerobic sludgedigestion [J]. Bioresource technology,2010,101(8):2600-2607.
    [88]Amani T A T, Nosrati M N M, Sreekrishnan T R S T R. Anaerobic digestion from the viewpoint ofmicrobiological, chemical, and operational aspects-a review [J]. Environmental Reviews,2010,18(NA):255-278.
    [89]Liu H, Wang J, Wang A, et al. Chemical inhibitors of methanogenesis and putative applications [J].Applied Microbiology and Biotechnology,2011,89(5):1333-1340.
    [90]Drake H L, Horn M A, Wust P K. Intermediary ecosystem metabolism as a main driver ofmethanogenesis in acidic wetland soil [J]. Env Microbiol Rep,2009,1(5):307-318.
    [91]Appels L, Baeyens J, Degrève J, et al. Principles and potential of the anaerobic digestion ofwaste-activated sludge [J]. Progress in Energy and Combustion Science,2008,34(6):755-781.
    [92]Stronach S M, Rudd T, Lester J N. Anaerobic digestion processes in industrial wastewater treatment[M]. Springer-Verlag Berlin,1986.
    [93]Wiesmann U, Choi I S, Dombrowski E M. Biological Wastewater Treatment [M]. Wiley Online Library,2006.
    [94]Ryan P, Forbes C, McHugh S, et al. Enrichment of acetogenic bacteria in high rate anaerobic reactorsunder mesophilic and thermophilic conditions [J]. Water research,2010,44(14):4261-4269.
    [95]Siriwongrungson V, Zeng R J, Angelidaki I. Homoacetogenesis as the alternative pathway for H2sinkduring thermophilic anaerobic degradation of butyrate under suppressed methanogenesis [J]. Waterresearch,2007,41(18):4204-4210.
    [96]昌盛,李建政,李伟光等.厌氧活性污泥发酵制氢系统中的同型产乙酸作用及其控制[J].太阳能学报,2011,32(4):439-445.
    [97]Parameswaran P, Torres C I, Lee H S, et al. Hydrogen consumption in microbial electrochemicalsystems (MXCs): The role of homo-acetogenic bacteria [J]. Bioresource technology,2011,102(1):263-271.
    [98]李建政,许一平,张立国等.厌氧活性污泥发酵制氢系统中的同型产乙酸菌及耗氢作用[J].科技导报,2011,29(24):29-32.
    [99]Schloss P D, Westcott S L, Ryabin T, et al. Introducing mothur: open-source, platform-independent,community-supported software for describing and comparing microbial communities [J]. Applied andEnvironmental Microbiology,2009,75(23):7537-7541.
    [100]Cole J R, Chai B, Marsh T L, et al. The Ribosomal Database Project (RDP-II): previewing a newautoaligner that allows regular updates and the new prokaryotic taxonomy [J]. Nucleic acids research,2003,31(1):442-443.
    [101]Shigematsu T, Tang Y, Mizuno Y, et al. Microbial diversity of mesophilic methanogenic consortiumthat can degrade long-chain fatty acids in chemostat cultivation [J]. Journal of bioscience andbioengineering,2006,102(6):535-544.
    [102]McInerney M J. Listening to microbial conversations [J]. Microbial Biotechnology,2009,2(2):141-142.
    [103]Braun M, Mayer F, Gottschalk G. Clostridium aceticum (Wieringa), a microorganism producing aceticacid from molecular hydrogen and carbon dioxide [J]. Archives of microbiology,1981,128(3):288-293.
    [104]Venkata Mohan S, Vijaya Bhaskar Y, Murali Krishna P, et al. Biohydrogen production from chemicalwastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pHand substrate composition [J]. International Journal of Hydrogen Energy,2007,32(13):2286-2295.
    [105]李玉祥,刘和,堵国成等.碱性条件促进太湖蓝藻厌氧发酵产挥发性脂肪酸[J].环境工程学报,2010,(001):209-213.
    [106]张晶晶,刘和,堵国城.碱性条件促进纺织印染污泥厌氧发酵产挥发性脂肪酸的研究[J].化工进展,2009,(010):1855-1860.
    [107]苑宏英,员建,徐娟等.碱性pH条件下增强剩余污泥厌氧产酸的研究[J].中国给水排水,2008,24(9):26-29.
    [108]汤桂兰,汤亲青,黄健等.不同底物种类对厌氧发酵产氢的影响[J].环境科学,2008,29(8):2345-2349.
    [109]樊耀亭,李晨林,侯红卫等.天然厌氧微生物氢发酵生产生物氢气的研究[J].中国环境科学,2002,22(4):370-374.
    [110]Ezeji T, Qureshi N, Blaschek H. Acetone butanol ethanol (ABE) production from concentratedsubstrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping[J]. Applied Microbiology and Biotechnology,2004,63(6):653-658.
    [111]Van Ginkel S, Logan B E. Inhibition of biohydrogen production by undissociated acetic and butyricacids [J]. Environmental science&technology,2005,39(23):9351-9356.
    [112]施悦,任南琪,刘春爽等.不同种泥对两相厌氧工艺快速启动的影响[J].哈尔滨工业大学学报,2007,39(8):1257-1261.
    [113]Morinaga T, Kawada N. The production of acetic acid from carbon dioxide and hydrogen by ananaerobic bacterium [J]. Journal of biotechnology,1990,14(2):187-194.
    [114]王凯军,阎中.厌氧反应器系统动力学模型构建方法学研究[J].环境科学,2008,29(9):124-129.
    [115]Donoso-Bravo A, Mailier J, Martin C, et al. Model selection, identification and validation inanaerobic digestion: A review [J]. Water research,2011,45(17):5347-5364.
    [116]周雪飞,张亚雷,顾国维.厌氧消化1号模型(ADM1)简介[J].中国给水排水,2003,19(2):85-87.
    [117]谭艳忠,张冰,周雪飞.厌氧消化1号模型(ADM1)的发展及其应用[J].环境污染与防治,2009,31(6):69-72.
    [118]左剑恶,凌雪峰.厌氧消化1号模型(ADM1)简介[J].环境科学研究,2003,16(1):57-61.
    [119]Corominas Tabares L. Control and optimization of an SBR for nitrogen removal: from modelcalibration to plant operation [M]. Universitat de Girona,2006.
    [120]Van Veldhuizen H, Van Loosdrecht M, Heijnen J. Modelling biological phosphorus and nitrogenremoval in a full scale activated sludge process [J]. Water research,1999,33(16):3459-3468.
    [121]Pai T, Tsai Y, Lo H, et al. Grey and neural network prediction of suspended solids and chemicaloxygen demand in hospital wastewater treatment plant effluent [J]. Computers&Chemical Engineering,2007,31(10):1272-1281.
    [122]Fang F, Ni B J, Xie W M, et al. An integrated dynamic model for simulating a full-scale municipalwastewater treatment plant under fluctuating conditions [J]. Chemical Engineering Journal,2010,160(2):522-529.
    [123]郭亚萍,顾国维. ASM2d在污水处理中的研究与应用[J].中国给水排水,2006,22(6):8-10.
    [124]汪林,张代钧,艾海男等.应用GPS-X软件模拟CAST污水处理厂及优化化学除磷[J].环境工程学报,2010,(7):1493-1497.
    [125]蒋卫刚,顾国维.活性污泥法的计算机模拟[J].给水排水,2006,32(8):116-116.
    [126]张代钧,李振亮,卢培利等.活性污泥过程反应池与二沉池耦合模型与模拟[J].中国环境科学,2007,27(2):155-159.
    [127]周雪飞,张亚雷,顾国维.厌氧消化模型对生化反应抑制形式的模拟[J].中国给水排水,2004,20(006):19-21.
    [128]柯益华,杨新凯.厌氧消化过程微生物四种群生态系统数学模型[J].中国沼气,1997,15(4):16-19.
    [129]国际水协著,张亚雷,李咏梅译.活性污泥数学模型[M].上海:同济大学出版社,2002
    [130]陈晓龙,杨海真,顾国维.活性污泥2号模型的应用与校正[J].工业用水与废水,2003,34(1):1-4.
    [131]Mamais D, Jenkins D, Prrr P. A rapid physical-chemical method for the determination of readilybiodegradable soluble COD in municipal wastewater [J]. Water research,1993,27(1):195-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700