用户名: 密码: 验证码:
催化铁内电解法预处理印染废水及后继生物处理工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁内电解法又称铁还原、铁碳法等,已广泛应用于印染废水的治理中,为了克服传统铁内电解法的缺点,在其反应器中加入某些催化材料,改变运行方式,开发出催化铁内电解工艺。为研究催化铁内电解工艺对印染废水的效果、预处理对后继生物处理的影响,以及相关的催化材料、具体实施方式和运行参数,进一步探讨催化铁内电解工艺实际应用问题,在上海市桃浦工业区污水处理厂和山东省滨州市华纺股份公司污水处理厂进行了小试和中试试验。
     试验首先对催化铁工艺处理印染废水的催化材料和运行方式进行了静态和现场小试研究。针对印染废水高pH值、高色度以及高COD、并含有大量难生物降解物质的水质特点,在课题组前期研究的基础上,以铁为反应材料,以铜、锡、炭等为催化材料进行了对比试验,以提高铁内电解法处理印染废水的反应效率;试验中还对进水pH值的影响进行了研究:对运行方式进行了比较,以此强化催化铁内电解工艺的作用。
     以催化铁内电解预处理工艺与后继生物接触氧化工艺相结合,对印染厂主要类别污水以及综合印染废水等进行了处理。试验结果表明,该组合工艺对染整废水、调节池综合废水、退浆废水以及二沉池出水有比较好的处理效果,其中,催化铁内电解法处理碱性印染综合废水,反应器停留时间应不低于3.0h,生化停留时间为24小时,预处理出水可生化性明显提高、色度去除率高,经过生物处理后,色度和有机物的去除率分别为81.5%、78%,磷酸盐去除率为97%,出水总铁浓度小于0.5 mg/L。该组合工艺对退浆废水也有很好的去除效果,当进水pH值为6时,经铁床后废水COD去除率高达40%,再经后继生物处理,最终COD去除率为89%,出水为1250 mg/L;出水SS为105 mg/L,去除率为95%。
     试验针对催化铁工艺预处理对于后继生物处理的影响开展了试验,主要内容包括对催化铁反应器内生物作用的考察,以及预处理后废水对后继生物胞外聚合物形成的影响。试验结果表明,在铁反应器内生物相丰富、数量多,虽然铁不断消耗,但反应器内生物的数量和种类比较稳定,具备了生物降解的条件。对比试验结果表明,当胞外聚合物含有大量铁离子时,对铁离子进行置换或者
Iron inner electrolysis technique was widely used to treat dyeing industry wastewater. In order to overcome the disadvantage of iron inner electrolysis technique, many catalyzer mixed with iron and the running ways of technique were changed. This is catalyzed iron inner electrolysis technique. To deeply discuss the effect of treatment dyeing industry wastewater, the catalyzer, the running parameter and the mechanism of catalyzed iron inner electrolysis technique, the bench-scale and pilot-scale experimentation were done in shanghai Taopu industrial wastewater treatment plant and Shandong Huafang limited company wastewater treatment center.Firstly, the static state and bench-scale experimentation were done to study on the catalyzer and running ways. Aiming at the characteristic of dyeing industry wastewater -high pH , high chroma and high COD, On the basis of prophase production, Fe as reaction materials , Cu and C and Sn etc as catalyzer , the contradistinctive trial were done to increase the efficiency of catalyzed iron inner electrolysis technique;the influence of the parameter of technique by inflow pH was study in experimentation;The diverse running ways were compared to aggrandize the kind of removal mechanism.Catalyzed iron inner electrolysis technique and later biological treatment technique were studied through treating main kinds of dyeing industry wastewater. The results of experimentation shows that it is effective to treat dyeing wastewater , general dyeing industry wastewater, faded slurry wastewater and outflow of settling tank. For alkalescent dyeing industry wastewater, HRT of the catalyzed iron inner electrolysis technique isn't less than 3.0h, HRT of biological treatment technique is 24h, while the biodegradability and the removal of chroma are obviously increased. The removal efficiencies of chroma, COD and PO_4~3- were 81.5%, 78% and 97% respectively. The concentration of total of Fe is less than 0.5 mg/L. Catalyzed iron inner electrolysis technique is also effective for faded slurry wastewater. While the pH of inflow is 6.0, the removal efficiency of COD is 40% after iron bed. The final removal efficiencies of COD and SS are 89%,95%
    respectively.The influence of the Catalyzed iron inner electrolysis technique to latter biological treatment was studied in this experimentation. This research concluded the role of biology in reactor and the forming of extracellular polymeric substances (EPS). The results of experimentation shows that the kinds and amount of microorganism was steady though iron was constantly consumed, and the iron reactor had the inner condition of biodegradability.The results of the contradistinctive trial show that it is advantageous for distilling EPS when there are lots of Fe ions in EPS. The new iron ions could improve the hanging film of carriers. Whether there is iron ion in waste water or not , the content of EPS is 46.1 mg/g, 17 mg/g respectively, the former is more the latter than 29 mg/g . As a annectent matter, large numbers of iron ion was adsorbed in EPS. That not only accelerated the forming of bioflim, but also largely changed the equipotential point of amino acid in bioflim. So the content of protein and enzyme are added and the removal of ability is consolidated. The results of contrastive experiment show that glucide degradability is faster than protein. The degradability velocity of former is as 3 times fast as the latter. After 3h, the concentration of iron ion was steady, but the consume of protein was added. It is obvious that glucide of EPS was consumed most easily, thus created the fall off of biofilm.To deeply discuss the effect of the Catalyzed iron inner electrolysis technique treating dyeing industry wastewater, and solve the problems of project, the pilot-scale experimentation was done in the plant. The concept of cell colander was introduced in project. Many problems of project were studied in experimentation to ensure the uniformity and intension of current, which concluded the ways of inflow and running. The pipe of discharge sludge was fixed in the bottom of iron reactor. Batch inflow and excessive aerating activated lots of iron. To increase the biodegradability, the running ways of the Catalyzed iron inner electrolysis technique adopt circle by pump or faint aerating, or else it is harmful to the biodegradability. Contrast to the bench-scale experimentation, the period of iron bed is shorter. When the reaction ability is depressed, it is good effect to aerate and ensure that pH of wastewater is 6.0-7.0.
    In pilot-scale experimentation, the applying of the Catalyzed iron inner electrolysis technique to the reuse of wastewater in dyeing industry plant was deeply discussed.Finally, according to the results of pilot-scale experimentation and the fact of wastewater treatment center, the reconstruct project was brought forward. After discuss, the project is feasible, and there are lots of benefit of society and economy.
引文
[1] 戴日成,张统.印染废水水质特征及处理技术综述[J].给水排水,2000,26(10):33~37
    [2] [美]R.E.斯皮思著.工业废水的厌氧生物技术[M].中国建筑工业出版社,1987
    [3] 刘兴旺,刘国光,侯杰.改性铁法处理印染废水[J].中国环境科学,1995,6(3):225~228
    [4] Eykholt G R, Davenport D T. Dechlorination of the chloroacetanilide herbicides Alachlor and Metolachlor by iron metal [J]. Environ. Sci. Technol., 1998, 32(10): 1482-1487
    [5] Campbell T.J., Burris D.R., Roberts A.L.and Wells J.R. Trichloroethylene and tetrachloroehtylene reduc-tion in a batch metallic iron/water/vapor system. Environ. Toxicol. Chem[J]. 16 (4), 625.
    [6] 徐文英,高廷耀.催化铁内电解法处理难降解有机废水[J].上海环境科学,2003,22(6):402~405
    [7] 徐文英.混合化工废水处理工艺的研究[J].给水排水,2003,29(5):52~55
    [8] 田钟荃.微电解—接触氧化法处理染化废水[J].中国给水排水,1991,7(3):4~8
    [9] 郝瑞霞.铁屑过滤-SBR工艺处理印染废水的研究[J].环境科学,1998,19(3):54~57
    [10] 陈学群.铁刨花预曝-沉淀-好氧工艺处理印染废水[J].污染防治技术,1999,12(3):184~186
    [11] 祁梦兰.铁屑电化学-絮凝沉淀-砂滤组合工艺处理经编染色废水[J].化工环保,1994,14:20~25
    [12] 赵建平.铁屑-H_2O_2法处理染料废水[J].江苏环境科技,1998,No.4,33~35
    [13] 祁梦兰.微电解-催化氧化-吸附法处理活性染料生产废水[J].河北科技大学学报,2000,21(3):62~65
    [14] 刘永凇.电化学还原—中和絮凝—生化—吸附法处理分散染料生产废水[J].化工环保,1994,15(5):249~255
    [15] 游道新,鲍明亮.亲水性染料日光催化脱色初步研究[J].水处理技术,1992,18(2):90~94
    [16] 安虎红,钱易,顾勇声.厌氧过程在厌氧—好氧工艺处理染料工业废水中的作用[J].环境科学与研究,1994,5(3):36~39
    [17] 肖利,刘振鸿.缺氧—好氧—亚滤—富氧生物炭工艺处理印染废水[J].环境工程,2002,20(8):33~34
    [18] 韩小清.厌氧—好氧—生物活性炭—纤维球过滤处理印染废水试验研究[J].中国给水排水,1994,10(4):33~34
    [19] 杨宇翔,陈荣三.硅藻土脱色机理及其在印染废水中应用的研究[J].工业水处理,1999,19(1):15~17
    [20] 樊冠球.利用废铁屑的微电池腐蚀原理处理电镀含铬废水[J].环境工程,1984,4:1~7
    [21] 张天胜,张军燕.铁屑法处理合成洗涤剂废水的研究[J].环境科学研究.1993.6(3):54~57
    [22] 李海英.染料废水内电解脱色效率与染料结构的关系[J].青岛大学学报,1999,19(1)21~25
    [23] 何凤娇主编.无机化学[M].科学出版社,2001
    [24] 中国化工防治污染技术协会编写.化工废水处理技术[M].化学工业出版社,2000
    [25] 乌锡康 主编.有机化工废水治理技术[M].化学工业出版社,1999
    [26] Matheson L J, Tratnyek PG. Reductive dahalogenation of chlorinated mechanes by iron metal[J]. Environmental and Technol. 1994, 28: 2045~2053
    [27] Grittini C, Mslccmison M, et al. Rapid dechlorination of polychlorinated biphenyls on the surface of Pd/Fe bimetallic system[J]. Environmental and technol. 1995, 29: 2898~2900
    [28] Giiham R W, O'Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron [J]. Ground water 1994, 32(6): 958-967.
    [29] Schlimm C, Heitz E. Development of a wastewater treatment technique: reductive dehalogenation of chlorinated hydrocarbons by metals[J]. Environmental progress, 1996, 15 (1): 38~47
    [30] 游道新,鲍明亮.亲水性染料日光催化脱色初步研究[J].水处理技术,1992,18(2):90
    [31] Kristian Keiding, Per Halk etc. Desorption of Organic Macromolecules from Activited Sludge: Effect of Ionic Compostion[J]. Wat. Res. 1997, 31 (7): 1665-1672
    [32] 王红武,李晓岩,赵庆祥.活性污泥的表面特性与其沉降脱水性能的关系[J].清华大学学报.2004,44(6):766~769.
    [33] Chrysi S. Laspidou, Bruce E. Rittmann. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research. 36 (2002) 2711-2720
    [34] 山东省环保局.山东省印染行业废水排放标准制定[M].2004
    [35] 徐文英,周荣丰,高廷耀.催化铁内电解法处理难降解有机废水[J].上海环境科学.2003,22(6):402~405
    [36] 徐文英,周荣丰,高廷耀.混合化工废水处理工艺的研究[J].给水排水.2003,29(5):52~55
    [37] Singh J, Zhang TC, Shea PJ, Comfort SD, Hundal LS, Hage DS. Transformation of atrazine and nitrate in contaminated water by iron-promoted techniquees[J]. Proceed-ings of the Water. Environment Federation 69th Annual Conference &Exposition,vol.3, Dallas, TX, October 5-9, 1996. p.143-50.
    [38] Huang CP, Wang HW, Chiu PC. Nitrate reduction by metallic iron[J].Water Res. 1998, 32: 2357-64.
    [39] Zawaideh LL, Zhang TC. The effects of pH and addition of an organic buffer (HEPES)on itrate transforma-tion in FeO-water systems[J]. Water Sci Technol 1998;38(7): 107-15.
    [40] 徐文英,周荣丰,高廷耀.催化铁内电解法处理难降解有机废水[J].上海环境科学,2003,22(6):402~405
    [41] 陶映初,陶举洲.环境电化学[M].化学工业出版社,2003
    [42] 徐文英,周荣丰,高廷耀.混合化工废水处理工艺的研究[J].给水排水,2003,29(5):52~55
    [43] 任仁.化学与环境[M].化学工业出版社,2002
    [44] 鲍恩(Bowen,H.J.M.).元素的环境化学[M].科学出版社,1986
    [45] 安虎红,钱易,顾勇声.厌氧过程在厌氧—好氧工艺处理染料工业废水中的作用[J].环境科学与研究,1994,5(3):36~39
    [46] Burris D. R. and Antworth C. P. (1992)In situ modi. cation of an aquifer material by a cationic surfactant to enhance retardation of organic contaminants[J]. Cont. Hydrol. 10, 325.
    [47] Burris D. R., Campbell T. J. and Manoranjan V. S. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system[J]. Env iron. Sci. Technol. 29, 2850.
    [48] Li Z. Degradation of perchloroethylene by zero-valent iron modied with cationic surfaetant[J]. Adv. Envir. Res. 244.
    [49] Liu M. and Roy D. Surfactant-indueed interactions and hydraulic conductivity changes in soil[J]. Waste Manag, 15, 463.
    [50] CarsleySH. The reduction of alkali nitrates byhydrous ferrous oxide [J]. Phys Chem 1930;34: 178
    [51] 杨熙珍,杨武.金属腐蚀电化学热力学电位-pH图及其应用[M].化学工业出版社,1991
    [52] 冯玉杰.电化学技术在环境工程中的应用[M].化学工业出版社,2002
    [53] 李荻.电化学原理[M].北京航空航天大学出版社,1999
    [54] Huang YH, Zhang TC, Shea PJ. Comfort SD.Effeets of oxide coating and selected cations on nitrate reduction by iron metal[J]. Environ Qual 2003;32: 1306-15.
    [55] Cheng IF, Muftikian R, Fernando Q. Reduction of nitrate to ammonia byzero-valent iron[J], Chemosphere, 1997;35: 2689-95.
    [56] Alowitz MJ, Scherer MM. Kinetics of nitrate, nitrite, and Cr(VI)reduction byiron meta[J]l. Environ Sci Technol 2002;36: 299-306.
    [57] Stumm W, Morgan JJ. Aquatic chemistry: chemical equilibria and rates in natural waters[A]. New York, NY: Wiley;1995.
    [58] Cornell RM, Schwertmann U. The iron oxides:structure, properties, reactions, occurrence and uses[A]. New York, NY: VCH Publishers;1996
    [59] Simon C. Andrews, Andrea K. Robinson. Francisco Rodr|(?)guez-Quin     [60] Joanna Q. Hudson, PharmD and Thomas J. Comstock, PharmD. Considerations for Optimal Iron Use for Anemia Due to Chronic Kidney Disease [J]. CLINICAL HERAPEUTICSYVOL. 23, NO. 1o, 2001
    [61] (苏)格鲁什科.工业废水中有害有机物手册[M].中国出版社,1975
    [62] Westerhoff P, Johnson P. A zero-valent iron (FeO)packed-bed treatment technique[A].Final Report to AWWA Research Foundation,Published by the AWWA Research Founda-tion and AWWA, 2001.
    [63] Howard F. Jenkinson and Hilary M. Lappin-Scott. Biofilms adhere to stay. TRENDS in Microbiology[J] 2001, 9(1): 1245-1254
    [64] K. Kinzler, T. Gehrke, J. Telegdi, W. Sand. Bioleaching-a result of interfacial techniquees caused by extracellular polymeric substances (EPS)[M]. Science direct, Hydrometallurgy 71(2003) 83-88
    [65] 陶宗晋.离心沉降分析技术[M].科学出版社,1983
    [66] 日本分析化学会.周期表与分析化学[M].人民教育出版社,1981
    [67] Kristian Keiding, Per Halk etc. Desorption of Organic Macromolecules from Activited Sludge: Effect of Ionic Compostion[J]. Wat. Res. 1997, 31(7): 1665-1672
    [68] Chrysi S. Laspidou, Bruce E. Rittmann. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research. 36 (2002) 2711-2720
    [69] 王红武,马鲁铭,董美玉.PHB及糖原在废水生物处理好氧条件下的形成[J].精细化工.2003,17(9):519-521.
    [70] 王红武,李晓岩,赵庆祥.活性污泥的表面特性与其沉降脱水性能的关系[J].清华大学学报.2004,44(6):766~769.
    [71] Howard F. Jenkinson and Hilary M. Lappin-Scott. Biofilms adhere to stay. TRENDS in Microbiology[J] 2001,. 9(1): 1245-1254
    [72] 申泮文,王积涛.化合物词典[M].上海辞书出版社,2002
    [73] 樊庆笙,陈华癸.微生物学进展[M].农业出版社,1984
    [74] 史家梁.环境微生物学[M].华东师范大学出版社,1993
    [75] 丁忠浩.有机废水处理技术与应用[M].化学工业出版社,2002
    [76] 高小霞.电分析化学导论[M].科学出版社,1986
    [77] Dhar RK, Biswas BKr, Samanta G, Mandal BKr, Chakraborti D, Roy S, Jafar A, Islam A, Ara G, Kabir S, Khan AW, Ahmed SA, Hadi SA. Groundwater arsenic calamity in Bangladesh[J].Current Sci 1997;73: 48-58.
    [78] Chatterjee A,Das D,Mandal BK,Chowdhury TR, Samanta G, Chakraborti D.Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 1. Arsenic species in drinking water and urine of the affected people[J].Analyst, Royal Soc Chem UK 1995;120: 643-50.
    [79] Das D, Chatterjee A,Mandal B,Samanta G, Chanda B, Chakraborti D. Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails,urine,skin-scale and liver tissue (biopsy)of the affected people [J]. AnalysRoyal Soc Chem, UK 1995;120: 917-24.
    [80] Arnold W. and Roberts A. L.(1999)Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0)particles.En v iron. Sci. Technol. 34, 2850.
    [81] Burris D. R., Allen-King R. M., Manoranjan V. S., Campbell T. J., Loraine G. A. and Deng B.(1998)Chlorinated ethene reduction by cast iron: sorption and mass transfer.[J]. Envr. Eng r. 1012.-87.
    [82] Buresh RJ, Moraghan JT. Chemical reduction of nitrate byferrous iron[J]. Environ Qual 1976;5: 320-5.
    [83] Siantar DP, Schrefer CG, Chou CS,Reinhard M. Treatment of 1, 2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts[J]. Water Res 1996;30: 2315-22.
    [84] Andrew Crowe and Evan H. Morgan. Effect of Dietary Cadmium on Iron Metabolism in Growing Rats[J]. TOXICOLOGY AND APPLIED PHARMACOLOGY 145, 136-146
    [85] Jose Carlos Jaime-Perez and David Gemez-Almaguer. BRIEF REPORT Iron Stores in Low-Income Pregnant Mexican Women at Term[J]. Archives of Medical Research 33 (2002) 81-84
    [86] Ya Ke and Zhong Ming Qian. Iron misregulation in the brain: a primary cause of neurodegenerative disorders[J]. THE LANCET Neurology Vol 2 April 2003
    [87] 杨凤林等.铁屑粉在处理工业废水中的应用[J].工业水处理,1989,(6):7~10
    [88] Gilham R W and O'Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron [J]. Ground water 1994, 32(6): 958-967.
    [89] Schlimm C, Heitz E. Development of a wastewater treatment technique: reductive dehalogenation of chlorinated hydrocarbons by metals[J]. Environmental progress, 1996,15 (1): 38~47
    [90 陈坚,任洪强,堵国成等.环境生物技术应用与发展[M].中国轻工业出版社,2001
    [91] 张锡辉.高等环境化学与微生物学原理及应用[M].化学工业出版社,2001
    [92] 张林生.水的深度处理与回用技术[M].化学工业出版社,2004
    [93] 赵容新.环境污染化学[M].化学工业出版社,2004
    [94] 王芹珠,杨增家编.有机化学[M].清华大学出版社,1997
    [95] 郑书忠.水处理药剂及其应用[M].中国石化出版社,2002
    [96] (美)埃肯费尔德.工业水污染控制[M].中国建筑工业出版社,1992
    [97] 陈毓荃.生物化学试验方法与技术[M].科学出版社,2002
    [98] 林加涵,魏文铃,彭宣宪.现代生物学试验[M].高等教育出版社,2000
    [99] 陆九芳,李总成,包铁竹.分离过程化学[M].消华大学出版社,1993
    [100] 蔡武城.生物化学试验技术教程[M].复旦大学出版社,1983
    [101] 杨承义.环境监测[M].天津大学出版社,1993
    [102] 薛华.分析化学[M].清华大学出版社,1986
    [103] 何凤姣.无机化学[M].科学出版社,2001
    [104] C. L. Geiger, N. E. Ruiz, C. A. Clausen, D. R. Reinhart and J. W. Quinn. Ultrasound pretreatment of elemental iron:kinetic studies of dehalogenation reaction enhancement and surface e.ects[J]. Water Research 36 (2002)1342-1350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700