用户名: 密码: 验证码:
复合阴离子改性铁盐絮凝剂处理稠油石化污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稠油石化污水除具有一般稠油污水污染物含量高、成分复杂,可生化性差等特点外,还因在加工过程中添加了大量的化学助剂使得稠油石化污水中污染物更为稳定,难以去除,同时水质水量变化也较大。辽河流域稠油加工企业众多,稠油石化污水已成为辽河的重要污染源。为了处理稠油石化污水,石化企业建设了大量的污水处理工程,但是,随着地方环保法规的日益严格化,现有的污水处理设施难以满足环保要求,为此,寻找一条经济可行的稠油石化污水处理途径,尤其是对现有污水处理工艺进行强化使其达标,是稠油加工企业所面临的共同难题和急需解决的问题。
     本文针对稠油石化原污水和生化处理后出水的水质特点,结合现有污水处理工艺与设施状况,采用新型聚合阳离子型絮凝剂,通过提高稠油石化污水生化前预处理效能与生化出水强化絮凝相结合的方法,解决了达标排放与处理成本高之间的矛盾。
     絮凝剂效能是影响稠油石化污水处理效果的关键因素,因此,分析现有絮凝剂存在的不足并结合实际水质情况,通过复合阴离子改性共聚的方法,合成了一种以聚硅硫酸铁(PFSiS)为主的新型聚合硅磷硫酸铁(PFSiSp)絮凝剂,并通过模拟水样和实际稠油石化污水,对其合成条件、组分配比、特性等进行了研究。
     经试验确定了聚硅酸(PS)合成条件:Si含量为0.5 mol·L-1,活化pH=4,合成温度为25℃;PFSiS合成条件为:初始Fe离子浓度为0.3 mol·L-1,碱化剂为NaHCO3,熟化温度控制在60℃,熟化时间为2h。采用不同碱化度(B值)和铁硅摩尔比(Fe/Si)的PFSiS对高岭土模拟水样除浊试验结果表明,当B值和Fe/Si在适宜的范围内PFSiS具有较好的絮凝性能,采用B=1.0,Fe/Si=5.0条件下合成的1.0PFSiS5.0在试验范围内具有最好的絮凝效果;稳定性试验表明,采用NaH2PO4为稳定剂,在Fe/P=10条件下,可使1.0PFSiS5.0稳定存放在60天以上,并可提高其絮凝性能,因此得到了优化配比的PFSiSp为:B=1.0,Fe/Si=5.0,Fe/P=10。
     对实际稠油石化污水预处理试验表明,在适宜的投加量与pH范围内,PFSiSp对COD和油的去除率分别可达65%和96%以上,经处理后污水的B/C(BOD/COD)值可提高10%,表明PFSiSp对稠油石化污水中难降解有机物具有较好的去除效果;对生化出水强化絮凝试验表明,在投加量为120 mg·L-1,沉降时间为120 min的条件下,PFSiSp对生化出水的中COD去除率为50%,处理后污水达到了排放要求。
     采用表面响应RSM试验方法研究了合成条件对PFSiSp中Fe(Ⅲ)水解/聚合产物组成的影响,建立了B值和Fe/Si与Fea、Feb和Fec含量关系的多元回归分析模型;在试验范围内模型预测值与实际测定值的误差小于5%;应用该模型可有效缩小合成条件的选择范围;PFSiSp絮凝剂的FTIR、XRD和SEM表征结果显示,Si参与了Fe(Ⅲ)水解/聚合反应并通过Fe—Si和Fe—O—Si与铁原子相连;PFSiSp中除含有少量种类的六角晶及斜方晶外,大多为无定形物;SEM试验结果表明,PFSiSp中物质主要为以两种结构的无定形物和多晶混生构成。
     采用等离子体原子发射光谱法(ICP-AES),离子色谱法(IC)和气象色谱质谱联用法(GC-MS)对常减压蒸馏工艺、催化裂化工艺、焦化工艺和污水总入口的水质进行了分析,结果显示稠油石化污水中重金属含量低,磷元素缺乏,有机污染物以含碳在10个以上烷烃类、甲基苯酚类、小分子有机酸类和胺类为主;各点源均不同程度的含有多环芳烃类(PAHs)有机物,多为萘、蒽、菲、芘等及其衍生物。
     现场对比试验表明,PFSiSp用于生化前预处理时,对稠油石化污水中油的去除率为92%;对COD的去除率为60%;对酚类的去除率为39.3%,其处理效果和处理稳定性均优于现场使用的单一聚合铁盐絮凝剂LHSH-1;对硫化物的去除率在85%与LHSH-1持平;PFSiSp用于生化出水强化絮凝处理时,COD的去除效果稳定,平均去除率为44.35%,经处理后污水COD含量在50 mg·L-1以下,达到了辽宁省地方排放标准;采用PFSiSp絮凝剂处理每吨污水的药剂成本为0.83元。
Beside the characteristics of general heavy oil wastewater, such as high concentration of pollutants, complex composition and relatively poor biochemical characteristics, Heavy Oil Petrochemical Wastewater (HOPW) is more complex and stable than heavy oil wastewater, due to using many chemicals additives in the refining process and fluctuation of quality and quantity. Because many heavy oil refineries located in the Liaohe River basin, HOPW has become important pollution sources of Liaohe River. To treat the HOPW, the refineries have built a large number of wastewater treatment facilities. However, as the local environmental laws and regulations stringent increasingly, the treatment effect of the facilities cannot meet the requirements of environmental protection. It has become a common problem for many petrochemical enterprises to find an economical and feasible way to treat the HOPW, especially to enhance the existing wastewater treatment process.
     Based on the status of the HOPW treatment technology and the characteristics of raw water and biochemical treated water, a new kind of cationic polymer flocculants were synthesized to improve the efficiency of pre-processing and enhanced flocculation of the bio-treaded water and resolved the contradiction between the meeting the pollutant emission standards and the high cost of the HOPW treatment.
     The efficiency of flocculants is key factor to effect HOWP treatment. Therefore, according to the shortcomings of the current flocculants and the water characteristics, new kinds of Poly Ferric Silicate Sulphate phosphate (PFSiSp) were synthesized by composite anions modified copolymerization method base on Poly Ferric Silicate Sulphate (PFSiS). Moreover, the synthesis factors, component ratios and application conditions properties of PFSiSp discussed by investigating the pollutants’removal efficiency of treating the simulated water and the actual HOPW samples.
     The polysilicate (PS) synthesis conditions were determined by experiments as follows: Si concentration of 0.5 mol·L-1; activation pH of 4, synthesis temperature of 25℃. PFSiS synthesis conditions as follows: initial Fe ion concentration of 0.3 mol·L-1, NaHCO3 as alkalization agent, aging temperature at 60℃and aging time of 2h. Using the PFSiS to treat simulated wastewater and HOPW, at different basicities (B value) and Fe/Si molar ratios, the results showed that PFSiS had a good flocculation performance in appropriate scale of B value and Fe/Si. The 1.0PFSiS5.0 (B=1.0, Fe / Si=5.0) had the best performance in the all flocculants. The same conclusions were obtained in treating the actual HOPW. The 1.0PFSiS5.0 is the most effective to remove oil and COD than the others in the experimental scale. Experiment results of the 1.0PFSiS5.0 Stability indicated that it can storage stably more than 60 days when NaH2PO4 was used as the stabilizer and the Fe/P value of 10. Moreover, adding phosphate can improve the floccunlant efficiency. Finally, the optimal ratios of PFSiSp were selected as follows: B = 1.0, Fe/Si = 5.0, Fe/P = 10.
     The pretreatment results of the actual HOPW exhibited that PFSiSp can remove 65% COD and 96% oil in the appropriate scale of dosages and suitable pH values conditions. The B/C (BOD/COD) value of the pretreated wastewater can be increased 10% than the raw wastewater. The change of B/C values indicated that PFSiSp can remove the nonbiodegradable COD efficiently. To optimize the application conditions, PFSiSp also was used as flocculant to decrease COD remaining in bio-treated HOPW by enhanced flocculation method. The results proved that nearly 50% COD can be removed under the dosage at 40 mg·L-1 and the setting time of 120 min conditions.
     To study the impact of the synthesis conditions on the composition of Fe (Ⅲ) hydrolysis and polymerization products, RSM experiment method was adopted. Using the method, the multiple regression analysis models were established between the B value and Fe / Si corresponds to Fea, Feb and Fec respectively. In experiment scales, the errors between the models predicted values and the measured values less than 5%. Using the models can decrease the selecting range of synthesis conditions. Furthermore, PFSiS flocculants were characterized by FTIR, XRD and SEM methods. The results indicated that Si participate the Fe (Ⅲ) hydrolysis and polymerization processes and conjoin with Fe atoms through the Fe-Si and Fe-O-Si bonds. Besides a few of hexagonal and orthorhombic crystals, most of the substances in PFSiSp were amorphous materials. SEM results exhibited that main substance existing in PFSiSp is two kinds of amorphous materials and mixed crystals.
     Using ICP-AES, IC, and GC-MS methods, the characteristics of HOPW were analyzed. The HOPW samples were collceted from the distillation, catalytic cracking, coking processes and the treatment plant’s inlet. The results showed that it is low heavy metals content, lack of phosphorus and the major organic pollutants are composited of alkanes, methyl phenols, small molecular organic acids and amines. Most of the alkanes contained more than ten carbon atoms. All the HOPW samples contain Polycyclic Aromatic Hydrocarbons (PAHs) in different degrees and the majority of PAHs are naphthalenes, anthracenes, phenanthrenes, pyrenes and their derivatives.
     Field experiments results showed that more than 92% of oil, nearly 60% COD and 39.3% of phenols can be removed using the PFSiSp as flocculant in the pretreatment of the actual HOPW. All the PFSiSp performance and removal rates stability are superior to LHSH-1 flocculant, which is a single component polymer of iron salt and used in this field. On the aspect of removing sulfide, PFSiSp and LHSH-1 can remove about 85% of sulfide. During the field experiments of enhanced flocculation for bio-treated HOPW, PFSiSp can remove COD steadily and the average COD removal rate is 44.35%; The COD remains in supernatant less than 50 mg·L-1 and meet the local emission standards in Liaoning Province. The running cost of PFSiSp is 0.83 RMB·t -1.
引文
1.中国工程院.东北地区有关水土资源配置、生态与环境保护和可持续发展的若干战略问题研究综合报告;北京, 2006.
    2.中华人民共和国石油天然气行业标准.油藏分类.SY/T6169-1995.
    3.崔波,石文平,戴树高等.高粘度稠油开采方法的现状研究进展[石油化工技术经济, 2000, 16 (6): 5210.
    4.刘恪贤.水力旋流法处理油田含油污水的理论与实践.油田地面工程, 1993, 12 (2): 29~32.
    5. A. Zukauskaite, V. Jakubauskaite, O. Belous, et al. Impact of heavy metals on the oil products biodegradation process. Waste Management & Research, 2008, 26 (6): 500~507.
    6.郝红英,郝红元.水处理中絮凝剂的研究.华北工学院学报, 1999, 9 (1):116~118.
    7.栾兆坤.混凝基础理论研究进展与发展趋势.环境科学学报, 2001, 21(增刊):1~9.
    8. S. Y. Qi. Predicting Minimum Carbon Usage for PAC Adsorption of Trace Organic Contaminants from Natural Water. Journal of Environmental Engineering-Asce, 2009, 135 (11): 1199~1205.
    9. L. Qi, H. Liang, Y. Wang, et al. Integration of immersed membrane ultrafiltration with the reuse of PAC and alum sludge (RPAS) process for drinking water treatment. Desalination, 2009, 249 (1): 440~444.
    10. S. Omer,S. Yaxi,H. Ailing, et al. Effect of PAC addition on MBR process for drinking water treatment. Separation and Purification Technology, 2008, 58 (3): 320~327.
    11. Y. Satyawali,M. Balakrishnan. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Research, 2009, 43 (6): 1577~1588.
    12. X. Chen,Y. H. Yuan,W. L. Huang, et al. The decolorization investigation of the dyeing wastewater that dealt with combined use of guar gum and PAC. Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials Vols 1 and 2, 2007, 100~103.
    13. M. S. Ye, H. M. Zhang, Q. F. Wei, et al. Study on the suitable thickness of a PAC-precoated dynamic membrane coupled with a bioreactor for municipal wastewater treatment. Desalination, 2006, 194 (1-3): 108~120.
    14. R. Thiruvenkatachari, W. G. Shim, J. W. Lee, et al. A novel method of powdered activated carbon (PAC) pre-coated microfiltration (MF) hollow fiber hybrid membrane for domestic wastewater treatment. Colloids and Surfacesa-Physicochemical and Engineering Aspects, 2006, 274 (1-3): 24~33.
    15. A. I. Zouboulis, N. Tzoupanos. Alternative cost-effective preparation method of polyaluminium chloride (PAC) coagulant agent: Characterization and comparative application for water/wastewater treatment. Desalination, 2010, 250 (1): 339~344.
    16.汪琳,李明玉,方刚等.聚合硫酸铝的制备及其混凝性能.暨南大学学报(自然科学与医学版), 2009, 30 (3): 276~281.
    17. B. Y. Gao, G. Abbt-Braun, F. H. Frimmel. Preparation and evaluation of polyaluminum chloride sulfate (PACS) as a coagulant to remove natural organic matter from water. Acta Hydroch Hydrob, 2006, 34 (5): 491~497.
    18. M. I. Aguilar, J. Saez, M. Llorens, et al. Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferric sulphate as coagulant and different coagulant aids. Water Research, 2003, 37 (9): 2233~2241.
    19. A. I. Zouboulis, P. A. Moussas. Polyferric silicate sulphate (PFSiS): Preparation, characterisation and coagulation behaviour. Desalination, 2008, 224 (1-3): 307~316.
    20. A. I. Zouboulis, P. A. Moussas,E. Vasilakou. Polyferric sulphate: Preparation, characterisation and application in coagulation experiments. Journal of Hazardous Materials, 2008, 155 (3): 459~468.
    21. Z. I. Anastasios, V. Fotini, M. Panagiotis. Synthesis, characterisation and application in coagulation experiments of polyferric sulphate. Waste Management and the Environment , 2006, 92(4): 133~142.
    22. A. G. El Samrani,B. S. Lartiges,E. Montarges-Pelletier, et al. Clarification of municipal sewage with ferric chloride: the nature of coagulant species. Water Research, 2004, 38 (3): 756~768.
    23. J. R. Dominguez,J. B. de Heredia,T. Gonzalez, et al. Evaluation of ferric chloride as a coagulant for cork processing wastewaters. Influence of the operating conditions on the removal of organic matter and settleability parameters. Industrial & Engineering Chemistry Research, 2005, 44 (17): 6539~6548.
    24. A. Torabian,A. H. Hasani,A. R. Mehrabadi. Effect of physical and chemical parameters on water treatment plant effluent quality (particle count and particle size). Water Pollution Ix, 2008,Ⅲ483~490.
    25. I. Skoczko,J. Wiater. Studies on degradation of phenoxyacetic acids in aqueous medium. Przemysl Chemiczny, 2008, 87 (5): 580~582.
    26. J. M. Sieliechi,B. S. Lartiges,G. J. Kayem, et al. Changes in humic acid conformation during coagulation with ferric chloride: Implications for drinking water treatment. Water Research, 2008, 42 (8-9): 2111~2123.
    27. L. Rizzo,A. Di Gennaro,M. Gallo, et al. Coagulation/chlorination of surface water:A comparison between chitosan and metal salts. Separation and Purification Technology, 2008, 62 (1): 79~85.
    28. A. Puszkarewicz. Removal of petroleum compounds from water in coagulation process. Environment Protection Engineering, 2008, 34 (1): 5~14.
    29. B. Libecki, J. Dziejowski. Optimization of humic acids coagulation with aluminum and iron(III) salts. Polish Journal of Environmental Studies, 2008, 17 (3): 397~403.
    30. D. Lakshmanan, D. Clifford,G. Samanta. Arsenic removal by coagulation - With aluminum, iron, titanium, and zirconium. Journal American Water Works Association, 2008, 100 (2): 76~78.
    31. P. Jarvis,B. Jefferson,D. Dixon, et al. Treatment options and their effect on NOM-coagulant floc structures. Journal of American Water Works Association, 2008, 100 (1): 64~73.
    32. E. Friedler, I. Katz, C. G. Dosoretz. Chlorination and coagulation as pretreatments for greywater desalination. Desalination, 2008, 222 (1-3): 38~49.
    33. A. Banihashemi, M. R. A. Moghadam, R. Maknoon, et al. Development of a coagulation/flocculation predictive model for turbidity removal from tehran water treatment plants. Environmental Engineering and Management Journal, 2008, 7 (1): 13~16.
    34. A. I. Zouboulis, N. D. Tzoupanos, P. A. Moussas. Inorganic pre-polymerized coagulants: current status and future trends. EEESD '07: Proceedings of the 3rd IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, 2007, 292~300.
    35. J. C. Wei, B. Y. Gao, Q. Y. Yue, et al. Dynamic analysis of the polyferric-organic dual-coagulant in treating dyeing wastewater. Advances in Chemical Technologies for Water and Wastewater Treatment, 2008, 111~119.
    36. Y. Wang, B. Y. Gao, Q. Y. Yue, et al. The characterization and flocculation efficiency of composite flocculant iron salts-polydimethyldiallylammonium chloride. Chemical Engineering Journal, 2008, 142 (2): 175~181.
    37. H. L. Zheng, X. H. Huang, Q. He, et al. Study of ferric species distribution in polyferric silicate sulfate (PFSS) prepared from tetraethylorthosilicate (TEOS). Spectroscopy and Spectral Analysis, 2008, 28 (3): 543~546.
    38.郑怀礼,彭德军,黄小红等.聚合硫酸铁絮凝剂的絮凝形态光谱研究.光谱学与光谱分析, 2007, 27 (12): 2480~2484.
    39.宋志伟,任南琪.阴离子对高浓度聚铁硅絮凝剂性能的影响.哈尔滨工业大学学报, 2005, 39 (10): 1577~1579.
    40. Z. W. Song, N. Q. Ren. Properties and coagulation mechanisms of polyferric silicate sulfate with high concentration. Journal of Environmental Sciences-China, 2008, 20(2): 129~134.
    41. F. Ying, S. L. Yu. Investigation on solid-liquid poly-silicic-ferric coagulant PSFN. Environmental Engineering Science, 2007, 24 (8): 1017~1025.
    42.王东升,汤鸿霄.聚铁硅型复合无机高分子絮凝剂的形态分布特征.环境科学, 2001, 22 (1):94~97.
    43.汤鸿霄.微界面水质过程的理论与模式应用.环境科学学报, 2000, 20 (1):1~9
    44.汤鸿霄,水处理絮凝技术与絮凝剂. 2004年全国城镇饮用水安全保障技术研讨会论文集, 2004.
    45.汤鸿霄.环境科学中的化学问题环境水质学中的几个化学前沿问题.化学进展, 2000, 12 (4):415~422.
    46.曲久辉,刘会娟,雷鹏举等.电解法制备PAC在水处理中的应用研究.中国给水排水, 2001, 17 (5):16~19.
    47.李善评,张彦丽,栾富波等.利用钢厂废物制备复合型无机高分子絮凝剂PAFC的研究.环境化学, 2005, 24 (2):168~170.
    48.李桂菊,王子曦,王昶等.利用废渣制备无机高分子絮凝剂及其应用研究.中国造纸, 2007, 26 (8):28~31.
    49.蒋文天,邱祖民,秦朝燕等.用废物制备无机高分子絮凝剂及其在印钞废水处理中的应用.南昌大学学报(工科版), 2009, 31 (3):218~222.
    50.汤鸿霄.无机高分子絮凝剂的几点新认识.工业水处理, 1997, 17 (4): 1~5.
    51.汤鸿霄.无机高分子复合絮凝剂的研制趋向.中国给水排水, 1999, 15 (2): 1~4.
    52. T. S. Singh, B. Parikh, K. K. Pant. Investigation on the sorption of aluminium in drinking water by low-cost adsorbents. Water Sa, 2006, 32 (1): 49~54.
    53. J. Ramesh,T. R. Madhav,S. Vatsala, et al. Interaction of A beta peptide (1-40) with amino acid aluminium complexes: relevance to Alzheimer's disease. Alzheimers Reports, 1999, 2 (1): 31~35.
    54. B. Mjoberg, E. Hellquist, H. Mallmin, et al. Aluminum, Alzheimer's disease and bone fragility. Acta Orthopaedica Scandinavica, 1997, 68 (6): 511~514.
    55.郑怀礼,龙腾锐,舒型武.聚合铁类絮凝剂作用机理分析.重庆环境科学, 2000, 22 (3): 51~53.
    56. H. A. Aziz, S. Alias, F. Assari, et al. The use of alum, ferric chloride and ferrous sulphate as coagulants in removing suspended solids, colour and COD from semi-aerobic landfill leachate at controlled pH. Waste Management & Research, 2007, 25 (6): 556~565.
    57. P. A. Moussas,A. I. Zouboulis. A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant-Polyferric silicate sulphate (PFSiS). Separation and Purification Technology, 2008, 63 (2): 475~483.
    58. J. C. Wei,B. Y. Gao,Q. Y. Yue, et al. Dynamic analysis of the polyferric-organic dual-coagulant in treating dyeing wastewater. Advances in Chemical Technologies for Water and Wastewater Treatment, 2008, 111~119.
    59.胡勇有,王占生,汤鸿霄.聚磷氯化铝溶液形态分布及转化规律.环境科学学报, 1995, 15 (2): 224~231.
    60. F. Rohner, F. O. Ernst, M. Arnold, et al. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. Journal of Nutrition, 2007, 137 (3): 614~619.
    61.田宝珍,汤鸿霄.含磷酸盐的三氯化铁的水解溶液的化学特征.环境化学, 1995, 14 (4): 329~336.
    62. K. Kandori, T. Kuwae, T. Ishikawa. Control on size and adsorptive properties of spherical ferric phosphate particles. Journal of Colloid and Interface Science, 2006, 300 (1): 225~231.
    63. Levine. Natural polymer sources. in polyelectrolyte for water wastewater treatment Boca Roton, 1981.
    64. M. R. D. Cationic water souble polymers precipitation in Salt Solution. 2000.
    65.郑怀礼.生物絮凝剂与絮凝技术.北京:化学工业出版社, 2004.
    66. M. Taniguchi,K. Kato,A. Shimauchi, et al. Proposals for wastewater treatment by applying flocculating activity of cross-linked poly-gamma-glutamic acid. Journal of Bioscience and Bioengineering, 2005, 99 (3): 245~251.
    67. H. H. Ngo, W. S. Guo. Membrane fouling control and enhanced phosphorus removal in an aerated submerged membrane bioreactor using modified green bioflocculant. Bioresource Technology, 2009, 100 (18): 4289~4291.
    68. T. Nomura,S. Araki,T. Nagao, et al. Resource recovery treatment of waste sludge using a solubilizing reagent. Journal of Material Cycles and Waste Management, 2007, 9 (1): 34~39.
    69. H. L. Jiang,A. M. Maszenan,J. H. Tay. Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules. Applied Microbiology and Biotechnology, 2007, 75 (5): 1191~1200.
    70. X. W. Huang, W. Cheng, Y. Y. Hu. Screening of flocculant-producing strains by NTG mutagenesis. Journal of Environmental Sciences-China, 2005, 17 (3): 494~498.
    71. W. J. Liu, H. L. Yuan, J. S. Yang, et al. Characterization of bioflocculants from biologically aerated filter backwashed sludge and its application in dying wastewater treatment. Bioresource Technology, 2009, 100 (9): 2629~2632.
    72. Y. Y. Hu, X. M. Yan, W. Chen, et al. Flocculation properties of bioflocculant MBF-7 produced by Penicillium purpurogenum in kaolin suspension. InternationalJournal of Environment and Pollution, 2009, 37 (2-3): 166~176.
    73. F. Ma, L. N. Zheng, Y. Chi. Applications of Biological Flocculants (BFs) for Coagulation Treatment in Water Purification: Turbidity Elimination. Chemical and Biochemical Engineering Quarterly, 2008, 22 (3): 321~326.
    74. W. Zhang,R. C. Xiong,G. Wei. Biological flocculation treatment on distillery wastewater and recirculation of wastewater. Journal of Hazardous Materials, 2009, 172 (2-3): 1252~1257.
    75. A. C. C. Report,. Coagulation as An Integrated Water Treatment Process. J.Am Water Works Assoc, 1989, 81 (10): 72.
    76.王绍文,姜安玺.混凝动力学的涡旋理论探讨[上].中国给水排水, 1991, 7 (1):4
    77. Dentel SK, G. JM. Mechanisms of Coagulation.With Aluminum Salts. J Am Water,Works Assoc, 1988, 80 (4): 187.
    78. O. Abdelwahab, N. K. Amin, E. S. Z. El-Ashtoukhy. Electrochemical removal of phenol from oil refinery wastewater. Journal of Hazardous Materials, 2009, 163 (2-3): 711~716.
    79. M. Tir,N. Moulai-Mostefa. Optimization of oil removal from oily wastewater by electrocoagulation using response surface method. Journal of Hazardous Materials, 2008, 158 (1): 107~115.
    80.陈玲,贺延龄.聚硅基复合氯化铁絮凝剂的制备及其在采油废水处理中的应用.环境污染与防治, 2009, 31 (11): 21~35.
    81. R. Verney,R. Lafite,J. C. Brun-Cottan. Flocculation Potential of Estuarine Particles: The Importance of Environmental Factors and of the Spatial and Seasonal Variability of Suspended Particulate Matter. Estuaries and Coasts, 2009, 32 (4): 678~693.
    82. A. Turner,F. Xu. Influence of ionic surfactants on the flocculation and sorption of palladium and mercury in the aquatic environment. Water Research, 2008, 42 (1-2): 318~326.
    83. R. A. Rodriguez, P. M. Gundy, C. P. Gerba. Comparison of BGM and PLC/PRC/5 cell lines for total culturable viral assay of treated sewage. Applied and Environmental Microbiology, 2008, 74 (9): 2583~2587.
    84. P. D. Johnson, P. Girinathannair, K. N. Ohlinger, et al. Enhanced removal of heavy metals in primary treatment using coagulation and flocculation. Water Environment Research, 2008, 80 (5): 472~479.
    85. D. R. Neupane, R. Riffat, S. N. Murthy, et al. Influence of source characteristics, chemicals, and flocculation on chemically enhanced primary treatment. Water Environment Research, 2008, 80 (4): 331~338.
    86.王东升,刘海龙,晏明全等.强化混凝与优化絮凝:必要性、研究进展和发展方向.环境科学学报, 2006, 24 (4): 544~551.
    87. J. Addai-Mensah, H. Bal, K. Y. Yeap. Polyelectrolyte enhanced flocculation, particle interactions and dewaterability of fine gibbsite dispersions. Asia-Pacific Journal of Chemical Engineering, 2008, 3 (1): 4~12.
    88. G. R. Xu, Z. C. Yan, N. Wang, et al. Ferric coagulant recovered from coagulation sludge and its recycle in chemically enhanced primary treatment. Water Sci Technol, 2009, 60 (1): 211~219.
    89. D. Gerrity, B. Mayer, H. Ryu, et al. A comparison of pilot-scale photocatalysis and enhanced coagulation for disinfection byproduct mitigation. Water Res, 2009, 43 (6): 1597~1610.
    90. A. Asatekin, A. M. Mayes. Oil Industry Wastewater Treatment with Fouling Resistant Membranes Containing Amphiphilic Comb Copolymers. Environmental Science & Technology, 2009, 43 (12): 4487-4492.
    91. V. Rajakovic, G. Aleksic, M. Radetic, et al. Efficiency of oil removal from real wastewater with different sorbent materials. Journal of Hazardous Materials, 2007, 143 (1-2): 494~499.
    92. Q.B.Gu, C. S. Peng, F. S. Li, et al. Treatment of oil-contaminated wastewater through bed coalescence using a new filter medium. Environmental Engineering Science, 2005, 22 (4): 472~478.
    93.佟瑞利,赵娜娜,王湘英等. Fe3O4纳米颗粒的制备及其净化含油污水的研究.化学工程, 2009, 37 (7): 47~50.
    94.郭省学.生物接触氧化/超滤/反渗透法处理稠油污水试验研究.环境污染与防治, 2009, 31 (11): 78~80.
    95. G. M. Ren,D. Z. Sun,J. S. Chunk. Advanced treatment of oil recovery wastewater from polymer flooding by UV/H2O/O-3 and fine filtration. Journal of Environmental Sciences-China, 2006, 18 (1): 29~32.
    96.雷乐成,陈琳,何锋.油田稠油污水深度处理后回用于热采注汽锅炉的试验研究.给水排水, 2003, 29 (3): 52~55.
    97. A. F. Viero, T. M. de Melo, A. P. R. Torres, et al. The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater. Journal of Membrane Science, 2008, 319 (1-2): 223~230.
    98.包木太,柳泽岳,王海峰等.生物接触氧化法处理稠油污水试验研究.环境工程学报, 2009, 3 (1): 31~34.
    99.仝坤,李刚,籍国东.二级串联人工湿地处理稠油污水的季节变化.环境工程, 2008, 26 (2): 32~34.
    100.国家环境保护总局《水和废水监测分析方法》编委会.水和废水检测分析方法(第四版).北京:中国环境科学出版社, 2002.
    101.李善评,甄博如,赵海霞等.组合式生物膜法处理炼油废水的研究.环境污染与防治, 2007, 29 (1): 57~59.
    102.徐康宁,汪诚文,刘巍等.稳定塘用于石化废水尾水处理的中试研究.中国给水排水, 2009, 25 (3): 32~36.
    103.李倩,仝攀瑞,同帜等. A /O工艺处理印染废水的实践与探讨. .环境污染与防治, 2009, 31 (8): 107~109.
    104. N. I. Galil, D. Wolf. Removal of hydrocarbons from petrochemical wastewater by dissolved air flotation. Water Science and Technology, 2001, 43 (8): 107~113.
    105.刘海龙,王东升,程芳琴等.微污染原水预臭氧化-强化混凝处理及其安全性.环境科学学报.2008,28(7):1320~1325.
    106.碧娴,林峥,张干等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究.环境科学学报, 2000, 20 (2): 192~197.
    107.建丽,冯流,周俊丽等.淮河盱眙段柱状沉积物中PAHs分布及生态风险评价.环境科学研究, 2009, 22 (4): 404~408.
    108. H. T. Zhao, C. Q. Yin, M. X. Chen, et al. Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delta. Journal of Environmental Sciences-China, 2009, 21 (2): 162~167.
    109. J. Bergendahl. Batch leaching tests: Colloid release and PAH leachability. Soil &Sediment Contamination, 2005, 14 (6): 527~543.
    110. L. B. Boinovich,A. M. Emel'yanenko. Alkane films on water: stability and wetting transitions. Russian Chemical Bulletin, 2008, 57 (2): 263~273.
    111. G. M. Litton,T. M. Olson. Colloid Deposition Kinetics with Surface-Active Agents - Evidence for Discrete Surface-Charge Effects. Journal of Colloid and Interface Science, 1994, 165 (2): 522~525.
    112.肖汝.多环芳烃在典型污灌区土壤中的垂直分布及初步源解析.北京科技大学硕士学位论文2007.
    113.高宝玉,宋永会.聚硅酸硫酸铁混凝剂的性能研究.环境科学学报, 1997, 18 (2): 22~23.
    114. B. Y. Gao, H. H. Hahn. Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment. Water Research, 2002, 36 (14): 3573~3581.
    115. G. R. Brain. Aluminum Distribution in Alzheimer’s disease and Experimental Neurofibrillary. Science, 1973, 180:511~513.
    116. S. J. Rao,H. L. Zheng,R. Chen, et al. Characterization and coagulation performance of polymeric phosphate ferric sulfate on eutrophic water. Journal of Central South University of Technology, 2009, 16 :345~350.
    117.王光辉,魏晓金,雷国元.聚磷硫酸铁混凝去除微污染水中藻类生物研究.华中科技大学学报(城市科学版), 2005, 22 (3): 57~60.
    118.李凡修,陈武.聚磷硫酸铁的制备及在稠油污水处理中的应用.油气田环境保护, 2000, 10 (03): 25~26.
    119.汤鸿霄.无机高分子絮凝理论与絮凝剂.北京:中国建筑工业出版社,2006.
    120. Dousma J, De bruyn P L. Precipitation studies of iron solution. J Colloid Interface Sci, 1976, 56: 527~539.
    121. R. K. Iler. The Chemistry of siliea. Wile Interseience Publieation, 1975.
    122.胡翔,周定.聚硅酸系列混凝剂混凝过程的动力学和机理研究.水处理技术, 1999, 25 (2): 114~117.
    123.付英,于水利,杨园晶等.聚硅酸铁(PSF)混凝剂硅铁反应过程研究.环境科学学报, 2007, 28 (3): 570~577.
    124.宋志伟,栾兆坤,贾智萍.高浓度复合型聚铁硅絮凝剂PFSS和PSFS的形态分布研究.环境污染治理技术与设备, 2005, 6 (8): 38~41.
    125. W.塔姆,J.J.摩尔根.水化学.北京:科学出版社, 1987.
    126. Solberg D,W. L. Adsorption and flocculation behavior of cationic polyacrylamide and colloidal silica Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2003, 219 (1-3): 161~172.
    127.D. C. MONTGOMERY. Design and analysis of experiments.New York: Wiley, 1991.
    128. K. Yetilmezsoy,S. Demirel,R. J. Vanderbei. Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J Hazard Mater, 2009, 171 (1-3): 551~562.
    129. C. Valverde. Artificial sRNAs activating the Gac/Rsm signal transduction pathway in Pseudomonas fluorescens. Arch Microbiol, 2009, 191 (4): 349~359.
    130. K. Farhadi,M. Bahram,D. Shokatynia, et al. Optimization of polymeric triiodide membrane electrode based on clozapine-triiodide ion-pair using experimental design. Talanta, 2008, 76 (2): 320~326.
    131. I. Dahlan,K. T. Lee,A. H. Kamaruddin, et al. Analysis of SO2 sorption capacity of rice husk ash (RHA)/CaO/NaOH sorbents using response surface methodology (RSM): untreated and pretreated RHA. Environ Sci Technol, 2008, 42 (5): 1499~1504.
    132. S. W. Chang,C. J. Shieh,G. C. Lee, et al. Optimized growth kinetics of Pichia pastoris and recombinant Candida rugosa LIP1 production by RSM. J Mol Microbiol Biotechnol, 2006, 11 (1-2): 28~40.
    133. S. Ghafari, H. A. Aziz,M. H. Isa, et al. Application of response surface methodology(RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J Hazard Mater, 2009, 163 (2-3): 650~656.
    134. V. C. FARMER. The infrared spectra of minerals. London: Mineralogical Society, 1974.
    135.中本一雄.无机和配位化合物红外和拉曼光谱.北京:化学工业出版社, 1986.10.
    136. E. DOELSCH, A. MASION, E. A. ROSE. Chemisrty and structure colloids obtained by hydrolysis of Fe(III)in the presence of SiO4 ligands. Colloids and Surfaces A, 2003, (213): 121~128.
    137.桑俊利,王巧娟,郭西凤.磷酸铁锂正极材料的合成与表征技术.无机盐工业, 2008, 40 (2): 13~15.
    138. J. Rose,A. M. Flank,A. Masion, et al. Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO4 ions .2. P K-edge EXAFS study. Langmuir, 1997, 13 (6): 1827~1834.
    139. J. Rose,A. Manceau,J. Y. Bottero, et al. Nucleation and growth mechanisms of Fe oxyhydroxide in the presence of PO4 ions .1. Fe K-edge EXAFS study. Langmuir, 1996, 12 (26): 6701~6707.
    140. A. Masion,J. Rose,J. Y. Bottero, et al. Nucleation and growth mechanisms of iron oxyhydroxides in the presence of PO4 ions .3. Speciation of Fe by small angle X-ray scattering. Langmuir, 1997, 13 (14): 3882~3885.
    141. A. Masion, J. Rose, J. Y. Bottero, et al. Nucleation and growth mechanisms of iron oxyhydroxides in the presence of PO4 ions .4. Structure of the aggregates. Langmuir, 1997, 13 (14): 3886~3889.
    142. Letterman R D,Amirtharajah A,O'Melia C R. Water quality and treatment. 1999.
    143.陶文沂.工业微生物生理与遗传育种学.北京:中国轻工业出版社, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700