用户名: 密码: 验证码:
血橙花色苷结构及其在加工过程中的降解机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血橙是重要的甜橙品种,是具有高营养价值、高商业价值的水果,但是其在加工中容易褐变而导致商业价值降低。本研究从花色苷降解的角度出发,在对血橙中主要花色苷的分离纯化及结构鉴定的基础上,通过研究血橙主要花色苷的降解途径,及血橙汁内源因子在花色苷降解过程中的作用,进一步阐明由花色苷降解引起的血橙汁褐变机制。同时,对血橙花色苷抗氧化活性及血橙汁加工过程中抗氧化的变化进行研究,对血橙花色苷的构效关系进行了探讨。主要研究结果如下:
     1、对血橙汁进行成分分析,并研究了血橙汁在贮藏过程中成分的变化。结果表明,血橙汁富含花色苷、黄酮类物质、抗坏血酸、氨基酸、糖类等物质,还含有Ca、Mg、Zn、Fe、Cu等丰富的人体必需微量元素。血橙汁含有的可溶性糖主要是蔗糖、果糖、葡萄糖。在血橙汁贮藏过程中,随着花色苷含量的下降橙汁鲜艳的红色也逐渐褪色成浅黄褐色,抗坏血酸含量显著下降,还原糖含量变化缓慢,总酸含量平缓增加。
     2、通过静态吸附解吸、动态吸附解吸试验对7种大孔吸附树脂(D3520、D4020、NKA-2、NKA-9、SIPI-DA201、D14、D16)和5种弱酸性阳离子交换树脂(D151、D152、110、HD-1、JK-110)进行筛选,找到对血橙花色苷特异性最好的树脂NKA-9,并就其对血橙花色苷的提取纯化进行了条件优化,结果表明,柠檬酸调pH为2-3的50%乙醇洗脱效果最好。再利用凝胶柱层析分离纯化血橙花色苷提取物,洗脱条件为:洗脱液采用甲醇/水/甲酸(50:48:2,v/v/v),流速0.6mL/min。
     3、利用HPLC-MS、GC、FTIR等技术以及化学定性反应等方法对血橙中花色苷及其他黄酮类化合物进行了鉴定。结果表明,血橙中主要含有8种花色苷和4种黄酮类物质,花色苷分别为:矢车菊素-3-葡萄糖苷、矢车菊素-3(6”-丙二酰)葡萄糖苷、飞燕草素-3-芸香糖苷、矢车菊素-3-芸香糖苷、矢车菊素-3(3”-丙二酰)葡萄糖苷、矢车菊素-3(6”-二乙二酰)葡萄糖苷、矢车菊素-5-葡萄糖苷和矢车菊素-3-葡萄糖苷加成物:4-乙烯基儿茶酚,其中前2种花色苷是血橙中主要花色苷,含量分别占44.3%和36.5%;黄酮类物质为:芸香柚皮苷、橙皮苷、柚皮苷和新橙皮苷。另外,本研究成功分离到血橙中三种具有典型结构代表性的花色苷,即矢车菊素3-葡萄糖苷、矢车菊素-3-葡萄糖苷的丙二酰化衍生物及矢车菊素3-葡萄糖苷吡喃型衍生物。
     4、本研究确定了血橙花色苷的水解平衡位点pK为3.4,正处于橙汁的pH值附近,因此血橙汁中花色苷极不稳定,pH4.0时对热最为敏感。另外,血橙花色苷对热、光都很不稳定。金属离子都表现出对花色苷热降解的保护作用,Al~(3+)对血橙花色苷有明显的增效作用,且随着浓度增加增色作用越强;Cu~(2+)低浓度下,对花色苷热降解有一定保护作用,但是高浓度下有明显的促进花色苷降解的作用。葡萄糖对花色苷的降解有一定保护作用,而果糖和蔗糖会促进花色苷的降解,且果糖作用大于蔗糖。
     5、采用pH示差法和HPLC法对血橙花色苷热降解动力学进行了研究,两种方法测得的矢车菊素-3-葡萄糖苷的降解是一致的。但是,对于矢车菊素-3(6”-丙二酰)葡萄糖苷,两种方法得到的结果却不一致,HPLC分析显示矢车菊素-3(6”-丙二酰)葡萄糖苷不如矢车菊素-3-葡萄糖苷稳定,同时研究表明矢车菊素-3(6”-丙二酰)葡萄糖苷降解中易脱掉酰基生成中间产物矢车菊素-3-葡萄糖苷;而pH示差法得到的结果反映的是体系中总花色苷的降解情况,从而造成了对矢车菊素-3(6”-丙二酰)葡萄糖苷稳定性的高估。而吡喃型花色苷与矢车菊素-3-葡萄糖苷和矢车菊素-3(6”-丙二酰)葡萄糖苷相比,在所研究温度下,热稳定性较差。同时,研究了血橙花色苷热处理过程中色泽降解动力学,并确定血橙汁热处理过程中花色苷降解动力学及色泽降解动力学之间的线性关系可以用公式a/a_0=0.559(C/C_0)+0.43来表示。
     6、通过对模拟体系中花色苷的降解动力学的研究,确定了血橙汁中内源因子及其相互作用对花色苷降解的影响。结果显示,抗坏血酸和糖能显著促进花色苷的降解,并且两者表现出协同作用,而黄酮类物质则对花色苷的降解具有显著的保护作用,并且与前两者的促进作用相比,这种保护作用在血橙花色苷的降解过程中占主导地位。黄酮类物质和抗坏血酸能降低温度对花色苷降解速率的影响,但是糖促进花色苷降解却与温度密切相关。在糖存在的模拟体系中,花色苷的降解高温时(>70℃)与其它模拟体系不同,不再符合一级动力学,且血橙中含有的可溶性糖对花色苷降解的促进作用依次为:葡萄糖<蔗糖<果糖。另外,在Cu~(2+)与抗坏血酸的体系中发现,Cu~(2+)本身不促进花色苷的降解,甚至还表现出一定的保护作用,但是当体系中Cu~(2+)与抗坏血酸共存时,就能大大促进花色苷的降解,Cu~(2+)对花色苷降解的作用存在一种耦合氧化机制,即Cu~(2+)通过催化抗坏血酸的氧化来促进花色苷的氧化降解。
     7、采用化学发光法对血橙花色苷体外抗氧化活性及对DNA损伤的保护作用进行了评价,结果表明,血橙花色苷有很强的体外抗氧化活性及对DNA损伤的保护作用,但是血橙中其它黄酮类物质表现出比花色苷更强的作用。三种典型花色苷抗氧化活性强弱依次为:吡喃型花色苷>矢车菊素-3(6”-丙二酰)葡萄糖苷>矢车菊素-3-葡萄糖苷,与低温下三者的稳定性一致,说明三者抗氧化能力与结构稳定性成正相关;而三者对DNA损伤的保护作用大小与抗氧化活性大小相反。另外,还对血橙汁热处理过程中抗氧化能力及对DNA损伤保护能力的变化进行了研究,试验表明随着热处理时间的增长,血橙汁抗氧化活性及对DNA损伤的保护能力不断下降,当热处理1h左右,抗氧化能力及对DNA损伤保护能力会下降一半。
Blood orange (Citrus sinensis) is an important kind of sweet orange with high nutritional value and high commercial value. The fruit rapidly lose its bright red colour and turn brown during processing, resulting in a reduced market value. This study originated from the degradation of blood orange anthocyanins. On the basis of isolation and identification of the major anthocyanins from blood orange, we investigated the degradation pathway of major anthocyanins obtained from blood orange, and the effect of intrinsic factors of blood orange juice on the degradation of anthocyanins. The results allow us further understand the browning mechanism of blood orange juice. In addition, we studied the antioxidant activity of blood orange anthocyanins, and the the antioxidant activity of blood orange juice during thermal processing. The structure-activity relationship of blood orange was investigated. The major results are as fallow:
     1.The compositions of blood orange were analyzed, and the changes of compisition of blood orange during storage were studied. Blood orange juice was abundant in anthocyanins, other flavonoids, ascorbic acid, amino acid and sugars etc. there were also rich trace elements such as Ca, Mg, Zn, Fe, Cu, which were necessary to human. The sugars in blood orange juice were glucose, sucrose and fructose. During the storage of blood orange juice, the attractive red color was lost along with the decreasing of anthocyanin content; the content of ascorbic acid declined significantly; reducing sugar content changed tardily; total acid content increased smoothly.
     2.According to the static adsorptive/desorptive capacity and dynamic adsorptive/desorptive capacity for blood orange anthocyanins of different resins (seven kinds of macroporous resin and five kinds of weakly acidic-cation exchange resin), NKA-9 macroporous resin was the optimum for blood orange anthocyanins, and the optimal elution reagent was 50% ethanol with citric acid (pH 2-3). The best separation of Toyopearl TSK HW-40S column was obtained using a mobile phase of 35% methanol with 2% formic acid at a flow-rate of 0.6 mL/min.
     3. The anthocyanins of blood orange were identified as cyanidin-3- glucoside, cyanidin-3-(6"-malonyl) glucoside, delphinidin-3-rutinoside, cyanidin-3-rutinoside, cyanidin-3-(3"-malonyl) glucoside, cyanidin-3-(6"-dioxalyl) glucoside, cyanidin-5-glucoside and cyanidin-3-glucoside-derived pyranoanthocyanins.Cyanidin-3-glucoside and cyanidin-3-(6"-malonyl) glucoside were the two major anthocyanins of blood orange, the contents of them were 44.3% and 36.5%, respectively. The flavonoids of blood orange were narirutin, hesperidin, naringin and neohesperidin. In addition, three kinds of representative anthocyanins of blood orange (cyanidin-3-glucoside, cyanidin-3-(6"-malonyl) glucoside and cyanidin-3-glucoside -derived pyranoanthocyanins) were purified.
     4.The pK of blood orange anthocyanins was about 3.4. It was similar with the pH value of blood orange juice, so the anthocyanins of blood orange were unstable in blood orange juice, and were the most sensitive at pH 4.0. In addition, the anthocyanins blood orange were unstable for heat and light. Metal ions had protective effect on the thermal degradation of anthocyanins. Al~(3+) had hyperchromic effect on anthocyanins, and the effect was enhanced with the increasing of Al~(3+) content. Cu~(2+) also had a protective effect on the thermal degradation of anthocyanins at lower content, but it had significant stimulative effect. Glucose had a protective effect on the thermal degradation of anthocyanins, whereas sucrose and fructose could promote the degradation of anthocyanins, and the effect of fructose was greater than sucrose.
     5.The thermal degradation kinetics of blood orange anthocyanins were investigated. The results indicated that cyanidin-3-(6"-malonyl) glucoside was less stable than cyanidin-3- glucoside. Acylation with malonic acid could enhance the color stability, but not structural stability. Compared with cyanidin-3- glucoside and cyanidin-3-(6"-malonyl) glucoside, the pyranoanthocyanin was less stable at selected temperature in the study. In addition, the color degradation kinetics during thermal processing was investigated. The relationships between visual color and anthocyanins conternt during thermal processing at selected temperatures could be expressed by the same equation: a/a_0=0.559(C/C_0)+0.43.
     6.Degradation kinetics of anthocyanins in model systems and the effect of intrinsic factors on anthocyanins degradation and were investigated. The results indicated that ascorbic acid and sugars significantly accelerated anthocyanins degradation, and they had a synergistic effect on the anthocyanins degradation. However, flavonoids had a protective effect on degradation of anthocyanins, and the preotective effect of flavonoids played a more important role in the degradation of anthocyanins comparing to the negative effect of ascorbic acid or sugars. The promoting effects of sugars on anthocyanins degradation correlated with the temperature, and the degradation of anthocyanins in the presence of sugars followed complex reaction kinetics at comparatively higher temperature (above 70℃). The stimulative effects of sugars on anthocyanins degradation were according to the following descending order: fructose>sucrose>glucose. In addition, although Cu~(2+) showed a protective effect on anthocyanins degradation, it could significantly accelerate anthocyanins degradation in the presence of ascorbic acid. So the effect of Cu~(2+) on anthocyanins degradation was a coupled oxidation.
     7. Antioxidant activity and preventing DNA damage effect of blood orange anthocyanins were evaluated by using chemiluminescence method. The results showed anthocyanins of blood orange had strong antioxidant activity and preventing DNA damage effect, while the antioxidant activity of other flavonoids in blood orange was stronger than anthocyanins. The antioxidant activity of the three representative anthocyanins of blood orange were according to the following descending order: cyanidin-3-glucoside -derived pyranoanthocyanins>cyanidin-3-(6"-malonyl) glucoside>cyanidin-3-glucoside, consenting to the stability of them at lower tempterature. Whlie the preventing DNA damage effects of them were according to the following order: cyanidin-3-glucoside > cyanidin-3-(6"-malonyl) glucoside>cyanidin-3-glucoside -derived pyranoanthocyanins. In addition, the antioxidant activity and preventing DNA damage effect of blood orange juice during thermal processing were investigated. The results indicated that the antioxidant activity and preventing DNA damage effect of blood orange juice declined along with thermal processing. The antioxidant activity and preventing DNA damage effect would decrease to half when thermal processing for about 1h.
引文
1.大连轻工业学院等合编.食品分析.第1版.北京:中国轻工业出版社,1994
    2.陈大茴,杨小凤,艾常春.广东微量元素科学,2006,13(2):64-66.
    3.陈良珠.血橙在江南的适应性.浙江柑橘,1985,3:27-29.
    4.方允中, 李文杰.自由基与酶-基础理论及其在生物学和医药中的应用.北京:科学出版社,1994,122-142.
    5.胡天喜,陈季武,许建营,陆静怡.云芝糖肽和灵芝多糖清除活性氧的作用.生物化学与生物物理学报,1992,24(5):465-470.
    6.胡天喜.自由基生命科学进展.北京:原子能出版社,1997,65-71.
    7.郭蔼光,王振镒.邻苯三酚自氧化-化学发光法测定SOD活性.植物生理学通讯,1989,3:54-57.
    8.阚建全.食品化学.北京:中国农业大学出版社,2002,292-293.
    9.李鹏,彭辉,张天箴.不同抑制条件对梨汁褐变影响的研究.河北农业大学学报,1994,17(1):53-56.
    10.黎蕙兰,方新文.果蔬制品色泽的褐变及其控制.江西食品工业,2004,1:35-36.
    11.李云康.柑橘特征糖酸组成及其与果汁褐变关系研究.[硕士学位论文].武汉:华中农业大学图书馆,2006.
    12.马文建,曹恩华,张健,秦静芬.十几种天然抗氧化剂对DNA保护作用的结构分析与理论计算.生物物理学报,1998,14(1),155-160.
    13.苏学素,焦比宁,陈宗道,Cassano A,Drioli E.超滤对血橙果汁中抗氧化成分及总抗氧化能力的影响.农业工程学报.2004,20(2):185-188.
    14.徐娟,邓秀新.柑橘类果实汁胞的红色现象及其呈色色素.果树学报.2002,19(5):307-313.
    15.徐金瑞,张名位,刘兴华,张瑞芬,孙玲.黑大豆种皮花色苷体外抗氧化活性研究.营养学报.2007,29(1):54-57.
    16.徐渊金,杜琪珍.花色苷生物活性的研究进展.食品与机械.2006,22(6):154-157.
    17.徐晓云,潘思轶,谢笔钧,杨尔宁,陈然.树脂法精制沙棘籽原花色素的研究.农业工程学报,2005,21(1):152-154.
    18.张尔贤.·OH自由基产生的化学发光体系及对若干天然产物清除作用的评价.自由基生命科学进展.北京:原子能出版社,1994,153-159.
    19.张健,曹恩华,秦静芬,秦国伟.抗氧化剂对DNA损伤的保护作用,生物物理学报,1997,13(1):123-127.
    20.张名位,郭宝江,池建伟,魏振承,许志宏,张雁,张瑞芬.不同品种黑 米的抗氧化作用及其与总黄酮和花色苷含量的关系.中国农业科学,2005,38(7):1324-1331.
    21.张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1999,38-40.
    22.钟瑞敏.花色苷结构与稳定性的关系及其应用研究.韶关学院学报(自然科学版),2001,22(12):79-83.
    23.朱洪梅,韩永斌,顾振新,范龚健.单宁对紫甘薯花色苷的辅色作用研究.南京农业大学学报,2006,29(3):98-102.
    24.Adams J B. Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyanidin. I. In acidified aqueous solution at 100℃. Journal of the Science of Food and Agriculture, 1973,24: 747-762.
    25.Ahmed J, Shivhare U S, Raghavan G S V. Thermal degradation kinetics of anthocyanin and visual colour of plum puree. European Food Research and Technology, 2004,218: 525-528.
    26.Aline M, Charles E L, Marco R, Jeanne M, Odile G N. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 2005, 91: 571-577.
    27.Arena E, Fallico B, Maccarone E. Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage.Food Chemistry, 2001, 74: 423-427.
    28.Asen S, Stewart R N, Norris K H. Copigmentation of anthocyanins in plant tissues and its effect on color. Phytochemistry, 1972, 11: 1139-1144.
    29.Attoe E L, Von Elbe J H. Photochemical degradation of betanine and selected anthocyanins. Journal of Food Science, 1981,46: 1934-1937.
    30.Bertoncini C R, Meneghini B. DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3'-phosphoglycolate termini. Nucleic Acids Research, 1995,23: 2995-3002.
    31.Bocco A, Cuvelier M E, Richard H, Berset C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry, 1998,46: 2123-2129.
    32.Bonina F, Saija A, Tomaino A, Lo Cascio R, Rapisarda P. In vitro antioxidant activity and in vivo photoprotective effect of a red orange extract. International Journal of Cosmetic Science, 1998,20: 331-342.
    33.Bordignon-Luiz M T, Gauche C, Gris E F, Falcao L D. Colour stability of anthocyanins from Isabel grapes (Vitis labrusca L.) in model systems. LWT-Food Science and Technology, 2007,40: 594-599.
    34.Brenes C H, Pozo-insfran D D, Talcott S T. Stability of copigmented anthocyanins and ascorbic acid in a grape juice model system. Journal of Agricultural and Food Chemistry, 2005, 53: 49-56.
    35. Brouillard R. Chemical structure of anthocyanins. In: Anthocyanins as Food Colors. Markakis P (ed.), Academic Press Inc., New York, 1982, pp. 1-38.
    36. Brouillard R. The in vivo expression of anthocyanin color in plants. Phytochemistry, 1983,22: 1311-1323.
    37. Calderon A A, Garcia-Florenciano E, Munoz R, Ros Barcelo A. Gamay grapevine peroxidase: Its role in vacuolar anthocyanin degradation. Vitis, 1992, 31: 139-147.
    38. Calvi J P, Fracis F J. Stability of concord grape (V. labrusca) anthocyanins in model system. Journal of Food Science, 1978, 43: 1448-1456.
    39. Chen L, Hrazdina G. Structural aspects of anthocyain-flavonoid complex formation and its role in plant color. Phytochemistry, 1981, 20: 297-303.
    40. Cheng C, Wang Z. Bacteriostasic activity of anthocyanin of Malva sylvestris. Journal of Forestry Research, 2006,17: 83-85.
    41. Cheynier V, Souquet M, Kontek A, Moutounet M. Anthocyanin degradation in oxidising grape musts. Journal of the Science of Food and Agriculture, 1994, 66, 283-288.
    42. Choi M H, Kim G H, Lee H S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refigerated storage. Food Research International, 2002, 35: 753-759.
    43. Chutintrasri B, Noomhorm A. Color degradation kinetics of pineapple puree during thermal processing. LWT-Food Science and Technology, 2007, 40: 300-306.
    44. Dangles O, Saito N, Brouillard R. Anthocyanins intermolecular copigment effect. Phytochemistry, 1993,34: 119-124.
    45. Dao L T, Takeoka G R, Edwards R H, Berrios J D J. Improved method for the stabilization of anthocyanins. Journal of Agricultural and Food Chemistry, 1998, 46: 3564-3569.
    46. Daravingas G, Cain R F. Thermal degradation of black raspberry anthocyanin pigments in model systems. Journal of Food Science, 1968, 33: 138-142.
    47. De Ancos B, Cano M P, Hernandez A, Monreal M. Effects of microwave heating on pigment composition and color of fruit purees. Journal of the Science of Food and Agriculture, 1999, 79: 663-670.
    48. Debicki-Pospisil J, Lovric T, Trinajstic N, Sabljic A. Anthocyanin degradation in the presence of furfural and 5-hydroxymethylfurfural. Journal of Food Science 1983,48:411-416.
    49. Dugo P, Mondello L, Morabito D, Dugo G.Characterization of the anthocyanins fraction of Sicilian blood orange juice by micro-HPLC-ESI/MS. Journal of Agricultural and Food Chemistry, 2003, 51: 1173-1176.
    50.Fernando Reyes L, Cisneros-Zevallos L. Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 2007,100: 885-894.
    51.Fiorini M. Preparative high-performance liquid chromatography for the purification of natural anthocyanins. Journal of Chromatography A, 1995, 692:213-219.
    52.Fossen T, Andersen O M, Ovstedal D O, Pedersen A T, Raknes A. Characteristic anthocyanin pattern from onions and other Allium spp. Journal of Food Science,1996,61:703-706.
    53.Fossen T, Cabrita L, Andersen O M. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chemistry, 1998, 63:435-440.
    54.Fossen T, Andersen O M. Delphinidin 3'-galloylgalactosides from blue flowers of Nymphaea caerulea. Phytochemistry, 1999,50: 1185-1188.
    55.Fossen T, Slimestad R, Andersen O M. Anthocyanins with 4'-glucosidation from red onion, Allium cepa. Phytochemistry, 2003, 64: 1367-1374.
    56.Galaverna G, Silvestro G D, Cassano A, Sforza S, Dossena A, Drioli E,Marchelli R. A new integrated membrance process for production of concentrated blood orange juice: Effect on bioactive compounds and antioxidant activity. Food Chemistry, 2008,196: 1021-1030.
    57.Garcia-Viguera C, Bridle P. Influence of structure on colour stability of anthocyanins and flavylium salts with ascorbic acid. Food Chemistry, 1999, 64:21-26.
    58.Gasiorowski K, Szyba K, Brokos B, Kolczynska B, Jankowiak-Wlodarczyk M,Oszmianski J. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Letters, 1997,119: 37-46.
    59.Ghiselli A, Nardini M, Baldi A, Scaccini C. Antioxidant activity of different phenolic fractions separated from an Italian red wine. Journal of Agricultural and Food Chemistry, 1998,46: 361-367.
    60.Gil M I, Tomas-Barberan F A, Hess-Pierce B, Holcrofe D M, Kader A A.Antioxidant activity of pomegrantate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 2000,48: 4581-4589.
    61.Giusti M M, Rodriguez-Saona L E, Wrolstad R E. Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins. Journal of Agricultural and Food Chemistry, 1999, 47: 4631 -4637.
    62. Giusti M M, Wrolstad R E. Characterization of red radish anthocyanins. Journal of Food Science, 1996, 61: 322-326.
    63. Giusti M M, Wrolstad R E. Acylated anthocyanins from edible soueces and their applications in food systems. Biochemical Engineering Journal, 2003, 14: 217-225.
    64. Granados J Q, Mir M V, Serrana H L, Martinez, M C L. The influence of added caramel on furanic aldehyde content of matured brandies. Food Chemistry, 1996, 56:415-419.
    65. Grommeck R, Markakis P. The effect of peroxidase on anthocyanin pigments. Journal of Food Science, 1964, 33: 53-57.
    66. Harborne J B. Spectral methods of characterizing anthocyanins. Biochemical Journal, 1958, 70:22-28.
    67. Hedin P A, Lamar P L, Thompson A C, Minyard J P. Isolation and structural determination of 13 flavonoid glycosides in Hibiscus esculentus. American Journal of Botany, 1968, 55: 431-437.
    68. Hillebrand S, Schwarz M, Winterhalter P. Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice. Journal of Agricultural and Food Chemistry, 2004, 52: 7331-7338.
    69. Hrazdina G, Franese A J. Oxidation products of acylated anthocyanins under acidic and neutral conditions. Phytochemistry, 1974,13: 231-234.
    70. Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell, 1995, 7: 1071-1083.
    71. Honda K, Tsutsui K, Hosokawa K. Analysis of the flower pigments of some Delphinium species and their interspecific hybrids produced via ovule culture. Scientia Horticulturae, 1999, 82: 125-134.
    72. Hou D X, Yanagita T, Uto T, Masuzaki S, Fujii M. Anthocyanins inhibit cyclooxygenase-2 expression in LPS-evoked macrophages: Structure-activity relationship and molecular mechanisms involved. Biochemical Pharmacology, 2005,70:417-425.
    73. Iacobucci G A, Sweeny J G.The chemistry of anthocyanins and related flavylium salts. Tetrahedron, 1983, 39: 3005-3038.
    74. Ingallinera B, Barbagallo R N, Spagna G, Palmeri R, Todaro A. Effects of thermal treatments on pectinesterase activity determined in blood orange juices. Enzyme and Microbial Technology, 2005, 36: 258-263.
    75. Jackman R L, Yada R Y, Tung M A, Speers R A. Anthocyanins as food colorants-a review. Journal of Food Biochemistry, 1987, 11: 201-247.
    76. Jasmina M. The copigmentation effect of sinapic acid on malvin a spectroscopic investigation on color enhancement. Phytochemistry, 2005, 78: 223-228.
    77. Jayaprkasha G K, Patil B S. In vitro evaluation of the antioxidant activities in fruit extracts from citron and blood orange. Food Chemistry, 2007, 101: 410-418.
    78. Jordheim M, Aaby K, Fossen T, Skrede G, Andersen O M. Molar absorptivites and reducing capacity of pyranoanthocyanins and other anthocyanins. Journal of Agricultural and Food Chemistry, 2007, 55,10591-10598.
    79. Jurd L. Some advance in the chemistry of anthocyanins-type plant pigments. In: The chemistry of plant pigments. C.O.Chichester (ed.), Academic Press, New York, 1972, pp.123-142.
    80. Kader F, Haluk J P, Nicolas J P, Metche M. Degradation of cyanidin-3-glucoside by blueberry polyphenol oxidase: kinetics study and mechanisms. Journal of Agricultural and Food Chemistry, 1998,46, 3060-3065.
    81. Kader F, Nicolas J P, Metche M. Degradation of pelargonidin-3-glucoside in the presence of chlorogenic acid and blueberry polyphenol oxidase. Journal of the Science of Food and Agriculture, 1999a, 79, 517-522.
    82. Kader F, Irmouli M, Zitouni N, Nicolas J, Metche M. Degradation of cyanidin-3-glucoside by caffeic acid o-quinone. Determination of the stoichiometry and characterization of the degradation products. Journal of Agricultural and Food Chemistry, 1999b, 47, 4625-4630.
    83. Kader F, Rovel B, Girardin M, Metche M. Fractionation and identification of the phenolic compounds of Highbush blueberries (Vaccinium corymbosum, L.). Food Chemistry, 1996, 55 (1): 35-40.
    84. Kahkonen M P, Heinonen M. Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 2003, 51: 628-633.
    85. Kelebek H, Canbas A, Selli S. Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro and Sanguinello (Citrus Sinensis (L.) Osbeck) grown in Turkey. Food Chemistry, 2008,107: 1710-1716.
    86. Kim M J, Hyun J N, Kim J A, Park J C, Kim M Y, Kim J G, Lee S J, Chun S C, Chung I M. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. Journal of Agricultural and Food Chemistry, 2007, 55: 4802-4809.
    87. K(?)rca A, Cemero(?)lu B. Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chemistry, 2003, 81: 583-587.
    88. Kirca A, Ozkan M, Cemeroglu B. Thermal stability of black carrot anthocyanins in blood orange juice. Journal of Food Quality, 2003, 26: 361-366.
    89. K(?)rca A, Ozkan M, Cemero(?)lu B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chemistry, 2006, 97: 598-605.
    90. Krif(?) B, Chouteau F, Boudrant J, Metche M. Degradation of anthocyanins from blood orange juices. International Journal of Food Science and Technology, 2000, 35: 275-283.
    91. Lapidot T, Harel S, Akiri B, Granit R, Kanner J. pH-Dependent forms of red wine anthocyanins as antioxidants. Journal of Agricultural and Food Chemistry, 1999,47:67-70.
    92. Lee H S. Characterization of major anthocyanins and color of red-fleshed budd blood orange (Citrus sinensis). Journal of Agricultural and Food Chemistry, 2002,50:1243-1246.
    93. Lopez-Serrano M, Ros Barcelo A. Peroxidase in unripe and processing-ripe strawberries. Food Chemistry, 1995,52: 157-160.
    94. Ma W J, Cao E H, Zhang J, Qin J F. Phenanthroline-Cu complex-mediated chemiluminescence of DNA and its potential use in antioxidation evalution. Journal of Photochemistry and Photobiology B, 1998, 44:63-68.
    95. Maccarone E, Maccarone A, Perrini G, Rapisarda P. Anthocyanins of the Moro orange juice. Annali di Chimica, 1983, 73: 533-539.
    96. Maccarone E, Maccarone A, Rapisarda P. Stabilization of anthocyanins of blood orange fruit juice. Journal of Food Science, 1985, 50(4):901-904.
    97. Maccarone E, Maccarone A, Rapisarda P. Color stabilization of orange fruit juice by tannic acid. International Journal of Food Science Technology, 1987, 50(4): 901-904.
    98. Maccarone E, Rapisarda P, Fanella F, Arena E, Mondello L. Cyanidin-3-(6"-malonyl)-P-glucoside. One of the major anthocyanins of blood orange juice. Italiana Journal of Food Science, 1998,10: 367-372.
    99. Malien-Aubert C, Dangles O, Amiot M J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. Jouranl of Agricultural and Food Chemistty, 2001, 49: 170-176.
    100. Markakis P, Livingston G E, Fellers C R. Quantitative aspects of strawberry-pigment degradation. Food Research, 1957,22: 117-130.
    101. Markakis P. Stability of anthocyanins in foods. In: Anthocyanins as Food Colors. Markakis P (ed.), Academic Press Inc., New York, 1982, pp.163-178.
    102. Marti N, Perez-Vicente A, Garcia-Viguera C. Influence of storage temperature and ascorbic acid addition on pomegranate juice. Journal of the Science of Food and Agriculture, 2001, 82: 217-221.
    103. Mazza G.Recent Developments in the stabilization of anthocyanins in food products. Food Chemistry, 1987, 88: 207-225.
    104. Mondello L, Cotroneo A, Errante G, Dugo G, Dugo P. Determination of anthocyanins in blood orange juice by HPLC analysis. Journal of Pharmaceutical and Biomedica Analysis, 2000,23: 191 -195.
    105. Moufida S, Marzouk B. Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry, 2003, 62: 1283-1289.
    106. Ochoa M R, Kesseler A G, Michelis A D, Mugridge A, Chaves A R. Kinetics of color change of raspberry, sweet (prunusavium) and sour (prunus cerasus) cherries preserves packed in glass containers: light and room temperature effects. Journal of Food Engineering, 2001,49: 55-62.
    107. Osawa Y. Copigmentation of anthocyanins. In: Anthocyanins as Food Colors. Markakis P (ed.), Academic Press Inc., New York, 1982, pp.41-65.
    108. Ozkan M, Yemenicioglu A, Asefi N, Cemeroglu B. Degradation Kinetics of anthocyanins from sour cherry, pomegranate, and strawberry juices by hydrogen peroxide. Journal of Food Science, 2002, 67(2): 525-529.
    109. Ozkan M, Yemenicioglu A, Cemeroglu B. Degradation of various fruit juice anthohcyanins by hydrogen peroxide. Food Research International, 2005, 38: 1015-1021.
    110. Peng C Y, Markakis P. Effect of phenolase on anthocyanins. Nature, 1963, 199: 597-598.
    111. Pifferi P G, Cultrera R. Enzymatic degradation of anthocyanin: The role of sweet cherry polyphenoloxidase. Journal of Food Science, 1974, 39: 786-791.
    112. Piffaut B, Kader F, Girardin M, Metche M. Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatments. Food Chemistry, 1994, 50: 115-120.
    113. Piga A, Del Caro A, Pinna I, Agabbio M. Anthocyanin and color evolution in naturally blacktable olives during anaerobic processing. LWT-Food Science and Technology, 2005, 38: 425-429.
    114. Poei-Langston M S, Wrolstad R E. Color degradation in an ascorbic acid-anthocyanin-flavanol model system. Journal of Food Science, 1981, 46: 1218-1236.
    115. Pryor W A. Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA. Free Radical Biology and Medicine, 1988,4: 219-223.
    116. Rapisarda P, Fallico B, Izzo R, Maccarone E. A simple and reliable method for determining anthocyanins in blood orange juices. Agrochimica, 1994, 38: 157-164.
    117. Rapisarda P, Tomaino A, Lo Cascio R, Bonina F, De Pasquale A, Saija A. Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. Journal of Agricultural and Food Chemistry, 1999, 47: 4718-4723.
    118. Rapisarda P, Fanella F, Maccarone E. Reliability of analytical methods for determining anthocyanins in blood orange juice. Journal of Agricultural and Food Chemistry, 2000,48: 2249-2252.
    119. Rice-Evans C A, Miller N J, Pagnaga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 1996, 20: 933-956.
    120. Rodriguez-Saona L E, Giusti M M, Wrolstad R E. Color and pigment stability of red radish and red-fleshed potato anthocyanins in juice model systems. Journal of Food Science, 1999, 64: 451-456.
    121. Rosso V V D, Mercadante A Z. The high ascorbic acid content is the main cause of the low stability of anthocyanin extracts from acerola. Food Chemistry, 2007, 103:935-943.
    122. Rubinskiene M, Viskelis P, Jasutiene I, Viskeliene R, Bobinas C. Impact of various factors on the composition and stability of black currant anthocyanins. Food Research International, 2005, 38: 867-871.
    123. Sadilova E, Stintzing F C, Carle R. Thermal degradation of acylated and nonacylated anthocyanins. Food Chemistry and Toxicology, 2006, 71(8): 504-512.
    124. Sadilova E, Carle R, Stintzing F C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition and Food Research, 2007, 51: 1461-1471.
    125. Sarma A D, Sharma R. Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry, 1999, 52: 1313-1318.
    126. Sarma A D, Sreelakshmi Y, Sharma R. Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry, 1997,45(4): 671-674.
    127. Scalzo R L, Iannoccari T, Summa C, Morelli R, Rapisarda P. Effect of thermal treatments on antioxidant and antiradical activity of blood orange juice. Food Chemistry, 2004, 85: 41-47.
    128. Schwarz M, Wabnitz T C, Winterhalter P. Pathway leading to the formation of anthocyanin-vinylphenol adducts and related pigments in red wines. Journal of Agricultural and Food Chemistry, 2003, 51: 3682-3687.
    129.eeram N P, Bourquin L D, Nair M G Degradation products of cyanidin glycosides from tart cherries and their bioactivities. Journal of Agricultural and Food Chemistry, 2001,49,4924-4929.
    130. Shrikhande A J, Francis F J. Effect of flavonols on ascorbic acid and anthocyanin stability in model systems. Journal of Food Science, 1974, 39:904-906.
    131. Skrede G, Wrolstad R E, Lea P, Enersen G Color stability of strawberry and black currant syrups. Journal of Food Science, 1992, 57: 172-177.
    132. Souquet J M, Cheynier V, Brossaud F, Moutounet M. Polymeric proanthocyanidins from grape skins. Phytochemistry, 1996,43: 509
    133. Sun B, Belchior G P, Ricardo-da-Silva J M, Spranger M I. Isolation and purification of dimeric and trimeric procyanidins from grape seeds. Journal of Chromatography A, 1999, 841: 115-121.
    134. Surveswaran S, Cai Y Z, Corke H, Sun M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chemistry,2007,102: 938-953.
    135. Tamura H, Yamagami A. Antioxidative activity of monoacylated anthocyanins isolated from Muscat Bailey a grape. Journal of Agricultural and Food Chemistry, 1994,42: 1612-1615.
    136. Teh L S, Francis F J. Stability of anthocyanins from Zebrina pendula and Ipomoea tricolor in a model beverage. Journal of Food Science, 1988, 53:1580-1582.
    137. Tinsley I J, Bockian A H. Some effects of sugars on the breakdown of pelargonidin-3-glucoside in model system at 90℃. Food Research, 1960, 25:161-173.
    138. Tsai P J, Hesieh Y Y, Huang T C. Effect of sugar on anthocyanin degradation and water mobility in a roselle anthocyanin model system using 17O NMR. Journal of Agricultural and Food Chemistry, 2004, 52,3097-3099.
    139. Tsai P J, Delva L, Yu T Y, Huang Y T, Dufosse L. Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating. Food Research International, 2005, 38: 1059-1065.
    140. Tsuda T, Kato Y, Osawa T. Mechanism for the peroxynitrite scavenging activity by anthocyanins. FEBS Letters, 2000,484: 207-210.
    141. Tsuda T, Ohshima K, Kawakishi S, Osawa T. Oxidation products of cyandin 3-O-β-D-glucoside with a free radical initiator. Lipids, 1996, 31: 1259-1263.
    142. Van Acker S A B E, Van den Berg D J, Tromp M N J L, Griffioen D H, Van Bennekom W P, Van der Vijgh W J F, Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radical Biology Medicine, 1996, 20: 331-342.
    143. Wang H, Cao G, Prior R L. Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 1997, 45, 304-309.
    144. Wesche-Ebeling P, Montgomery M W. Strawberry polyphenoloxidase: Its role in anthocyanin degradation. Journal of Food Science, 1990, 55: 731-734.
    145. Williams M, Hrazdins G.Anthocyanins as food colorants: effect of pH on the formation of anthocyanin-rutin complexes. Journal of Food Science, 1979, 44: 66-68.
    146. Wrolstad R E, Skrede G, Lea P, Enersen G.Influence of sugar on anthocyanin pigment stability in frozen strawberries. Journal of Food Science, 1990, 55(4): 1064-1072.
    147. Yanagida A, Kanda T, Shoji T, Ohnishi-Kameyama M, Nagata T. Fractionation of apple procyanidins by size-exclusion chromatography. Journal of Chromatography A, 1999, 855: 181-190.
    148. Yildiz G, Demiryurek A T. Ferrous Iron-induced Luminol Chemiluminescence: A Method for Hydroxyl Radical Study. Journal of Pharmacological and Toxicological Methods, 1998, 39(3): 179-184.
    149. Zhang Y, Hu X S, Chen F, Wu J H, Liao X J, Wang Z F. Stability and colour characteristics of PEF- treated cyanidin-3-glucoside during storage. Food Chemistry, 2008, 106: 669-676.
    150. Zhang Z, Xuequn P, Yang C, Ji Z, Jiang Y. Purification and structural analysis of anthoycanins from litchi pericarp. Food Chemistry, 2004,84: 601-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700