用户名: 密码: 验证码:
甜橙和金柑高效安全转基因技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘转基因研究目前已经获得了许多研究成果,但与其他木本植物一样,存在转基因育种规模化发展滞后的现象。究其原因,主要是遗传转化体系不够完善,外植体多采用幼年材料,延长了转基因育种周期。对转基因技术体系进行优化以及提高成年态材料的转化效率可以有效的解决以上问题,有利于促进柑橘转基因育种的进程。
     本研究以金柑和糖橙实生态节间茎段为试材,综合分析影响其再生及转化效率的各种因素,建立了相应的实生态材料高效遗传转化的技术体系。通过温室和试管反复嫁接对成年态外植体进行幼态化处理,有效的降低成年态外植体再生污染率,提高再生率,获得了较高的转化效率。同时,从显微结构、生理特性以及分子水平的变化,探讨柑橘成年态材料幼态化的可能成因。并在优化的遗传转化技术体系基础上,成功将‘外源基因清除’(Gene-Deletor)以及‘果实无核化’基因导入金柑和甜橙中,对转基因株系的外源基因切除情况进行了分析,检验了花粉和种子特异启动子PAB5在柑橘中的特异性,为柑橘的生物安全性研究提供基础。主要研究结论如下:
     1金柑再生及遗传转化高效技术体系的建立
     以金柑实生苗节间茎段为试材,分析了影响再生的各种因素,结果表明:以35d苗龄(完全暗培养)的实生苗节间茎段为外植体材料,水平放置培养于不定芽再生培养基(MS+3mg/16BA)上培养50d左右,切下不定芽放置于生根培养基(1/2MS+3mg/l IBA+l g/1活性炭)。最终可达到90%左右的不定芽再生率以及86%左右的生根率。
     以金柑实生苗节间茎段为试材,分析了影响遗传转化的各种因素,结果表明:以35d苗龄(暗培养25d+光照10d)的金柑实生苗节间茎段为外植体,用共培养液体培养基(MS+2mg/16BA+1mg/1NAA+1mg/1KT+100μ乙酰丁香酮,pH=5.4)等体积重悬OD600=0.5农杆菌后,侵染30min,转入共培养基中,25℃黑暗条件下首尾相连培养3d,再转入筛选培养基(MS+3mg/16BA+50mg/1卡那霉素+400mg/1头孢霉素)进行阳性芽的筛选,可获得最高的GUS阳性率。应用优化的遗传转化技术体系,成功将'Gene-deletor'和‘果实无核化’基因导入其中,最终获得了6.07%的转化效率。
     2糖橙遗传转化技术体系的优化
     以糖橙实生苗节间茎段为试材,对影响转化的因素进行研究,结果表明:以30d苗龄(暗培养20d+光照10d)的实生苗节间茎段为外植体,在乙酰丁香酮浓度为100μM、共培养基pH值为5.7以及共培温度为19℃条件下获得了最高的GUS阳性率(29.4%)。抗性芽在伸长培养基(MS+0.2mg/l6BA+0.2mg/l IAA+0.2mg/l GA3)上培养1个月后,95%出现了伸长,平均为2.3cm。转入生根培养基(1/2MS+0.5mg/l NAA+0.1mg/l IBA+1g/l活性炭)可获得80.2%的生根率,根系平均长度为5.83cm。应用优化的遗传转化技术体系,‘果实无核化’基因导入其中,获得的转基因株系已嫁接于温室生长良好。
     3柑橘成年态外植体的幼态化处理
     在温室中和试管中将成年态芽反复嫁接于实生砧木上进行幼态化处理。结果表明:温室嫁接幼态化处理试验中,成年态材料获得了一定的幼态化效果,其中糖橙和冰糖橙各获得了72.4%和67.7%不定芽再生效率,相比未幼态化处理提高了57%左右。并通过比较发现以酸橙为砧木的成年态甜橙节间茎段的不定芽再生能力高于以枳为砧木,嫁接后第1和第2次梢的不定芽再生率显著高于第3次梢。反复嫁接有利于幼态化的效果;在试管嫁接幼态化处理试验中,通过将试管反复嫁接幼态化处理材料转接于温室,冰糖橙可获得53.2%的不定芽再生率,相比未幼态化处理提高了42.9%。
     显微结构观察发现,幼态化处理材料的茎与未幼态化处理在组织结构上未发现明显区别,表明组织结构可能不是造成二者再生能力差异的主要原因。但经过15d离体培养后,在形成层处的细胞增殖量远远大于未幼态化处理材料,说明通过幼态化处理,形成层细胞的分生能力增强。幼态化处理引起了内源激素含量及比率的变化,特别是生长促进类激素GA3、IAA和ZR的上升以及生长抑制类激素ABA的下降,可能导致了幼态化材料不定芽再生能力的增强。DNA的甲基化敏感性扩增多态性分析结果表明,幼态化处理材料与未幼态化处理材料在总DNA甲基化水平上有所下降,进一步对DNA甲基化类型变化进行分析,发现幼态化处理后材料的DNA甲基化减少型明显大于增加型,DNA甲基化程度呈下降趋势,可能启动了不定芽离体再生分子调控中的某些基因的表达,因而提高了不定芽的再生能力。
     4幼态化处理后柑橘成年态外植体的遗传转化及'Gene-deletor'基因导入
     以幼态化处理后的成年态材料为外植体,将'Gene-deletor'基因导入成年态冰糖橙中,获得了15株转基因株系,转化效率为4.63%,而未幼态化处理材料未获得转基因株系。通过PCR检测证实由35S启动子驱动的nptⅡ基因和由花粉和种子特异性启动子PAB5驱动的重组酶基因FLP都存在于转基因叶片中,但通过RT-PCR和定量PCR检测,发现在叶片中nptⅡ基因表达,而重组酶基因FLP未表达,初步验证了花粉和种子特异性启动子PAB5在柑橘中的适用性。
     通过对转基因株系的种子以及所有珠心胚和合子胚进行GUS组织染色,没有检测到GUS蛋白的活性,初步表明外源基因已被清除。为进一步了解'Gene-deletor'载体中组织特异性启动子PAB5在柑橘中启动以及外源基因清除情况,对果实各部分进行GUS基因活性分析。结果表明,与胚发生同属于LⅡ组织发生层的果皮白皮层和部分来源于LⅡ层的汁胞都未观察到GUS染色,而来源于L,层的外果皮和来自Lm层的囊衣以及中柱都表现出了GUS活性,说明在这些组织中外源基因未被清除。证实启动子可以诱导由LⅡ组织发生层形成的器官和组织中外源基因的清除,但不能诱导由LⅠ和LⅢ组织发生层形成的器官和组织中外源基因的清除。'Gene-deletor'技术在柑橘上的应用,为柑橘环境安全转基因研究打下了基础。但柑橘果实的可食部分中还包括未切除外源基因的囊衣,作为转基因食品还存在安全问题,下一步需要筛选果实特异性启动子,将外源基因从花粉、种子和果实中全部清除,从而彻底解决转基因柑橘的食品安全问题。
The great progresses have been made for Citrus transgenic researches in recent decades. But as most of the woody plants, the hysteretic problems during citrus industrialization development are increasingly exposed, as well as the relative low-efficiency in citrus transformation. The main reasons are described as follows:1) the genetic transformation system is not perfect enough; and2) seedling materials used as explants extended the period of transgenic breeding to large degree. However, above-mentioned problems could be solved effectively by optimizing the transgenic technology system and using the mature materials as explants, which could be thus of significant importance to citrus transgenic breeding process.
     In this present research, to obtain the high-efficiency in citrus transformation system, the internode stem segments of seedling kumquat (Fortunella spp. Swingle) and sucarri orange(Citrus sinensis (L.) Osbeck) were used as explants and various factors (including explants materials, agrobactium infection conditions, medium and culture conditions) that might affect the regeneration and transformation efficiency were investigated. The rejuvenation treated materials were obtained by adult buds re-grafting on seedling rootstock in vitro or in vivo, which could effectively reduce contaminate rate and improve the regeneration efficiency of adventitious buds, and therefore resulted in yielding the relative higher transformation efficiency. Parallel analyses (containing microstructure, physiological characteristic and the molecular level) were conducted to understand the possible mechanisms underlying rejuvenation process. Based on the optimized genetic transformation technology system, the 'Gene-deletor' and 'seedless fruit' genes were successfully transferred into the seedling kumquat and sucarri orange. The elimination situation of exogenous genes in transgenic clones was analyzed and the specificity of pollen and seed special promoter in citrus was detected, which provided a foundation for citrus biosafety research. The main results were as follows:
     1. Establishment of seedling kumquat efficient regeneration and transformation technology system
     The internode stem segments of seedling kumquat (Fortunella spp. Swingle) were used as explants and main factors (including seedling age, seedling illumination settings, explants set orientation, regeneration and rooting medium) that might affected the regeneration were investigated to establish an efficient regeneration technology system. The results showed that the internode stem segments from35days completely dark cultured seedling. were level set on regeneration medium consisting of MS basal medium supplemented with3mg/16BA for50days, then cut the adventitious buds from explants and transferred on rooting medium consisted of1/2basal medium supplemented with3mg/1IBA and1g/1AC, which canfinally contribute to90%of adventitious bud regeneration rate and86%of the rooting rate.
     The internode stem segments of seedling kumquat (Fortunella spp. Swingle) were used as explants and main factors that might affect the transformation efficiency were investigated to establish an efficient transformation technology system. The results showed that internode stem segments from35days age of seedling which cultured for25days in dark and10days in light were immersed infected for30min by agrobacterium which was resuspended by the co-cultivation liquid medium consisting of MS basal medium supplemented with2mg/16BA,1mg/1NAA,1mg/1KT and100μM AS when its OD value reached0.5, then the infected internode stem segments were cultivated horizontally side-by-side in co-cultivation medium (CCM) whose pH value was adjusted to5.8prior to be autoclaved for3days under dim light at25℃, finally, transferred it intothe selection medium consisted of MS basal medium supplemented with3mg/16BA,50mg/1Kan and400mg/1Cef,which can result in optimum GUS positive rate. Based on this efficient genetic transformation technology system, the 'Gene-deletor' and 'seedless fruit' genes were successfully transferred into the kumquat with6.07%of the transformation efficiency.
     2. Optimization of seedling succari orange transformation technology system
     The internode stem segments of seedling sucarri orange (Citrus sinensis (L.) Osbeck) were used as explants and main factors that might affected the transformation efficiency were investigated to further optimize the transformation technology system. The results revealed that, when using internode stem segments from30days age of seedling which cultured20days in dark and10days in light as explants,100μ M as AS concentration,5.7as co-cultivation medium pH value and19℃as co-cultivation temperature, the GUS positive rate could reached at 29.4%. When resistant buds were cultured on stem elongation medium consisting of MS basal medium with0.2mg/16BA,0.2mg/1IAA and0.2mg/1GA3,95%of the resistance buds appeared elongation and the elongation length reached at an average of2.3cm. When resistant buds were transferred on the rooting medium consisting of1/2MS basal medium with0.5mg/1NAA,0.1mg/1IBA and1g/1AC,80.2%of the resistance buds appeared rooting and the rooting length reached at an average of5.83cm. On the basis of this optimized transgenic technology system, the'seedless fruit' gene was successfully transferred into the sucarri orange and the transgenic lines were grafted in greenhouse with superb growth potential.
     3. Rejuvenation treatment of citrus adult materials
     In our study, adult buds were grafted on juvenile rootstocks in vivo or in vitro. For the former (in vivo), the adventitious bud regeneration (ABR) efficiency of mature internode stem segments from sucarri orange and'Bingtang'sweet orange reached72.4%and67.7%, respectively. Interestingly, we found the higher rate of ABR could be obtained using sour orange(Citrus. aurantium L.) as rootstock when compared with trifoliate orange (Poncirus. trifoliata L. Raf.); and showed higher rate of ABR in the first and second flushes after grafting than the third flushes. Furthermore, the repeated grafting could promote rejuvenation effect. For the latter (in vitro),'Bingtang' sweet orange after being transferred in greenhouse could result in53.2%of the ABR rate.
     Through the observation of micro structure, we found the microstructure of rejuvenation treated stem had no significant differences to untreated stem, which indicated that organizational structure could not be the main cause of the regeneration differences. But the extent of cell proliferation in cambium from the rejuvenation treated materials was higher than untreated materials after15days. The result showed cambium cells meristematic ability was enhanced by rejuvenation. By further analysis endogenous hormone change between the rejuvenation treated material and untreated material, we found that the contents of endogenous hormones IAA, GA3and ZR, but ABA decreased. These results showed that changes of endogenous hormone contents or ratio after rejuvenation treatment could promote adventitious regeneration. Through MSAP analysis (Methylation sensitive amplified polymorphism), we found that the level of DNA methylation in rejuvenation treated materials was less than untreated materials, and the reduced type was much more than increased type in DNA methylation change type.
     4. Transformation of mature explants by rejuvenation treatment and introduction of'Gene-deletor' gene
     Using mature materials by rejuvenation treatment as explants, the 'Gene-deletor'gene were successfully transferred into the mature 'Bingtang' sweet orange and4.63%of the transformation efficiency could be obtained in this study. Meanwhile, the untreated materials couldn't get the transgenic plants. PCR detection confirmed npt II gene driven by35S promoter and recombinase gene FLP driven by the pollen and seeds specific promoter PAB5exsited in transgenic plants leaves, but RT-PCR and quantitative PCR detection found that npt II gene expressed in leaves but recombinase gene FLP not, which preliminary verified there was a specificity of the pollen and seeds specific promoter PAB5in citrus.
     Based on the GUS histochemical assay, GUS gene activity wasn't detected in all the nucellus embryo and zygote embryo. The result preliminary showed that exogenous genes had been clear in seed. In order to further understand the condition of organization specific promoter PAB5starting and the exogenous genes clearing in citrus, each part of transgenic fruit was analyzed by GUS histochemical assay. The results showed, albedo and juice vesicles compared with embryogenesis belonging to apical histogenic layer LⅡ weren't observed GUS staining. Flavedo from the L layer and the segment membrane and central core from LⅢ layer were showed GUS activity, which showed that exogenous genes were not clear in these organizations. The results confirmed the organization specific promoter can be derived the clearing of exogenous genes in the organs and tissues from LⅡ layer, but LⅠand LⅢ layers.
     The application of 'Gene-deletor' technology in citrus provided a solid foundation for citrus environment safety transgenic research. But the edible part in citrus fruit still mixed with the segment membrane where the exogenous gens still be within. This is therefore also to be a safety problem in transgenic food. We need to screen fruit specific promoter in the next step of work, and clear all exogenous genes from pollen, seeds and fruits, aiming to thoroughly solve safety problems in the transgenic citrus.
引文
敖小平,熊兴耀,胡新喜,等.高效的‘大红’甜橙实生苗上胚轴离体培养与植株再生体系的建立[J].植物生理学通讯,2007,43(4):689-692.
    陈大明,沈德绪和李载龙.梨实生树童区和成年区顶端分生组织的细胞学研究[J].植物生理学通讯,1994,30(5):343-345.
    陈菁瑛,宋瑞琳.柑橘茎尖培养和植株再生试验(简报)[J].福建省农科院学报,1990,(3):45.
    陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工出版社,2002,2:4.
    陈善春.柑橘生物技术研究的现状与展望[J].中国南方果树,1998,27(6):15-17.
    陈泽雄,娄娟.成年态柑橘茎段离体培养污染率控制方法的研究[J].安徽农业科学,2006,34(14):3358-3359.
    程中平,陈安凤.柑橘体细胞杂种植物学性状、生长特性及其扦插繁殖研究[J].果树科学,1998,15(2):141-144.
    邓艺,曾炳山,赵思东,等.乙酰丁香酮在农杆菌介导的遗传转化中的作用机制及应用.安徽农业科学,2010,38(5):2229-2232.
    高武军,魏开发,孙富丛,等.温度对根癌农杆菌转化效率的影响.华北农学报,2004,19(2):81-83.
    贺红,潘瑞枳,韩美丽,等.枳壳外植体离体再生及农杆菌介导的遗传转化.云南植物研究,1998,20(4):459-463.
    贺红和李耿.根癌农杆菌对枳壳遗传转化的影响因素.中国中药杂志,1999,24(3):140-142.
    黄学林和李筱菊.高等植物组织离体培养的形成建成和调控.科学出版社(北京)[M]:1995,101-114.
    贺忠群,段新玲和张卫芳.金桔上胚轴组织培养及植株再生.塔里术农垦大学学报,2001,6(2):23-24.
    胡新喜,敖小平,邓子牛,等.大红甜橙遗传转化高效再生体系的建立.湖南农业大学学报(自然科学版),2007,33(5):576-579.
    方中达.植病研究方法(第三版)[M].北京:中国农业出版社,1998,192-194.
    郭文武,邓秀新,史水忠.柑橘细胞电融合参数选择及种间体细胞杂种植株 再生[J].植物学报,1998,40(5):417-424.
    韩美丽,陆荣生,李耿光.柠檬组织培养研究初探[J].广西林业科学,1996,25(6):104-106.
    韩美丽,吴耀军,黄华艳,等.沙田柚不同外植体离体培养再生体系建立研究[J].广西林业科学,2001,30(4):166-168.
    贺红,韩美丽,李耿光.农杆菌介导转化构建转CTV-cp的枳壳植株[J].中国中药杂志,2001,26(1):21-23.
    贺红,潘瑞炽,韩美丽.枳壳外植体再生及农杆菌介导的遗传转化.云南植物研究,1998,20(4):459-463.
    何永睿,邹修平,彭爱红,等.根癌农杆菌介导的柑橘遗传转化技术.热带作物学报,2004,25(1):11-17.
    贺忠群,段新玲,张卫芳.金橘上胚轴组织培养及植株再生,塔里木农垦大学学报,2001,13(2):23-24.
    洪勇,何永睿,陈善春,等.柑橘栽培品种高效基因转化新技术研究[J].热带作物学报,2000,21(2):37-41.
    胡春华,邓子牛,A.Gentile,等.转rol基因枳橙分子鉴定及部分生物学的观测[J].园艺学报,2006,33(1):130-133.
    胡春华,谢玉明,黄训才,等.转rolA.B.C基因枳橙快繁技术[J].果树学报,2006,23(1):142-144.
    黄学林,李筱菊.高等植物组织离体培养的形态建成及其调控[M].北京:科学出版社,1995,3.
    黄家权,邬志荣,孙中海.影响椪柑上胚轴再生不定芽的几个生理因素[J].植物生理学通讯,2005,41(1):37-40.
    姜玲,万蜀渊.提高柑橘茎尖微芽嫁接成活率的研究.湖北农业科学,1994,26-28.
    姜玲,万蜀渊,王映红,等.柑橘茎尖嫁接操作方法的改进及研究.华中农业大学学报.1995,14(4):381-385.
    贾勇炯,陈放,等.金桔不同外植体的离体培养研究.四川大学学报(自然科学版),1997,34(6):344-346.
    James C.2009年全球生物技术/转基因作物商业化发展态势.中国生物工程 杂志,2010,30(2):1-22.
    李东栋和邓秀新.柑橘不同品种对根癌农杆菌介导遗传转化的反应差异.分子植物育种,2005,3(1):52-56.
    李东栋,石玮,邓秀新,等.不同根癌农杆菌菌株对愈伤组织遗传转化效率的影响.华中农业大学学报,2002,21(4):379-381.
    李峰,邓秀新.柑橘不对称体细胞杂交的初步研究[J].华中农业大学学报,1997,16(1):87-90.
    李卫,陈亮,蔡得田,等.柑橘基因转化新方法研究[J].植物学报,1997,39(8):782-784.
    林忠平,胡鸢雷,李雷等.定位重组系统在外来基因活性调控中的作用[A].见:林忠平.走向21世纪的植物分子生物学[C].北京:科学出版社,2000,66-71.
    罗赛男.用DefH9-iaaM和TERF1基因转化糖橙的研究[D],[中国硕士研究生论文].湖南,湖南农业大学.2008.
    裴东,袁丽钗和奚声柯.核桃品种试管嫩茎生根的研究.林业科学,2002,38:32-37.
    谭志友,吴厚玖.柑橘育种新技术[M].重庆:重庆出版社,2007,12-20.
    王关林和方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1997,209-210.
    王声斌,黄自然,余让才,等.宽皮橘蕉柑的胚性愈伤组织诱导、悬浮细胞系建立及植株再生[J].华南农业大学学报(自然科学版),2002,23(3):52-55.
    王子成,邓秀新.柑橘转基因研究进展[J].华中农业大学学报,2002,21(5):494-499.
    王子成,李忠爱,邓秀新.柑橘成年态茎段外植体消毒方法研究[J].河南大学学报,2005,35(2):57-60.
    谢玉明,邓子牛,郭琛,等.农杆菌介导甜橙遗传转化的初步研究[J].湖南农业大学学报(自然科学版),2005,31(6):627-630.
    杨莉,徐昌杰,陈昆松.果树转基因研究进展与产业化展望.果树学报,2003,20(5):331-337.
    杨晓杰,刘传亮,张雪妍,等.转基因植物中T-DNA整合的分子特征及表达[J].基因组学与应用生物学,2010,29(1):125-130.
    于洁.根癌农杆菌介导的Barnase(?)(?)iaaM基因转化柑橘的研究[D].[中国硕士研究生论文].武汉,华中农业大学,2009.
    袁飞荣.转rol ABC基因枳橙砧木的评价[D].[中国硕士研究生论文].湖南,湖南农业大学,2011.
    尹伟伦和王华芳.林业生物技术(第一版)[M].北京:科学出版社.2009年.
    张福丽,陈龙,李成伟.农杆菌介导的植物转基因影响因素.生物技术通报,2012,7:14-19.
    张家银,郭琛,谢玉明,等.椪柑成年态节间茎段再生体系的建立[J].湖南农业大学学报(自然科学版),2008,34(2):182-185.
    赵德刚,吕立堂,贺爱公,等.“外源基因清除”技术(Gene-Deletor)原理、特点及其潜在应用前景[J].分子植物育种,2008,6(3):413-418.
    赵巧阳和赖钟雄.脯氨酸和硝酸银对农杆菌转化香蕉的影响研究[J].生物技术通报,2008,6:97-100,105.
    周春丽,郭卫东,路梅,等.农杆菌介导佛手遗传转化主要影响因素的研究[J].热带亚热带植物学报,2006,14(5):374-381.
    Abdulaziz M. and Al-Bahrany. Effect of phytohormones on in vitro shoot multiplication and rooting of lime Citrus aurantifolia(Christm.)Swing [J].Scientia Horticulturae,2002,95:285-295.
    Alida B., Magdalena C. and Leandro P. Evaluation of selection strategies alternative to nptⅡ in genetic transformation of citrus [J]. Plant Cell Reports,2008,6 (27):1005-1015.
    Almeida W.A.B.de., Mourao Filho de A.A., Mendes B.M.J., et al. In vitro organogenesis optimization and plantlet regeneration in Citrus sinensis and C. limonia [J]. Scientia Agricola,2002,59:35-40.
    Almeida W.A.B. de, F. Mourao Filho de A.A., Mendes B.M.J., et al. Histological characterization of in vitro adventitious organogenesis in Citrus sinensis [J]. Biologic Plantarum,2006,50 (3):321-325.
    Alt-M6rbe J., Kuhlmann H. and Schroder J. Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors [J]. Mol Plant-Microbe Interact,1989,2(6):301-308.
    Alvarez R., Alonso P., Cortizo M., et al. Genetic transformation of selected mature cork oak (Quercus suber L.) trees [J]. Plant Cell Rep,2004,23:218-223.
    Amo-Marco J.B., Vidal N,. Vieitez A.M. et al. Polypeptide markers differentiating juvenile and adult tissues in chestnut [J]. Journal of Plant Physiology, 1993,142:117-119.
    Ballester A., Cervera M., Pena L. Evaluation of selection strategies alternative to nptll in genetic transformation of citrus [J]. Plant Cell Reports,2008,27(6): 1005-1015(11).
    Barbara H, Avaraham A, Levy Holger P. Elimination of selection markers from transgenic plants. Curr Opin Plant Biotech,2001,12:139-143.
    Barcelo-Munoz C.L., Encina E., Simo'n-Pe'rez F., et al. Micropropagation of adult avocado [J]. Plant Cell Tiss.Org. Cult,1999,58:11-17.
    Barik D.P., Mohapatra U.,Chand P.K., et al. Transgenic grasspea (Lathyrussativus L.). Factors influencing Agrobacterium-mediated transformation and regeneration [J]. Plant Cell Reports,2005,24(9):523-531.
    Baurens F.C., Nicolleau J., Legavre T. et al. Genomic DNA methylation of juvenileand mature Acaiamangium micropropagated in vitro with reference to leaf morphology as a phase change marker [J]. Tree Physiology,2004,24:401-407.
    Bearson S., Bearson B. and Foster J.W. Acid stress responses in enterobacteria [J]. FEMS Microbiol Lett,1997,147(2):173-180.
    Benhamou N.K., Broglie I.C. and Broglie R. Cytology of infection of 35s-bean chitinase transgetic canola plants by Rhizotonia solani:cytochemical aspects of chitin breakdown in vivo [J]. Plant Journal,1993,4:295.
    Besford R.T., Hand P., Peppitt S.D. et al. Phase change in Prunus avium: differences between juvenile and mature shoots identified by 2-dimensional protein separation and in vitro translation of mRNA[J]. Journal of Plant Physiology,1996, 147:534-538.
    Bipasha Chakravarty, Goswami B.C. Plantlet regeneration from long-term callus cultures of Citrus acida Roxb. and the uniformity of regenerated plants[J]. Scientia Horticulturae,1999, (82):159-169.
    Bon M.C. and Monteuuis O. Rejuvenation of a 100-year-old Sequoiadendron giganteum through in vitro meristem culture. I. Biochemical arguments[J]. Physiologia Plantarum,1991,81:116-120.
    Bond J.E. and Roose M.L. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange [J]. Plant Cell Reports,1998,18:229-234.
    Bonga J.M. and Durzan D.J. eds. Cell and Tissue Culture in Forestry[M],1987,1: 249-271.
    Bonga J.M. Organogenesis in in vitro cultures of embryonic shoots of Abies balsamea (Balsam fir) [J]. In Vitro,1977,13:41-48.8.
    Bordon Y., Guardiola J.L., Garcia-Luis A..Genotype affects the morphogenic response in vitro of epicotyl segments of citrus rootstocks [J]. Annals of Botany,2000, 86(1):159-166.
    Boscariol R.L., Almeida W.A.B., Derbyshire M.T.V.C., et al. The use of the PMI/ mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck) [J]. Plant Cell Reports,2003,22:122-128.
    Boulay M. Proc Int Symp on In vitro propagation of forest tree species [R]. edited by anonymous(A.R.F.,Bologna),1985,51:185-206.
    Boynton J.E., Gillham N.W., Harris E.H. Chlorop last transformation in chlamydomonas with high velocity microp rojectiles [J]. Science,1988,240: 1534-1538.
    Brand M.H., Lineberger R.D. In vitro rejuvenation of Betula (Betulaceae): biochemical evaluation [J]. American Journal of Botany,1996,79:626-635.
    Brasileiro A.C.M., Leple J.C., Muzzin J. et al. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains [J]. Plant Mol. Biol,1991,17: 441-452.
    Brunner A.M. and Nilsson O. Revisiting tree maturation and floral initiation in the poplar functional genomics era [J], New Phytologist,2004,164:43-51.
    Bond J.E. and Roose M.L. Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange [J]. Plant Cell Reports,1998,18:229-234.
    Cervera M., Juarez J., Navarro A., et al. Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage [J].Transgenic Research,1998a,7:51-59.
    Cervera M., Pina J., Juarez J., et al. Agrobacterium-mediated transformation of citrange:factors affecting transformation and regeneration [J]. Plant Cell Reports, 1998b,18:271-278.
    Cervera M., Navarro A., Navarro L., et al. Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration [J]. Tree Physiology,2008,28:55-66.
    Chalupa W., Chandler J.E. and Brown R.E. Abomasal infusion of mixtures of amino acids to growing cattle [J]. J. Anim. Sci.1973,37:339 (Abstr.).
    Chang Ing., Chen P.J., Shen C.H., Proteomic profiling of proteins associated with the rejuvenation of Sequoia sempervirens (D. Don) Endl [J].Proteome Science, 2010,8:64.
    Chen C.Y. and Winans S.C. Controlled expression of the transcriptional activator gene virG in Agrobacterium tumefaciens by using the Escherichia coli lac promoter [J]. J Bacteriol,1991,173(3):1139-1144.
    Costa M. G. C., Otoni W.C. and Moore G.A. An evaluation of factors affecting the efficiency of Agrobacterium mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes [J]. Plant Cell Reports,2002,21:365-373.
    Claudot A.C., Ernst D., Sandermann H., et al. Chalcone synthase activity and polyphenolic compounds of shoot tissues from adult and rejuvenated walnut trees [J]. Planta,1997,203:275-282.
    Dale E.C. and Ow D.W. Gene transfer and subsequent removal of the selection gene from the host genome [J]. Proc Natl Acad Sci USA,1991,88:10558-10562.
    Daley M., Knauf V.C. and Summerfelt K.R. Cotransformation with the one Agrobacterium tumefaciens strain con taining two binary plasmids as a method for producing marker-free transgenic plants[J]. Plant Cell Rep,1998,17:489-496.
    Danthu P., Hane B., Sagna P., et al. Restoration of rooting competence in mature Faidherbia albida, a Sahelian leguminous tree, through serial root sucker micrografting [J]. New Forests,2002,24:239-244.
    Davey M.R., Soneji J.R., Rao M.N., et al. Generation and deployment of transgeniccrop plants:an overview, chapter 1. In:C Kole, CH Michler, AG Abbott, TC Hall (eds). Transgenic crop plants, volume 1-principles and development.2012, New York:Springer.
    de Bont A., Eggermont K., Penninckx I., et al. Agrobacterium-mediated transformation of apple (Mahisxdomestica Borkh.):an assessment of factors affecting regeneration of transgenic plants [J]. Plant Cell Rep,1996,15:549-54.
    Deng Z.N., Gentile A., Nicolosi E., et al. Identification of in vivo and in vitro lenmon mutants by RAPD makers [J]. Horticultural Science,1995,70(1):117-125.
    Deng Z.N., Gentile A., La Malfa S., et al. Morphological modifications of Citrus by genetic transformation with rolABC genes [J]. XLVI Convegno Annuale della SIGA (Societa Italiana di Genetica Agraria) Giardini-Naxos (ME),2002,18-21.
    Deng X.X., Grosser J.W., GmitterF.G. Jr. Intergeneric somatic hybrid plants from protoplast fusion of Fortunella crassifolia cultivar'Meiwa'and Citrus sinensis cultivar'Valencia'[J]. Scientia Horticulturae,1992,49:55-62.
    Dillen W., De Clercq J., Kapila J., et al. The effect of temperature on Agrobacterium tumefaciens -mediated gene transfer to plants [J]. Plant J,1997,12: 1459-1463.
    Dona A., Arvantoyannis I.S. Health risks of genetically modified foods [J]. Critical Reviews in Food Science and Nutrition,2009,49:164-175.
    Dorrenbos J. "Rejuvenation" of Hedera helix in graft combination[P]. Proceeding of the Koningklijke Nederlandse Akademie van Wetenschappen Series C-Biological and Medical Sciences,1954,57:99-102.
    Doty S.L., Yu M.C., Lundin J.I., et al. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens [J]. J Bacteriol,1996,178(4): 961-970.
    Duan Y., Zhai C., Li H., et al. An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in Japonica rice (Oryza sativa L.) [J]. Plant Cell Reports,2012, 31(9):1611-1624.
    Duan Y.X., Liu X. and Fan J. Multiple shoot induction from seedling epicotyls and transgenic citrus plant regeneration containing the green fluorescent protein gene [J]. Botanical Studies,2007,48:165-171.
    Dutt M. and Grosser J.W. Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus [J]. Plant Cell, Tissue and Organ Cult,2009,98: 331-340.
    Ebinuma H, Sugita K, Matsunaga E. Selection of marker-free transgenic plants using the isopentenyl transferase gene as selectable marker[J]. Proc Natl Acad Sci USA,1997,94:2117-2121.
    Egnin M., Mora A., Prakash C.S., et al. Factors enhanging Agribacterium Tumefaciens-mediated gene transfer in peanut (Arachis Hypogaea L.) [J]. In Vitro Cellular & Developmental Biology-Plant,1998,34(4):310-318.
    Farre G., Ramessar K., Twyman R.M., et al. The humanitarian impact of plant biotechnology:recent breakthroughs vs bottlenecjs for adoption[J]. Curr Opin Plant Biol,13(2):219-225.
    Favero P., Alves Mourao Filho F.de.A., Liborio Stipp L.C., et al. Genetic transformation of three sweet orange cultivars from explants of adult plants [J].Acta Physiologiae Plantarum,2012,34(2):471-477,646-660.
    Febres V., Fisher L., Khalaf A., et al. Citrus transformation:Chaiienges and Prospects. Genetic transformation [M], Edited by Prof.MarAa Alvarez,2011,5: 101-122.
    Fernandez L.J.L., Rigueiro A. and Ballester A. Polyphenols as potential markers to differentiate juvenile and mature chestnut shoot cultures [J]. Tree Physiology,1999, 19:461-466.
    Francesco C., Fabio de P. and Francesco G.C. Somatic embryogenesis in Citrus from styles culture [J]. Plant Science,1995 (105):81-86.
    Fraga M.F., Berdeesco M., Dicgo L.B., et al. Changes in polyamine conentration associated with aging in Pinus radiate and prunus persica [J]. Tree Physiol,2004, 24:1221-1226.
    Fullner K.J., Lara J.C. and Nester E.W. Pilus assembly by Agrobacteriuam T-DNA transfer genes [J]. Science,1996,273 (5278):1107-1109.
    Galoch E. Comparison of the content of growth regulators in juvenile and adult plants of birch (Betula verrucosa Ehrh) [J]. Acta Physiologiae Plantarum,1985,7: 205-215.
    Gambino G. and Gribaudo I. Genetic transformation of fruit trees:current status and remaining challenges[J]. Transgenic Res,2012,21:1163-1181.
    Gasparis S., Bregier C., Waelaw-Orezyk A., et al. Agrobactrium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants. Plant Cell Reports,2008,27(11):1721-1729.
    Gelvin S.B. Agrobacterium-mediated plant transformation:the biology behind the "gene-jockeying" tool [J]. Microbiol Mol Biol Rev,2003,67(1):16-37.
    Gentile A., Deng Z.N., Malfa La S., et al. Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene [J]. Plant Breeding,2006,125,1-6.
    Ghorbel B.R., Navarro L. and Duran-Vila N. Morphogenesis and regeneration of whole plants of grape fruit (C. paradisi), sour orange (C. aurantium) and alemow (C. macrophylla) [J]. J. Hortic. Sci. Biotechnol,1998,73,323-327.
    Ghorbel R., Dominguzer A., Navarro L., et al. High efficiency genetic transformation of sour orange (Citrus aurantium) and production of transgenic trees containingthe coat protein gene of Citrus trlsteza virus [J]. Tree Physiol,2000,20: 1183-1189.
    Ghorhel R., Juarez J., Navarro L., et al.Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants [J]. Theor Appl Genet,1999,99:350-358.
    Gmitter F.G., Xiao S.Y., Huang S., et al. A loclizaed linkage map of citrus tristeza virus resistance gene region [J]. Theor. Applied Genet,1996,92:688-695.
    Greenwood M.S., Hopper C.A. and Hutchison K.W. Maturation in Larch.1. Effect of age on shoot growth, foliar characteristics and DNA methylation [J]. Plant Physiology,1989,90:406-412.
    Gressel J. Tandem constructs:preventing the rise of super weeds [J]. Trends in Biotechnol,2002,20:215-216.
    Guo W.W., Duan Y.X., Oscar O.F., et al. Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene [J]. Plant Cell Reports,2005,24:482-486.
    Gutierrez-E M.A., Luth D. and Moore G.A. Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of Citrus tristeza virus [J]. Plant Cell Rep, 1997,16:745-753.
    Hardman H.T., Kester D.E. and Davies F.T. Plant Propagation:Principles and Practices, Prentice-Hall, New Jersey [C],1990,165-198.
    Hackett W.P. Juvenility, maturation and rejuvenation in woody plants [J]. Horticultural Review,1985,7:109-155.
    Hackett W.P., Murray J. and Woo H. Cellular, biochemical, and molecular analysis of maturation related characteristics in Hedera Helix [C]. In:Ahuja MR ed, Woody Plant Biotechnology. Plenum Press, New York,1991,77-81.
    Hackett W.P., Murray J.R. and Smith A. Control of maturation in woody species. In:Proceedings of the Symposium for Mass Production Technology for Genetically Improved Fast Growing Forest Tree Species [C],1992,14:45-50.
    Hernan E.B., Edmundo L.P., Marcelo J.Y., et al. Increased Phytochrome B Alleviates Density Effects on Tuber Yield of Field Potato Crops [J]. Plant Physiology, 2003,133:1539-1546.
    Hidaka T., Omura M., Ugaki, M., et al.Agrobacterium-mediated transformation and regeneration of Citrus spp.from suspension cells [J]. Japanese of Journal Breed, 1990,40:199-207.
    Hidaka T. and Omura M. Transformation of citrus protoplasts by electroporation [J]. Jpn Soc Hort Sci,1993,62:371-376.
    Hier Y., Ohta S., Komari T., et al. Efficient transformation of rice(Oryza satival L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. Plant Journal.1994,6:271-282.
    Hiei Y., Ohta S., Komari T., et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA [J]. The Plant Journal,1994,6(2):271-282.
    Hoa T.T., Bong B.B. and Huq E. Cre/lox site-specific recombination controls the excision of a transgene from the rice genome [J]. Theor Appl Genet,2002,104: 518-525.
    HoodE E., Helmer G., Rraley R.T., et al. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA [J]. J Bacteriology,1986,168(3):1291-1301.
    Hsu C., Liu Y., Luthe D.S., et al. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering [J]. The Plant Cell,2006,18:1846-1861.
    Husen A. Pal M Effect of serial bud grafting and etiolation on rejuvenation and rooting cuttings of mature tree of Tectoan grandis Linn.f [J]. Silvae Genetica,2003, 52(2):84-87.
    Huang L.C., Hsaio C.K., Huang B.L. et al. Rejuvenation of vigor and rooting competence in stem tissue of mature citrus by repeated grafting of shoot apicesonto freshly germinated seedlings in vitro [J]. In vitro Cell Developmental Biology-Plant, 1992,28:30-32.
    Huang L.C., Lin L.Y., Chen C.M. et al. Phase reversal in Sequoia sempervirens in relation to mtDNA [J]. Physiologia Plantarum,1995,94:379-383.
    Huang L.C., Huang B.L., Rhim S., et al. Genetically engineering citrus with the insecticidal gene from Bacillus thuringiensis subsp Tenebrionis. Proceeding of a symposium on enhancing competiveness of fruit industry [M]. Taichung, Taiwan, March 1997,20-21.
    Huang L.C., Chow T.Y., Tseng T.C., et al. Association of mitochondrial plasmids with rejuvenation of the coastal redwood, Sequoia sempervirens (D.Don) Endl [J]. Botanical Bulletin of Academia Sinica,2003,44:25-30.
    Huang L.C., Pu S.Y., Murashige T., et al. Phase- and age-related differences in protein tyrosine phosphorylation in Sequoia sempervirens [J]. Bioligia plantarum, 2003,47 (4):601-603.
    Huang J.Q., Yin L.Y., Yang X.H., et al. In vitro Plant Regeneration from the Mature Tissue of Navel Orange(Citrus sinensis L.Osbeck)by Direct Organogenesis [J]. Agricultural Sciences in China,2005,4(3):236-240.
    Huang T., Peng S.L., Dong G.F., et al. Plant regeneration from leaf-derived callus in Citrus grandis (pummelo):Effects of auxins in callus induction medium[J]. Plant Cell, Tissue and Organ Culture,2002,69:141-146.
    Hugo B.C.M., Celso J.M., Joao C.B.F., et al. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange(Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) overproducing praline [J].Plant Science,2004,167:1375-1381.
    Hutchison K.W., Greenwood M.S. Molecular approaches to gene expression during conifer development and maturation [J]. Forest Ecology and Management, 1991,43:273-286.
    Irish E.E. and McMurray D. Rejuvenation by shoot apex culture recapitulates the developmental increase of methylation at the maize gene P1-Blotched [J]. Plant Molecular Biology,2006,60:747-758.
    Jameel M., Al-Khayri., Abdulaziz M., et al. In vitro micropropagation of Citrus aurantifolia (lime) [J]. Current Science,2001,81:1242-1246.
    Januzzi Mendes B.M., Luciana Boscariol R., Mourao Filho F.D.A.A., et al. Agrobacterium-mediated genetic transformation of 'Hamlin' sweet orange [J]. Pesq Agropec bras,2002,37 (7):955-961.
    Jimenez V.M., Guevara E., Herrera J., et al. Endogenous hormone levels in habituated nucellar Citrus callus during the initial stages of regeneration [J]. Plant Cell Reports,2001, (20):92-100.
    Januzzi Mendes B.M., Luciana Boscariol R., Mourao Filho F.D.A.A., et al. Agrobacterium-mediated genetic transformation of'Hamlin'sweet orange [J]. Pesq Agropec bras,2002,37 (7):955-961.
    Kaneyoshi J., Kobayashi S., Nakamura Y., et al. A simple and efficient gene transfer system of trifoliate orange(Poncirus trifoliata Raf.) [J]. Plant Cell Rep,1994, 13,541-545.
    Kaneyoshi J. and Kobayashi S. Genetic transformation of poncirus(trifoliate ogange). In:Biotechnology in Agriculture and forestry, ed., Y.P.S Baiaj. Springer [M], 1999,212-220.
    Kayim M., Ceccardi T.L., Berretta M.J.G, et al. Introduction of a citrus blight-associated gene into Carrizo citrange (Citrus sinensis (L.) Osbc. x Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation[J]. Plant Cell Reports,2004,23: 377-385.
    Khan E.U., Fu X.Z., Wang J., et al. Regeneration and characterization of plants derived from leaf in vitro culture of two sweet orange (citrus sinensis (L.) Osbeck) cultivars [J]. Scientia Horticulturae,2009,120:70-76.
    Khan E.U., Fu X.Z. and Liu J.H. Agrobacterium-mediated genetic transformation and regeneration and regeneration of transgenic plants using leaf segments as explants in Valencia sweet orange [J]. Plant Cell Organ Cult,2012,109: 383-390.
    Khawale R.N., Singhl S.K., Garg G., et al. Agrobacterium-mediated genetic transformation of Nagpur mandarin(Citrus reticulata Blanco) [J]. Current science, 2006,91(12):1700-1705.
    Ko K., Tekoah Y., Rudd P.M., et al. Function and glycosylation of plant-derived antiviral monoclonal antibody [J]. PNAS,2003,100(13):8013-8018.
    Kobayashi S. and Uchnimiya H. Expression and integration of a foreigen gene in orange(Citrus sinensis Osb.) Protoplasts by direct DNA transfer [J].Jpn J. Genet, 1989,64:91-97.
    Kobayashi A.K., Bespalhok J.C., Pereira L.F.P., et al. Plant regeneration of sweet orange (Citrus sinensis) from thin sections of mature stem segments [J]. Plant Cell Tissue and Organ Culture,2003,74:99-102.
    Komari T. Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542 [J]. Plant Cell Re,1990,9:303-306.
    Kotsias D. and Roussos P.A. An investigation on the effect of different plant growth regulating compounds in vitro shoot tip and node culture of lemon seedlings [J]. Scientia Horticultural 2001,89:115-128.
    Lacroix B., Tzfira T., Vainstein A., et al. A case of promiscuity:Agrobacterium's endless hunt for new partners [J]. Trends Genet,2006,22(1):22,29-37.
    Li Y. Transgenic seedless fruit and methods,1998, United States Patent, US6268552.
    Li Y., Duan H. and Smith W.2007, Gene-deletor:a new tool to address concerns over GE crops, ISB News Report, http://www.isb.vt.edu/news/2007/news07.iun.htm
    Libby W.J., Brown A.G. and Fielding J.M. Effect of hedging rodiata pine on production, rooting and early growth of cuttings [J]. New Zealand Journal Forest Science,19722:263-283.
    Li D.D., Shi W. and Deng X X. Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimerric ribonuclease gene [J]. Plant Cell Reports,2002,21:153-156.
    Li S.H., Zhang X.P., Meng Z.Q., et al. Responses of peach trees to modified pruning. Ⅱ. Cropping and fruit qualityn [J]. New Zealand J. Crop Hortic. Sci,1994, 22:411-417.
    Liu Z., Park B.J., Kanno A., et al. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene [J]. Mol Breed,2005,16:189-197.
    Liu J.H. and Moriguchi T. Changes in free polyamines and gene expression during peach flower development [J]. Biologia Plantarum,2007,51 (3):530-532.
    Luo K.M., Duan H., Zhao D.G., et al.'GM-gene-deletor':fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants[J]. Plant Biotechnology Journal,2007,5:263-274.
    Luth D. and Moore G.A. Transgenic grapefruit plants obtained by agribacterium tumefaciens-mediated transformation [J]. Plant cell, tissue and organ culture,1999, 57(3):219-222.
    Lyznik L.A., Rao K.V. and Hodges T.K. FLP-mediated recombination of frt sites in the maize genome. Nucl Acids Res,1996,24:3784-3789.
    Materi D.M., Dionne L.A. and Gumming B.G.In Vitro polyploidization of mature ostrich fern sporophytes through rejuvenation [J]. Plant Cell Tiss Org Cult,42, 1995,27:23.
    Magdalena Cervera., Jose Juarez., Antonio Navarro., et al. Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage[J].Transgenic Research,1998,7:51-59.
    Magafia-Gomez J.A. and de la Barca A.M. Risk assessment of genetically modified crops for nutrition and health [J]. Nutr Rev,2009,67:1-16.
    Mariani C., De Beuckeer M., Truettner J., et al. Induction of male sterility in plants by a chimaeric ribonuclease gene [J].Nature,1990,347:737-741.
    Maximovas N., Dandekar A.M. and Guiltinan M.J. Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein:high transigent expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting[J]. Plant Molecular Biology,1998,37(3): 549-559.
    Mendes B.M.J., Boscariol R.L., Filho F.A.A.M., et al. Agrobacterium-mediated genetic transformation of Hamlin sweet orange [J]. Pesquisa Agropecuaria Brasileira, 2002,37:955-961.
    Mendes A.F.da.S., Cidadel C., Manzoli G.N., et al. Tissue culture parameters in sweet orange cultivars[J]. Pesquisa Agropecuaria Brasileira,2008,43:1093-1096.
    Meire M.B., Francisco de A.Al.M.F., Luzia Y.M., et al. In vitro organogenesis from internodal segments of adult sweet orange plants [J]. Pesq. agropec. bras,2011, 46(6):672-674.
    McCullen C.A. and Binns A.N. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer [J]. Annu Rev Cell Dev Biol,2006,22:101-127.
    Molinari H.B.C., Bespalhok J.C., Kobayashi A.K., et al. Agrobacterium tumefaciens-mediated transformation of Swingle citrumelo (Citrus paradise Macf.×Poncirus trifoliate L.Raf.) using thin epicotyl sections [J]. Scientia Horticulturae, 2004,99:379-385.
    Monte E., Alonso J.M., Ecker J.R., et al. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways [J].Plant Cell,2003,15:1962-1980.
    Monteuuis O. and Gendraud M. Nucleotide and acid nucleic status in shoot tips from juvenile and mature clones of Sequoiadendron giganteum during rest and growth phases [J]. Tree Physiology,1987,3:257-263.
    Monteuuis O. In vitro meristem culture of juvenile and mature Sequoiadendron giganteum [J]. Tree Physiology,1987,3:265-272.
    Monteuuis O. Rejuvenation of a 100-year-old Sequoiadendron gigenteum through in vitro meristem culture. Ⅰ. Organogenic and morphologicalargument [J]. Physiologia Plantarum,1991,81:111-115.
    Moore G.A., Jaoono C.C., Neidigh J.L., et al. Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants[J]. Plant Cell Reports,1992,11:238-242.
    Murashige T. and Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures [J]. Physiologia Plantarum,1962,15:473-497.
    Murashige T. and Tucker D.P.H. Growth factor requirements of Citrus tissue culture [J].Proc 1 st Int Citrus Symp,1969,3:1155-1161.
    Mukhopadhyay A., Gao R. and Lynn D.G. Integrating input from multiple signals:the VirA/VirG two-component system of Agrobacterium tumefaciens [J]. Chembiochem,2004,5 (11):1535-1542.
    Nadolsaka-Orezyk A., Przetakiewicz A., Kopera K., et al. Efficient method of Agrobacterium-mediated transformation for triricale(X.triticisecale Wittmack) [J]. Journal of Plant Growth Regulation,2005,24(1):2-10.
    Navarro L., Roistacher C.N. and Murashige T. Improvement of shoot tip grafting invitro forvirus-free dtrus [J]. Am Soc Hortic Sci,1975,100:471-479.
    Odell J., Caimi P., Sauer B., et al. Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet,1990,223:369-378.
    Oliveira C.M. and Browning G. Gibberellin structure-activity effects on flower initiation in mature trees and on shoot growth in mature and juvenile Prunus avium [J]. Plant Growth Regulation,1993,13:55-63.
    Oliveira M.L.P.de., Costa M.G.C., Silva C.V., et al. Growth regulators, culture media and antibiotics in the in vitro shoot regeneration from mature tissue of citrus cultivars[J]. Pesquisa Agropecuaria Brasileira,2010,45(7):654-660.
    Oliveira M.L.P.de., Febres V.J., Costa M.G.C., et al. High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration [J]. Plant Cell Rep,2009,28:387-395.
    Orbovic V. and Grosser J.W. Citrus-Agrobacterium Protocols, volume 2[M].Edited by:Kan Wang, Humana Press Inc., Totowa,2006.
    Palmer A.G., Gao R., Maresh J., et al. Chemical biology of multihost/pathogen interactions:chemical perception and metabolic complementation [J]. Annu Rev Phytopathol,2004,42:439-464.
    Peer K.R. Greenwood M S Maturation, topophysis and other faeture in relation to rooting in larix[J]. Tree physl,2001,21(4):267-272.
    Peer K.S. and Greenwood M.S. Maturation, topophysis and other factors in relation to rootingin Larix [J]. Tree Physiology,2001,21:267-272.
    Pena L., Cervera M., Juarez J., et al. High eficiency of Agrobacterium-mediated transformation and regeneration of citrus [J]. Plant Sci,1995,104:183-191.
    Pena L., Cervera M., Juarea J., et al. Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants [J]. Plant Cell Reports,1995,14: 616-619.
    Pena L., Martin-Trillo M., Juarez J., et al. Constitutive expression of Arobidopsis LEAFY or APETALA1 genes in Citrus reduce their generation time [J]. Nature Biotech,2001,19:263-267.
    Pena L., Perez R.M., Cerera M., et al. Early Events in Agrobacterium-mediated Genetic transformation of Citrus Explants [J]. Annals of Botany,2004,94:67-74.
    Pena L., Cervera O., Magdalena F., et al. Procedure for the genetic transformation of adult plants of woody species[J]. United States Patent 6103955
    Pena L., Cervera M., Juarez J., et al. High efficiency Agrobacterium-mediated transformation and regeneration of citrus [J]. Plant Sci.1995,104:183-191.
    Pena-Ramirez Y.J., Juarez-Gomez J., Gomez-Lopez L., et al. Multiple adventitious shoot formation in Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues:an improved micropropagation protocol for a highly valuable tropical tree species [J]. In Vitro Cell.Dev.Biol-Plant,2010, 46:149-160.
    Perez-Molphe-Balch E. and Ochoa-Aleja N. In vitro plant regeneration of Mexican lime and mandarin by direct organogenesis [J]. Hortscience,1997,32: 931-934.
    Pliego-Alfaro F. and Murashige T. Possible Rejuvenation of Adult Avocado by Graftage onto Juvenile Rootstocks in Vitro [J]. HortScience,1987,22(6):1321-1324.
    Poethig R.S. Phase change and the regulation of shoot morphogenesis in plants[J]. Science,1990,250:923-930.
    Poethig R.S. Phase change and the regulation of development timing in plants [J]. Science,2003,301:334-336.
    Revilla M.A., Pacheco J., Casares A., et al. In vitro reinbigoration of mature olive trees (Olea europaea L.) through micrografting [J]. In vitro Cellular and Developmental Biology-Plant,1996,32:257-261.
    Rey M., Tiburcio A.F., Diaz-Sala C., et al. Endogenous polyamine concentrations in juvenile, adult and in juvenile,adult and in vitro reinvigorated haze [J]. Tree Physiol, 1994,14:191-200.
    Robinson J.C. and Schwabe W.W. Studies on the regeneration of apple cultivars from root cuttings, I. Propagation aspects [J]. Journal of Horticulture Science,1977, 52:205-220.
    Rodriguez A., Cervera M., Peris J.E., et al. The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes [J]. Plant Cell Tiss Organ Cult,2008,93:97-106.
    Rogowsky P.M., Close T.J., Chimera J.A., et al. Regulation of the vir genes of agrobacterium tumefaciens plasmid pTiC58 [J]. Journal of Bacteriology,1987, 169(11):5101-5112.
    Roose M.L. and Williams T.E. Mutation breeding in Citrus. In Khan, I.A(ed). Citrus Genetics, Breeding and Biotechnology [M]. CAB Internatinal, Wallingford, U.K.,2007.
    Ruchi M. and Brahma Deo S. Promotion of adventitious bud regeneration by ABA in combination with BAP in epicotyl and hypocotyls explants of sweet orange (Citrus sinensis L. Osbeck) [J]. Scientia Horticulturae,1995, (63):123-128.
    Sharma M., Kothari-Chajer A., Jagga-Chugh S., et al. Factors influencing Agrobactrium-mediated genetic transformation of Eleusine coracana(L.)Gaertn [J]. Plant Cell, Tissue Organ Culture,2011,105(1):93-104.
    Shimoda N., Toyoda-Yamamoto A., Aoki S., et al. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium [J]. J Biol Chem,1993,268(35):26552-26558.
    Smith D.L., Kelly K. and Krikorian A.D. Ethyleneassociated phase change from juvenile to mature phenotype of daylily (Hemerocallis) in vitro [J].Physiologia Plantarum,1989,76:466-473.
    Shweta M. and Vinod G. Agrobacterium-Mediated Gene Transfer in Plants and Biosafety Considerations[J]. Appl Biochem Biotechnol,2012,168:1953-1975.
    Sreekala C., Wu L. and Gu K. Excision of a selectable marker in transgenic rice(Oryza sativa L.) using a chemically regulated Cre/loxP system [J]. Plant Cell Rep, 2005,24:86-94.
    Stachel S.E., Nester E.W. and Zambryski P.C. A plant cell factor induces Agrobacterium tumefaciens vir gene expression [J]. Proc Natl Acad Sci U S A,1986, 83:379-383.
    Sugawara K., Wakizuka T. and Oowada A. Histogenic identification by RAPD analysis of leaves and fruit of newly synthesized chimeric citrus [J]. J Amer. Soc. Hort. Sci,2002,127(1):104-107.
    Sugita K., Kasahara T., Matsunaga E., et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant [J].2000,22:461-469.
    Tuteja N., Verma S., Sahoo R.K., et al. Recent advances in development of markerfree transgenic plants:regulation and biosafety concern. Journal of Biosciences, 2012,37(1):167-97.
    Thimmappaiah P.G.T. and Anil S.R. In vitro grafting of cashew (Anacardium occidentale L.) [J]. Scientia Horticulturae,2002,92:177-182.
    Turk S.C., van Lange R.P., Regensburg-Tuink T.J., et al. Localization of Vir A domain involved in acetosyringone-mediated vir gene induction in Agrobaterium tumefaciens [J]. Plant Mol Biol,1994,25(5):899-907.
    Turk S.C., Melchers L.S., den Dulk-Ras H., et al. Environmental conditions differentially affect vir gene induction in different Agrobactrium strains. Role of the VirA sensor protein [J]. Plant Mol Biol,1991,16(6):1051-1059.
    Tzfira T., Li J.X., Lacroix B., et al. Agrobacterium T-DNA integration:molecules and models[J]. Trends Genet,2004,20(8):375-383.
    Uematsu C., Murase M., Ichikawa H., et al. Agrobacterium-mediated transformation and regeneration of kiwi fruit [J]. Plant Cell Rep,1991,10:286-290.
    Uranbey S., Basalma D., Sancak C., et al. Agrobacterium-mediated transformation in potato using different explant and co-cultivation media and histichemical detention of pathogenesis related promoters [J]. Biologia Bratislava, 2005,60(6):685-690.
    Vardi A., Bleichmann S. and Aviv D. Genetic transformation of citrus protoplasm and regeneration of transgenic plants [J]. Plant Sci,1990,69:199-206.
    Vega S.H., Sauer M., Orkwiszewski J.A., et al. The early phase change gene in maize[J]. Plant Cell,2002,14(1):133-47.
    Von Aderkas P. and Bonga J.M. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment [J]. Tree Physiology,2000,20:921-928.
    Wang H.H., Wang C.T., Orezyk W., et al. Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba×P.berolinensis and Populus davidiana×P.bolleana [J]. Plant Cell Reports,2011,30(11):2037-2044.
    Wang Y., Chen B.J. and Hu Y.L. Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system [J]. Transgenic Research,2005,14:605-614.
    Weliton A.B., Almeida F.A.A., Pino L.E., et al.Genetic transformation and plant recovery from mature tissues of Citrus sinensis L.Osbeck [J]. Plant Science,2003, 164:203-211.
    Winans S.C. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media [J]. J Bacteriol,1990,172(5):2433-2438.
    Wordragen M.F. and Dons H.J.M. Agrobacterium tumefaciens-mediated transformation of recalcitrant crops [J]. Plant Mol Biol,1992,10:12-36.
    Wong W.S., Li G.G., Ning W., et al. Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of anti-sense 1-aminocyclopropane-1-carboxyase synthase RNA [J]. Plant Science,2001,161: 969-977.
    Yang L., XU C.J., HU G.B., et al. Establishment of an Agrobacterium-mediated transformation system for Fortunella crassifolia [J]. Biologia plantarum,2007,51 (3): 541-545.
    Yang L., Hu C.H., Li N., et al. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease [J]. Plant Mol Biol,2011,75:11-23.
    Yang Z.N., Ingelbrecht L.L., Louzada E., et al. Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red(Citrus paradisi Macf.) [J]. Plant Cell Reports,2000,19:1203-1211.
    Yolande P., Patrick D., Ludovic L., et al. Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation Plant Cell [J]. Tissue and Organ Culture,1997,47(3):239-245.
    Yongqin C., Litang L., Wei D., et al. In vitro regeneration and Agrobacterium-mediated genetic transformation of Euonymus alatus [J]. Plant Cell Rep,2006,25: 1043-1051.
    Yuan Z.C., Liu P., Saenkham P., et al. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions [J]. J Bacteriol,2008,190:494-507.
    Yu C.H., Huang S., Chen C.X., et al. Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange [J]. Plant Cell Tissue and Organ Culture,2002,71:147-155.
    Zhang Y.Y., Li H. and Ouyang B. Chemical-induced autoexcision of selectable marker gene in elite tomato plants transformed with gene conferring resistance to Lepidopter an insects [J]. Biotechnology Letters,2006,28 (16):1247-1253.
    Zuo J., Niu Q.W. and Moller S.G. Chemical-regulated, site-specific DNA excision in transgenic plants [J]. Nat Biotechnol,2001,19:157-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700