用户名: 密码: 验证码:
稻瘟病菌异柠檬酸裂解酶基因(ICL1)在致病过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Magnaporthe grisea可引起水稻上重要的病害-稻瘟病。了解M.grisea的致病分子机理不仅对稻瘟病的防治,而且它作为一个理想的研究体系对了解其它植物病原真菌与寄主的互作也具有重要意义。显然通过致病相关基因的鉴定是达到这一目标的关键所在。M.grisea能分化产生特殊的侵染结构-附着胞,并以机械压力穿透寄主角质层。附着胞中积累高浓度甘油是细胞膨压和机械压力产生的原因所在。令人感兴趣的问题是:附着胞中高浓度的甘油是如何合成的呢?前人通过细胞生物学和酶学的研究表明,脂肪可能是产生甘油的重要前体物质之一,通过脂肪酸代谢合成甘油的途径必须涉及乙醛酸循环。异柠檬酸裂解酶(ICL)是乙醛酸循环中的关键酶,催化异柠檬酸裂解为乙醛酸和琥珀酸,然后通过糖异生途径产生甘油。本文克隆了编码异柠檬酸裂解酶的M.griseaICL1基因,并通过目标基因取代的方法分析了ICL1基因在M.grisea致病过程中的作用。研究结果如下:
     1. 根据异柠檬酸裂解酶基因的同源序列设计二个引物,以M.grisea Guy11基因组DNA为模板进行PCR扩增后获得340bp的核苷酸序列,并以此序列为探针从M.grisea Guy11基因组文库和cDNA文库中筛选、克隆了完整的M.grisea Guy11 ICL1基因,获得了包括启动子区域和完整阅读框(ORF)的ICL1全基因序列。ICL1基因共有5个外显子,由4个内含子序列分开,ICL1基因编码547个氨基酸,与Neurospora Crassa(acu3)和Aspergillus nidulans(acuD)的蛋白序列具有很高的同源性,分别达到85.5%和76.3%。ICL1基因的分子量大约为60KD,与acu3和acuD编码的酶蛋白分子量相当。所不同的是M.grisea ICL1基因有4个内含子,而acu3和acuD只有2个内含子,其中ICL1基因的前面2个内含子与acu3和acuD的位置是类似的。基因组Southern杂交的结果显示M.grisea ICL1基因是单拷贝基因。
     2. 通过构建ICL1基因取代载体和真菌转化,共获得55个转化子。利用PCR和Southern杂交的方法鉴定出3个ICL1基因的knock out转化子。M.grisea△ICL1突变体在以橄榄油(脂类)或醋酸盐为C源时,不能正常生长与产孢,而以葡萄糖为C源时能正常生长和产孢,说明△ICL1突变体脂肪酸β-氧化产
    
     生的乙酚-COA不能进入乙醛酸循环,该代谢途径己经被阻断。
     3.A ICL]突变体在 CM培养基上的菌落形态为灰白色,而 GUyll为灰褐色,产
     ”抱量也略有减少,但菌落生长速度没有改变。在塑料盖玻片上的抱子萌发试
     验结果表明,A ICLI突变体的抱子萌发推迟,芽管比 Guull和表型转化子明
     显增长,附着胞形成率显著下降。
     4.通过染色的方法对A ICLI突变体附着抱的形成过程中脂肪微滴的移动过程
     作了初步的观察,结果显示凸1a1突变体脂肪微滴的移动较为缓慢。采用细
     胞蹋陷的方法,对萌发 24h和 48h时的A ICLI突变体附着胞膨压测定结果表
     明,尽管附着胞的膨压有所下降,但这种下降十分有限。说明脂肪代谢对附
     着胞中的甘油合成和膨压产生起一定作用,但附着胞中甘油的合成途径可能
     十分复杂,并不是单一的前体物质或代谢途径起主导作用,抱子内的其他储
     存物质如碳水化合物也可能参与甘油合成
     5.在洋葱内表皮上的穿透试验表明,凸 ICLI突变体(I-10)对洋葱内表皮的穿
     透率为45.3%,比Guyll的73.5%和表型转化子的69.8%明显下降。
     6.当用 A ICLI突变体接种水稻时,产生稻瘟病症状的时间比 GUyll和表型转
     化子推迟,推迟的原因是否与抱子萌发和附着胞形成较晚有关,尚有待于进
     一步证实。A ICLI突变体对水稻的致病力也有所下降。
     7.通过ICLI基因的启动子与绿色荧光蛋白基因(GFP)融合表达的研究也表
     明,ICLI基因在分生抱子中的表达比菌丝体中强,而在 W+sodium acetate培
     养基上生长时菌丝体和分生抱子的ICLI基因均强烈诱导表达。在分生抱子形
     成附着胞的过程中,分生抱子、芽管和附着胞均有不同程度的表达,尤以附
     着胞中的ICLI基因表达水平较高,直至48h时,附着胞中的ICLI基因表达
     仍然维持极高的水平。这一结果表明,ICLI基因的表达与附着胞的发育过程
     紧密相关。
     综合上述,我们认为ICLI基因对从 grjsea的完全致病性是需要的。但附
     着胞中甘油的合成途径可能十分复杂,并不是由单一的前体物质或代谢途径决
     定的,而可能涉及多个途径的共同作用。
Magnaporthe grisea is best known as the causal agent of the
    economically important blast disease of rice worldwide. A better
    understanding of the molecular basis of this disease is not only
    beneficial for rice blast control, but also can serve as a model for
    understanding other fungal-plant interactions. Obviously, the
    identification of genes required for pathogenicity is a key step toward
    achieving this goal. The fungus elaborates a specialized infection cell
    called an appressorium to penetrate the rice cuticle mechanically. To
    generate mechanical force, appressoria produce enormous hydrostatic
    turgor by accumulating molar concentration of glycerol. How glycerol is
    synthesized in such large amounts in M. grisea appressorium is an
    intriguing question. Previous studies on cytobiology and enzymatic
    activities showed glycerol generation from lipids in a conidium is
    theoretically possible. Glyoxylate cycle is involved in the pathway of
    glycerol synthesis from fatty acid. Isocitrate lyase(ICL) is a key enzyme
    in glyoxylate cycle, catalyzing the conversion of isocitrate to
    glyoxylate and succinate, which generate glycerol by gluconeogenesis
    pathway. In this study, M. grisea ICL1 gene encoding isocitrate lyase was
    cloned and the role of ICL1 gene in pathogenicity was analyzed by targeted
    gene replacement. The results are showed as follows:
    1. Two primers designed by conserved oligonucleoitides of isocitrate
    lyase genes from other organisms were used for PCR amplification with
    M. grisea Guyll genomic DNA as template. The expected 340bp product was
    obtained. By using the PCR product as a probe, two positive clones were
    isolated from M. grisea Guyll genomic DNA library and conidial cDNA
    library respectively. Both the ICL1 genomic DNA included promoter region
    and open reading frame and cDNA clones were sequenced. The results showed
    
    
    
    M. grisea ICL1 gene contain 5 exons and 4 introns, and encode 547 predicted amino acids. The ICL1 protein sequence was very high homologous to the proteins of Neurospora crassa(acu3) and Aspergillus nidulans(acufl), 85.5% and 76.3% respectively. The molecular weight of ICL1 protein was about 60KD and similar to that of acu3 and acuD. But acu3 or acuD only had 2 introns witch were similar positions with the first 2 introns of ICL1 gene. Moreover, single copy of ICL1 gene in M. grisea was showed by Southern blot.
    2. Fifty-five transformants were obtained by fungal transformation with ICL1 gene replacement vector. Three ICL1 gene knock out mutants were identified by both PCR and Southern blot. These A ICL1 mutants could not grow and conidate on the medium with olive oil or sodium acetate as the sole carbon source. This result showed the acetyl-CoA from fatty acid JJ-oxidation could not feed glyoxylate cycle for further metabolism by these A ICL1 mutants, i.e. the fat metabolism had been blocked.
    3. The colonies of A ICL1 mutants on CM plates showed grey-white and different to the grey-dark colour of Guy 11, and the conidiation of these AICL1 mutants were also reduced. But the growth rate between AICL1 mutants and Guy 11 was no different. Moreover, the results of germination test on plastic coverslips showed the conidial germination and appressorium formation of A ICL1 mutants were delayed compared to Guyll, and the germ tubes of A ICL1 mutants were usually much longer than those of Guy11. Meanwhile the appressorium formation rate of AICL1 mutants was also reduced.
    4. Conidia of A ICL1 mutants were allowed to germinate on plastic coverslips in water drops, and the water was removed at different intervals during germination and stained with Nile Red for the presence of lipid droplets. The results showed the lipid mobilization of A ICL1 mutants seemed slower than that of Guyll. Furthermore, the
    
    
    
    appressorium turgor at intervals of 24h and 48h period was measured by a cytorrhysis assay. We found the turgor pressure of A ICL1 mutants was reduced, but this reduction was not significantly high. These preliminary data showed l
引文
1. Adachi K, Hamer JE. 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10(8) :1361-74.
    2. Andersson A, Jordan D, Schneider G, Valent B, Linqvist Y. 1996. Crystallization and preliminary X-ray diffraction study of 1, 3, 8-trihydroxynaphthalene reductase from Magnaporthe grisea. Proteins-Struct. Function and Genet. 24: 525-527
    3. Balhadere PV, Foster AJ, Talbot NJ. 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. MPMI 12:129-142
    4. Balhadere PV, Talbot NJ. 2000. Fungal pathogenicity-establishing infection. Annu. Rev. Mol. Plant Pathol. 4:1-25
    5. Balhadere PV, Talbot NJ. 2001. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 12: 1987-2004
    6. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP. 1997. Signalling in plant-microbe interactions. Science 276: 726-733
    7. Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising H, Bastmeyer M. 1999. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896-1899
    8. Beckerman JL, Naider F, Ebbole DJ. 1997. Inhibition of pathogenicity of the rice blast fungus by Saccharomyces cerevisiae a-factor. Science 276:1116-1119
    9. Beckerman JL, Ebbole DJ. 1996. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. MPMI 9(6) :450-456.
    10. Beevers H. 1982. Glyoxysomes in higher plants. Annu. Rev. Plant Physiol. 30:159-193
    11. Bourett TM, Howard RJ. 1990. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can. J. Bot. 68: 329-342.
    12. Bourett TM, Howard RJ. 1992. Actin in penetration pegs of the rice blast fungus Magnaporthe grisea. Protoplasma 168:20-26
    13. Bowyer P, Mueller E, Lucas J. 2000. Use of an isocitrate lyase promoter-GFP fusion to monitor carbon metabolism of the plant pathogen Tapesia yallundae during infection of wheat. Mol. Plant Pathol. 1(4) :253-262
    
    
    14. Butler MJ, Day AW. 1998. Fungal melanins: a review. Can. J. Microbiol. 44:1115-1136
    15. Carroll AM, Sweigard JA, Valent B. 1994. Improved vectors for selecting resistance to hygromycin. Fungal Genet. Newslett. 41: 22.
    16. Chida T, Sisler HD. 1987. Restoration of appressorial penetration ability by melanin precursors in Pyricularia oryzae treated with antipenetrants and in melanin-deficient mutants. J. Pesticide Sci. 12: 49-55.
    17. Choi W, Dean RA. 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9(11) : 1973-83.
    18. Chumley FG, Valent B. 1990. Genetic analysis of melanin deficient non-pathogenic mutants of Magnaporthe grisea. MPMI3: 135-143
    19. Chun SJ, Lee YH. 1999. Genetic analysis of a mutation on appressorium formation in Magnaporthegrisea.FEMS Microbiol. Lett. 173:133-137
    20. Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH. 2001. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc. Natl. Acad Sci. USA 98(12) :6963-8.
    21. Davis DJ, Burlak C.Money NP. 2000. Biochemical and biomechanical aspects of appressorial development in Magnaporthe grisea, D. Tharreau et al.(eds.), Advances in rice blast research, P248-256,Kluwer Academic Publishers.Printed in the Netherlands
    22. Dean RA. 1997. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol. 35:211-234
    23. de Jong JC, McCormack BJ, SmimoffN, Talbot NJ. 1997. Glycerol generates turgor in rice blast. Nature 389:244-245
    24. DeZwaan TM, Carroll AM, Valent B. 1999. Sweigard JA. Magnaporthe grisea pthl Ip is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11(10) :2013-30.
    25. Deising HB, Werner S, Wemitz. 2000. The role of fungal appressoria in plant infection. Microbes and Infection 2:1631-1641
    26. Dioh W, Tharreau D, Gomez R, Roumen E, Orbach M, Notteghem JL, Lebrun MH. 1996. Mapping avirulence genes in the rice blast fungus Magnaporthe grisea, in Rice Genetics Ⅲ (ed G.S. Khush), IRRI, Philippines, pp 916-920
    
    
    27. Dixon KP, Xu JR, SmimoffN, Talbot NJ. 1999. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell ll(10) :2045-58.
    28. Dufresne M, Osbourn AE. 2001. Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. MPMI 14(3) :300-7.
    29. Dufresne M, Perfect S, Pellier AL, Bailey JA, Langin T. 2000. A GAL4-Iike protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichwn lindemuthianum on common bean. Plant Cell 12:1579-1589
    30. Fang EG, Dean RA. 2000. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. MPMI 13(11) : 1214-27.
    31. Farman ML, Leong SA. 1998. Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics 150: 1049-1058
    32. Foster AJ, Talbot NJ. 2000. The role of carbohydrates in the pathogenicity of the rice blast fungus Magnaporthe grisea. D.Tharreau et al.(eds.), Advances in rice blast research,P271-280,Kluwer Academic Publishers. Printed in the Netherlands
    33. Froeliger EH, Carpenter BE. 1996. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Molec. Gen. Genet. 251:647-656
    34. Fujii I, Mori Y, Watanabe A, Kubo Y, Tsuji G, Ebizuka Y. 2000. Enzymatic synthesis of 1,3,6,8-tetrahydroxynaphthalene solely from malonyl coenzyme A by a fungal iterative type I polyketide synthetase PKS1. Biochemistry 39:8853-8858
    35. Gainey LDS, Connerton IF, Lewis EH, Turner G, Balance DJ. 1992. Characterization of the glyoxysomal isocitrate lyase genes of Aspergillus nidulans(acuD) and Neurospora crassa(acu-3) . Curr. Genet. 21:43-47
    36. Gilbert RD, Johnson AM, Dean RA. 1996. Chemical signals responsible for appressorium formation in the rice blast fungus. Physiol. Molec. Plant Pathol. 48: 335-346.
    37. Gold SE, Garcia-Pedrajas MD, Martinez-Espinoza AD. 2001. New (and used) approaches to the study of fungal pathogenicity. Annu. Rev. Phytopathol. 39:337-365
    38. Gustin MC, Albertyn J, Alexander M, Davenport K. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Revs. 62:1264-1300.
    
    
    39. Hamer JE, Holden DW. 1997. Linking approaches in the study of fungal pathogenesis: A commentary. Fungal Genet. Biol. 21: 11-16.
    40. Hamer JE, Howard RJ, Chumley FG, Valent B. 1988. A mechanism for surface attachment of spores of a plant pathogenic fungus. Science 239: 288-290.
    41. Hamer L, Pan H, Adachi K, Orbach MJ, Page A, Ramamurthy L, Woessner JP. 2001. Regions of Microsynteny in Magnaporthe grisea and Neitrospora crassa. Fungal Genet. Biol. 33(2) : 137-43.
    42. Hamer JE, Talbot NJ. 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol l(6) :693-7.
    43. Hamer JE, Valent BF, Chumley G. 1989. Mutation at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics 122: 351-361
    44. Heath MC, Valent B, Howard RJ. Chumley FG. 1990. Correlations between cytologically detected plant-fungal interactions and pathogenicity of Magnaporthe grisea toward weeping lovegrass. Phytopathol. 80: 1382-1386.
    45. Hegde Y, Kolattukudy PE. 1998. Cuticular waxes relieve self-inhibition of germination and appressorium formation by the conidia of Magnaporthe grisea. Physiol. Molec. Plant Pathol. 51:75-84
    46. Herskowitz I. 1995. MAP kinase pathways in yeast-for mating and more. Cell 80: 187-197.
    47. Howard RJ. 1994. Cell biology of pathogenesis, in R.S. Zeigler, S.A. Leong, P.S. Teng (eds), The Rice Blast Disease.. CAB International, Wallingford, Oxon, UK. pp 3-22
    48. Howard RJ, Ferrari MA. 1989. Role of melanin in appressorium formation. Exp. Mycol. 13: 403-418
    49. Howard RJ, Ferrari MA, Roach DH, Money NP. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acd. Sci. USA 88: 11281-11284
    50. Howard RJ, Valent B. 1996. Breaking and entering-host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50: 491-512
    51. Idnurm A, Hewlett BJ. 2001. Pathogenicity genes of phytopathogenic fungi. Molec. Plant Pathol. 2(4) :241-255
    52. Jelitto TC, Page HA, Read ND. 1994. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta 194: 471-477.
    
    
    53. Kahmann R, Basse C. 2001. Fungal gene expression during pathogenesis-related development and host plant colonization. Curr Opin Microbiol 4(4) :374-80.
    54. Kang S, Sweigard JA, Valent B. 1995. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. MPMI 8:939-948
    55. Kawamura C, Moriwaki J, Kimura N, Fujita Y, Fuji S, Hirano T, Koizumi S, Tsuge T. 1997. The melanin biosynthesis genes of Alternaria alternate can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. MPMI 10(4) :446-53.
    56. Kershaw MJ, Talbot NJ. 1998. Hydrophobins and Repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet. Biol. 23: 18-33
    57. Kershaw MJ, Wakley GE, Talbot NJ. 1998. Complementation of the Mpgl mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J. 17: 3838-3849
    58. Kimura A, Takano Y, Furusawa I, Okuno T. 2001. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13:1945-1957
    59. Knogge W. 1998. Fungal pathogenicity. Curr. Opin.Plant Biol. 1:324-328
    60. Kronstad JW. 1997. Virulence and cAMP in smuts, blast and blights. Trends Plant Sci. 2: 193-199.
    61. Kronstad JW, et al. 1998. Signaling via camp in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170:395-404
    62. Kunau WH, Dommes V, Schulz H. 1995. Beta-oxidation of fatty acids in mitochondria, peroxisomes and bacteria: A century of continued progress. Prog. Lipid Res. 34:276-342
    63. Lau GW, Hamer JE. 1996. Regulatory genes controlling MPGl expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell 8: 771-781
    64. Lau GW, Hamer JE. 1998. Acropetal: A genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet. Biol. 24:228-239
    65. Lee SC, Lee YH. 1998. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cells 8(6) :698-704.
    66. Lee YH, Dean RA. 1993. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea. Plant Cell 5: 693-700.
    67. Lee YH, Dean RA. 1994. Hydrophobicity of contact surface induces appressorium formation in
    
    Magnaporthe grisea. FEMS Microbiol. Lett. 115: 71-75
    68. Leung H, Lehtinen U, Karjalainen R, Skinner D, Tooley P, Leong S, Ellingboe A. 1989. Transformation of the rice blast fungus Magnaporthe grisea to hygromycin B resistance. Curr. Genet. 17:409-411
    69. Liu S, Dean RA. 1997. G protein a-subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. MPMI 10(9) : 1075-86.
    70. Liu ZM, Kolattukudy PE.1999. Early expression of the calmodulin gene,which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J. Bacterial. 181:3571-3577
    71. McCafferty HRK, Talbot NJ. 1998. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea one of which is highly expressed during the initial stages of plant colonisation. Curr. Genet. 33: 352-361
    72. Mendgen K, Hahn M, Deising H, 1996, Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Anna. Rev. Phytopathol. 34:367-386
    73. Mitchell TK, Dean RA. 1995, The cAMP-dependent protein kinase catalytic sub-unit is required for appressorium formation and pathogenesis by the rice blast fungus Magnaporthe grisea. Plant Cell 7. 1869-1878
    74. Money NP. 1997. Mechanism linking cellular pigmentation and pathogenicity in rice blast disease. Fungal Genet. Biol. 22: 151-152.
    75. Money N P. 1999. Fungus punches its way in. Nature 401:332-333
    76. Money N P, Howard RJ. 1996. Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement Fungal Genet. Biol. 20: 217-227.
    77. Motoyama T, Imanishi K, Yamaguchi 1. 1998. cDNA cloning, expression, and mutagenesis of scytalone dehydratase needed for pathogenicity of the rice blast fungus, Pyricularia oryzae. Biosci. Biotechnol. Biochem. 62: 564-566.
    78. Oliver RP, Osboum A. 1995. Molecular dissection of fungal phytopathogenicity. Microbiol. 141: 1-9
    79. Orbach MJ, Chumley FG, Valent B. 1996. Electrophoretic karyotypes of Magnaporthe grisea pathogens of diverse grasses. MPMI 9:261-271
    
    
    80. Ou SH. 1985. Rice Diseases (Kew, UK: Commonwealth Mycological Institute, C.A.B.) 2nd ed. 380pp.
    81. Parsons KA, Chumley FG, Valent B. 1987. Genetic transformation of the fungal pathogen responsible for rice blast disease. Proc. Natl. Acad. Sci. USA 84: 4161-4165.
    82. Rossman AY, Howard RJ, Valent B. 1990. Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 82:509-512
    83. Rothstein RJ. 1983. One-step gene replacement in yeast New York : Academic Press.Inc.
    84. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press)
    85. Schafer W. 1994. Molecular mechanisms of fungal pathogenicity to plants. Annu. Rev. Phytopathol. 32: 461-411
    86. Schulz H. 1991. Beta-oxidation of fatty acids. Biochim. Biophys. Acta 1081:109-120
    87. Shi Z, Christian D, Leung H. 1995a. Enhanced transformation in Magnaporthe grisea by chemical and insertional mutagenesis. Phytopathol. 85:329-333
    88. Shi Z, Christian D, Leung H. 1998b. Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthegrisea. MPM1 11 (3) : 199-207.
    89. Shi Z, Leung H. 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. MPMI 8:949-959
    90. Silue" D, Notteghem JL, Tharreau D. 1992. Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 82: 577-580
    91. Silue" D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL, Lebrun MH. 1998. Identification and characterization of apfl-a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol. Mol. Plant Pathol. 53: 239-25 1
    92. Skinner DZ, Budde AD, Farman ML, Smith JR, Leung SA. 1993. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and Occurrence of repeated DNAs.Theor. Appl. Genet.87:545-557
    93. Smith HB. 1999. More than just a surface thing. Rice infection by Magnaporthe grisea Plant Cell 11(10) :1815-7.
    94. Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B. 1995. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus.
    
    Plant Cell 7:1221-1233
    95. Swetgard JA, Carroll AM, Farrall L, Chumley FG, Valent B. 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. MPM1 11(5) :404-12.
    96. Sweigard JA, Chumley FG, Valent B. 1992a. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea . Mol Gen. Genet. 232: 174-182
    97. Sweigard JA, Chumley FG, Valent B. 1992b. Disruption of a Magnaporthe grisea cutinase gene. Mol Gen. Genet. 232: 183-190
    98. Takano Y, Kikuchi T, Kubo Y, Hamer JE, Mise K, Furusawa I. 2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. MPMI 13(4) 374-83.
    99. Talbot NJ. 1995. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol. 3: 9-16.
    100. Talbot NJ. 1999a. Forcible entry. Science 285:1860-1861
    101. Talbot NJ. 1999b. Coming up for air and sporulation. Nature 398:295-296
    102. Talbot NJ, Ebbole DJ, Hamer JE. 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5: 1575-1590.
    103. Talbot NJ, Kershaw MJ, Wakley GE, de Vries OMH, Wessels JGH, Hamer JE. 1996. MPC1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8: 985-999
    104. Talbot NJ, McCafferty HRK, Ma M, Moore K, Hamer JE. 1997. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol Mol. Plant Pathol 50(3) : 179-95.
    105. Talbot NJ, Tongue N. 1998. High level expression of the mitochondria! small sub-unit ribosomal rRNA during infection by Magnaporthe grisea Physiol. Mol. Plant Pathol. 52: 335-352
    106. Thines E, Eilbert F, Sterner 0, Anke H. 1997a. Glisoprenin A, an inhibitor of the signal transduction pathway leading to appressorium formation in germinating conidia of Magnaporthe grisea on hydrophobic surfaces. FEMS Microbiol Lett. 151: 219-224
    107. Thines E, Eilbert F, Sterner 0, Anke H. 1997b. Signal transduction leading to appressorium formation in germinating conidia of Magnaporthe grisea: effects of second messengers
    
    diacylglycerols, ceramides and sphingomyelin. FEMS Microbiol Lett. 151: 91-94
    108. Thines E, Weber RW, Talbot NJ. 2000. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12(9) : 1703-18.
    109. Tucker ST, Talbot NJ. 2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Anna. Rev. Phytopathol. 39:385-417
    110. Uchiyama T, Ogasawara N, Nanba Y, Ito H. 1979. Conidial germination and appressorial formation on the coverglass or cellophane coated with various lipid components of plant leaf waxes. Agric. Biol. Chem. 43: 383-384
    111. Uchiyama T, Okuyama K. 1990. Participation of Oryza sativa leaf wax in appressorium formation by Pyricidaria oryzae. Phytochemistry 29: 91-92
    112. Urashima AS, Igarashi S, Kato H. 1993. Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Disease 77:1211-1216
    113. Urban M, Bhargava T, Hamer JE. 1999. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBOJ. 18: 512-521
    114. Valenciano S, De-Lucas JR, Pedregosa A, Monistrol IF, Laborda F. 1996. Induction of β-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch. Microbiol. 166:366-341
    115. Valent B, Chumley FG. 1991. Molecular genetic analysis of the rice blast fungus Magnaporthe grisea. Annu. Rev. Phytopathol. 29:443-467
    116. Valent B, Farrall L, Chumley FG. 1990. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127, 87-101.
    117. Vidal-Cros A, Viviani F, Labesse G, Boccara M, Gaudry M. 1994. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Eur. J. Biochem. 219:985-992
    118. Villalba F, Lebrun MH, Hua-Van A, Daboussi MJ, Grosjean-Coumoyer MC. 2001. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. MPMI 14(3) :308-15.
    119. Weber RW, Wakley GE, Thines E, Talbot NJ. 2001. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma 216(1-2) :101-12.
    
    
    120. Wessels JGH. 1997. Hydrophobins: Proteins that change the nature of the fungal surface. Adv. Microbial Physiol. 38: 1-45
    121. Woloshuk CP, Sisler HD. 1982. Tricyclazole, pyroquilon, tetrachlorophthalide, PCBA, coumarin and related compounds inhibit melanization and epidermal penetration by Pyricularia oryzae. J. Pestic. Sci 7: 161-165
    122. W6sten HAS, Schuren FHJ, Wessels JGH. 1994. Interfacial self-assembly of a hydrophobin into an amphipathic membrane mediates fungal attachment to hydrophobic surfaces. EMBO J. 13: 5848-5854.
    123. WSsten HAB, vanWetter MA, Lugones LG, vanderMei HC, Busscher HJ, Wessels JGH. 1999. How a fungus escapes the water to grow into the air. Curr. Biol. 9: 85-88
    124. Wu SC, Ham KS, Darvill AG, Albersheim P. 1997. Deletion of two endo-beta-1,4-xylanase genes reveals additional isozymes secreted by the rice blast fungus. MPMI 10:700-708
    125. Wu SC, Kauffinann S, Darvill AG, Albersheim P. 1995. Purification,cloning and characterization of two xylanases for Magnaporthe gr玡a,the rice blast fungus. MPMI 8:506-514
    126. Xiao JZ, Ohshima A, Kamakura T, Ishiyama T, Yamaguchi I, 1994a, Extracellular glycoprotein(s) associated with cellular differentiation in Magnaporthe grisea. MPMI 7:639-644
    127. Xiao JZ, Watanabe T, Kamakura T, Ohshima A, Yamaguchi I, 1994b, Studies on cellular differentiation of Magnaporthe grisea. Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physiol. Mol. Plant Pathol. 44:227-236 MPMI 7:639-644
    128. Xu JR. 2000. Map kinases in fungal pathogens. Fungal Genet Biol. 31 (3) : 137-52.
    129. Xu JR, Hamer JE. 1996. MAP Kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10: 2696-2706
    130. Xu JR, Staiger CJ, Hamer JE. 1998. Inactivation of the mitogen-activated protein kinase Mpsl from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Natl. Acad. Sci. USA 95: 12713-12718
    131. Xu JR, Urban M, Sweigard JA, Hamer JE. 1997. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. MPMI 10: 187-194
    132. Zhu H, Blackmon BP, Sasinowski M, Dean RA. 1999. Physical map and organization of chromosome 7 in the rice blast fungus Magnaporthe grisea. Genome Res. 9: 739-750.
    133. Zhu H, Choi SD, Johnston AK, Wing RA, Dean RA. 1997. A large-insert (130 kb) bacterial
    
    artificial chromosome library of the rice blast fungus Magnaporthe grisea: Genome analysis, contig assembly, and gene cloning. Fungal Genet. Biol. 21:337-347
    134.Zhu H, Whitehead DS, Lee YH, Dean RA. 1996. Genetic analysis of developmental mutants and rapid chromosome mapping of APPI, a gene required for appressorium formation in Magnaporthe grisea. MPMI 9: 767-774.
    135.何月秋,唐文华.2001.水稻稻瘟病菌研究进展(一)水稻稻瘟病菌多样性及其变异机制.云南农业大学学报16(1):60-64
    136.李成云等.1996.云南省稻瘟病菌的交配型分布.中国农业科学29(6):60-64
    137.李德葆,徐平.1994.重组DNA的原理和方法.浙江科学技术出版社。
    138.李德葆,周雪平,许建平等.1996.基因工程操作技术.上海科学技术出版社。
    139.林福呈.1999.稻瘟病菌附着胞形成机理研究.博士学位论文
    140.林福呈.2001.稻瘟病菌附着胞形成的细胞生物学.植物病理学报31(2):97-101
    141.林福呈,李德葆.1997.稻瘟病菌侵入机理.微生物学通报24(3):167-170
    142.陆凡,郑小波等.2001.江苏省稻瘟病菌的毒性多样性及水稻品种的抗病性.生物多样性9(3):201-206
    143.刘树俊等.1998.利用限制性内切酶诱导整合(REMl)获得稻瘟病菌致病突变体.遗传学报25(3):232-236
    144.沈瑛,李成云等.1997.稻瘟病菌的菌丝融合现象及其后代的致病性变异.中国农业科学30(6):16-22
    145.沈瑛等.1998.我国稻瘟病菌的遗传多样性及其地理分布(英).浙江农业大学学报24(5):493-501
    146.张正光,郑小波.1999.稻瘟病菌营养体亲合和配对筛选及其亲和能力遗传.植物病理学报29(4):304-308
    147.张正光,郑小波.2000.稻瘟病菌不同小种菌株间无性重组的研究.植物病理学报30(4):312-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700