用户名: 密码: 验证码:
稻瘟病菌细胞自噬相关基因MgATG4表达模式与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞自噬是真核生物中高度保守的过程,在此过程中,包括过剩或异常的细胞器在内的细胞物质被包裹进双层膜的自噬泡中并被运输到溶酶体或液泡中进行降解,从而使得生物大分子得以重新利用。细胞自噬在诸如对变化环境的适应、发育与分化过程中细胞形态的建成以及细胞寿命的决定等一系列生物事件中起着重要作用。细胞自噬相关基因最早在酵母中被鉴定,如今在所有的高等生物中已发现其同源基因。细胞自噬可由饥饿诱导产生并维持一个氨基酸库以便合成一些必需的蛋白质。
     稻瘟病是一种由稻瘟病菌引起的毁灭性病害,给全世界的水稻生产带来巨大威胁。稻瘟病菌(Magnaporthe oryzae)具有典型的生活史和侵染循环,且被认为是丝状真菌分子生物学和病原菌与寄主互作研究的模式生物。稻瘟病菌能够形成专门的侵染结构—附着胞,其能够产生巨大的胞内膨压(约8.0Mpa),这个压力使稻瘟病菌穿透植物叶片表皮并侵染寄主。
     本研究主要目的是阐明细胞自噬相关基因MgATG4的表达模式,细胞自噬与稻瘟病菌生长、发育和致病性之间的关系以及细胞自噬相关蛋白MgATG4与MgATG8之间的相互作用。获得的主要研究结果如下:
     从稻瘟病菌成熟附着胞的差减文库中克隆到了细胞自噬相关基因MgATG4,该基因编码一个53.93kDa的半胱氨酸蛋白酶。将稻瘟病菌MgATG4基因,互补到酵母ATG4基因缺失突变体中,能够恢复酵母的细胞自噬过程;对MgATG4进行时间表达模式分析,发现该基因在孢子、附着胞及菌丝中均有表达;细胞定位分析发现MgATG4蛋白在细胞质中均匀表达。
     通过构建MgATG4基因置换载体,得到MgATG4基因缺失突变体△mgatg4。△mgatg4突变体在CM培养基上的菌落形态发生变化,菌丝稀疏;产孢量显著下降,约为野生型Guy11的1/90;分生孢子的萌发及附着胞形成延迟;附着胞膨压显著下降,在完整的水稻或者大麦叶片上不能形成可见病斑,致病性丧失;在有磨损的大麦叶片上也未能产生病斑;突变子在OMA培养基上与2539菌株交配,能产生子囊壳,但延迟且量极少;基因MgATG4的缺失,使细胞自噬过程中断,液泡和细胞质中无自噬泡的积累。
     从稻瘟病菌成熟附着胞的差减文库中克隆得到了另一个细胞自噬相关基因MgATG8,该基因编码一个14.4kDa的ATG8蛋白。对MgATG8进行时间表达模式分析,发现该基因在孢子、附着胞及菌丝中均有表达。通过双分子荧光互补技术检测MgATG4与MgATG8在稻瘟病菌细胞发育过程中的相互作用,分别构建BiFC载体ATG4-YFPN、ATG4△-YFPN和YFPC-ATG8共转化稻瘟病菌Guy11菌株并用潮霉素和草胺磷双抗筛选。转化子BY-7经共聚焦显微镜检测结果发现在孢子、营养菌丝、附着胞形成过程及穿透过程中均没有检测到YFP荧光信号,但在饥饿诱导4h后的菌丝中检测到了MgATG4与MgATG8的相互作用。
     MgATG4蛋白序列中含有6个半胱氨酸残基。通过序列比对分析,发现MgATG4蛋白序列中的Cys206为保守半胱氨酸;分别构建MgATG4、MgATG8蛋白表达载体pPICZα-ATG4和pPICZα-ATG8,并采用定点突变技术将MgATG4第206位的半胱氨酸残基Cysteine突变为丝氨酸Serline。采用毕赤酵母表达系统表达野生型和突变体MgATG4-His融合蛋白以及MgATG8-His融合蛋白并纯化。体外蛋白酶切实验表明Cys206是MgATG4的活性位点。
Autophagy is a highly conserved process in eukaryotes in which the cytoplasm, including excess or aberrant organelles,is sequestered into double-membrane vesicles and delivered to the degradative organelle,the lysosome/vacuole,for breakdown and eventual recycling of the resulting macromolecules.This process has an important role in various biological events such as adaptation to changing environmental conditions, cellular remodeling during development and differentiation,and determination of lifespan.Autophagy-related genes were first identified in yeast,but homologs are found in all eukaryotes.Moreover,autophagy is dramatically induced under starvation conditions for maintaining an amino acid pool so that essential proteins may be synthesized.
     Rice blast,the most serious disease of cultivated rice throughout the world,was caused by Magnaporthe oryzae,a filamentous ascomycete fungus,and has threatened the rice production worldwide.Magnaporthe oryzae has a typical life history and infection cycle,and has been developed as a model organism for the investigation of fungus-host interaction.Plant infection by the rice blast fungus is brought about by the action of specialized infection cells called appressoria.These infection cells generate enormous turgor pressure(as much as 8.0 Mpa),which is translated into an invasive force that allows a narrow penetration hypha to breach the plant cuticle.
     This work is aimed to investigate the expression pattern of MgATG4,the role of autophagy in the process of cell development,differentiation and the relationship between autophagy and pathogenicity.Moreover,the interaction between autophagic proteins MgATG4 and MgATG8 was also involved.
     An autophagy-related gene MgATG4,which encodes a cysteine proteinase with a putative molecular weight of 53.93kDa,was cloned from a previously constructed suppression subtractive cDNA library of mature appresoria in M.oryzae strain Guy-11. To determine whether MgATG4 in the rice blast fungus is functionally related to the Atg4 ofS.cerevisiae,a full-length MgATG4 cDNA fragment of M.oryzae was introduced into S.cerevisiae strainΔatg4 using pYES2.The results showed that MgATG4 restored the corresponding defects in the starvation-sensitive phenotype ofΔatg4 mutant of S. cerevisiae,indicating that MgATG4 of M.grisea is presumably homologous to Atg4 of yeast in structure and function.To detect the expression of MgATG4 in Magnaporthe,we analyzed the temporal control of MgATG4 gene expression by construction and expression of a MgATG4 promoter-green fluorescent protein(GFP) fusion in Magnaporthe.Expression of GFP in MgATG4(p):eGFP transformants was detected in conidia and during appressorium development.Furthermore,expression of GFP was also observed in vegetative hyphae in axenic culture with CM and CM-N media.When grown in CM-N medium,the green fluorescence emitted by GFP protein in hyphae was brighter than those grown in complete medium,implying that the MgATG4 promoter was induced by starvation.To investigate the localization of MgATG4 in M.oryzae,we constructed a MgATG4-fluorescent green protein gene fusion expression cassette.Expression of MgATG4-GFP was uniformly detectable in the cytoplasm of conidia,mycelia,and appressoria.
     A targeted gene deletion strategy was adopted to determine the role of MgATG4 in fungal development and pathogenicity at the molecular level.Deletion mutants ofΔmgatg4 formed fewer sparse aerial hyphae and conidiogenesis was reduced significantly and autophagy was blocked,indicating that MgATG4 is essential for autophagy. Furthermore,Δmgatg4 mutants showed delayed conidial germination and appressorium formation,lower turgor pressure of the appressorium.As a result of decreased appressorium turgor,theΔmgatg4 mutant lost its ability to penetrate the two host plants tested,namely rice and barley.The developmental and pathogenic phenotypes were recovered following re-introduction of an intact copy of MgATG4 into the mutant, suggesting that autophagy is thus necessary in the development of M.oryzae and essential to pathogenicity of the fungus.In mating experiments,the wild-type strain and the MgATG4-rescued strain produced many perithecia with viable ascospores with the opposite mating-type strain,2539,whileΔmgatg4 mutants need about 10 more days of incubation and formed less perithecia.
     Another autophagy-related gene MgATG8,which encodes an Atg8 family protein with a putative molecular weight of 14.4 kDa,was cloned from the same mature appresoria cDNA library.Temporal expression analysis revealed that MgATG8 expressed during plant infection and vegetative growth by Magnaporthe.To directly examine the in vivo MgATG4-MgATG8 interaction by BiFC assay,we generate the ATG4-YFPN, ATG4Δ-YFPN and YFPC-ATG8 fusion constructs and transformed them in pairs into the wild type Guy 11 strain and selected with hygromycin and glufosinate ammonium.The resulting transformant,BY1-7,was analysed by Southern hybridization and examined for YFP signals.Conidia of BY1-7 were incubated on onion epidermal cells for 2,4,8,12, 24 and 48 h,and observed under fluorescence microscopy.Although YFP fluorescehce was not detectable in conidia,appressoria,and vegetative hyphae,fluorescence signals were observed in vegetative hyphae grown under nitrogen starvation.Meanwhile, infectious hyphae that developed inside onion epidermal cells by the transformant had very weak or no YFP signals.These data.indicate that the MgATG4-MgATG8 interaction was enhanced during nitrogen starvation.
     MgATG4 contains 6 cysteines,one of which is highly conserved among homologues of fungi and mammals.The only conserved residue is the putative active residue of the protease Cys206,which also in the yeast S.cerevisiae,AtATG4,mouse ATG4A and ATG4B,HsATG4A,HsATG4B.The open reading frame encoding MgATG4 was amplified by PCR and subcloned into a pPICZαA Pichia expression vector plasmid.The construct,designated pPICZαA-ATG4,was used for the in vitro studies.Another construct,pPICZαA-ATG8,was constructed with the same strategy.One mutant gene was constructed based on the WT construct:MgATG4~(C206S),in which cysteine 206 was replaced with serline.Mutagenesis was carried out by the pfu Turbo DNA polymerase with the QuickChange Site-Directed Mutagenesis Kit according to the manufacture's protocol.Recombinant MgATG4-His6(WT and the mutant) and MgATG8-His6 were expressed in Pichia GS-115 strain and purified with the ProBond~(TM) Purification System. Assay of cleavage of MgATG8 in vitro revealed that recombinant MgATG4 harboring a mutation of cysteine to serline at position 206(MgATG4~(C206S)-His6) did not cleave MgATG8,neither in the absence nor in the presence of DTT.Based on these results and the sequence homology described above,we conclude that Cys206 is part of the active sites of MgATG4.
     In summary,autophagy is necessary for the formation of conidia and appressoria and for normal development and pathogenicity of Magnaporthe.The MgATG4 null mutants show defects in autophagy,the ability to survive starvation,conidiation,conidial germination,and appressorium turgor generation.As a result,theΔmgatg4 mutant loses its penetration ability and pathogenicity to the two tested host plants,namely rice and barley.BiFC assay indicated that the MgATG4-MgATG8 interaction was enhanced during nitrogen starvation.Assay of cleavage of MgATG8 in vitro revealed that Cys206 is part of the active sites of MgATG4.
引文
Abedi M, Caponigro G, Shen J X, Hansen S, Sandrock T, Kamb A. Transcriptional transactivation by selected short random peptides attached to lexA-GFP fusion proteins. BMC Mol. Biol., 2001,2(10): 1-10.
    
    Abeliovich H. Regulation of autophagy by the Target of Rapamycin (Tor) proteins. In Autophagy, Klionsky D J, ed. (Georgeand town, TX: Landes Bioscience), 2004, 60-69.
    
    Adachi K, and Hamer J E. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell, 1998, 10: 1361-1374.
    
    Adams T H, Wieser J K, and Yu J H. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev., 1998, 62, 35-54.
    
    Akira M, Yumiko T A, Yukio A, et al. Production of recombination human midline in yeast, Pichia pastoris. J. Biosci. Bioeng., 2000, 90(4): 395-399.
    
    Andreeva L, Heads R, and Green C J. Cyclophilins and their possible role in the stress response. Int. J. Exp. Pathol., 1999, 80: 305-315.
    
    Arevalo-Rodriguez M, Cardenas M E, Wu X, Hanes S D, and Heitman J. Cyclophilin A and Essl interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J. 2000, 19: 3739-3749.
    
    Ashford T P and Porter K R. Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol., 1962, 12:198-202.
    
    Asiegbu F O, Choi W, Jeong J S, and Dean R A. Cloning, sequencing and functional analysis of Magnaporthe grisea MVP1 gene, a hex-1 homolog encoding a putative 'woronin body' protein. FEMS Microbiol. Lett., 2004, 230: 85-90.
    
    Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar S P. Signaling in plant-microbe interactions. Science, 1997, 276:726-733.
    
    Balhadere P V, Talbot N J. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 2001, 13: 1987-2004.
    
    Bampton E T, Goemans C G, Niranjan D, Mizushima N, and Tolkovsky A M. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy, 2005, 1: 23-36.
    
    Beckerman J L and Ebbole D J. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol. Plant. Microbe. Interact., 1996, 9: 450-456.
    
    Biederbick A, Kern H F, and Elsasser H P. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell. Biol., 1995, 66: 3-14.
    
    Blommaart E F, Krause U, Schellens J P, Vreeling-Sindelarova H, Meijer A J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem., 1997, 243: 240-246.
    
    B(o|¨)lker M. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal. Genet. Biol., 1998, 25: 143-156.
    
    Bonman J M, Vergel D D T, Khin M M. Physiologic specialization of Pyricularia oryzae in the Philippines. Plant Disease, 1986, 70: 767-769.
    Bourett T M and Howard R J. Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea. Protoplasma, 1992, 168, 20-26.
    
    Bourett T M, Howard R J. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can. J. Bot., 1990, 68:329-342.
    
    Choi W, Dean R A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell, 1997, 9: 1973-1983.
    
    Chumley F G, Valent B. Genetic analysis of melanin deficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe. Interact., 1990, 3:135-143.
    
    Citovsky V, Lee L Y, Vyas S, Glick E, Chen M H, Vainstein A, Gafni Y, Gelvin S B, Tzfira T. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J. Mol. Biol., 2006, 362, 1120-1131.
    
    Clergeot P H, Gourgues M, Cots J, Laurans F, Latorse M P, Pepin R, Tharreau D, Notteghem J L, and Lebrun M H. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc. Natl. Acad. Sci. USA, 2001, 98: 6963-6968.
    
    Codogno P, and Meijer A J. Signaling pathways in mammalian autophagy. In Autophagy, D.J. Klionsky, ed. (Georgetown, TX:Landes Bioscience), 2004, 26-47.
    
    Crotzer V L and Blum J S. Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress. Proc. Natl. Acad. Sci. U S A, 2005, 102(22): 7779-7780.
    
    Cuervo A M, Dice J F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 1996, 273:501-503.
    
    David H E, Dace A S, de Pmierai D L, Jones D, Candido E, Peter M,Daniells C. Construction and ecaluation of transgenic hspl6-GFP-lacZ Caenorhabditiditis elegans strain for environmental monitoring. Environ. Toxicol. Chem., 2003, 22: 111-118.
    
    Davis D J, Burlak C, Money N P. Biochemical and biomechanical aspects of appressorium development of Magnaporthe grisea. In: Talbot N J (ed.) Progress in Rice Blast Research. Springer-Verlag, Berlin, 2000, 248-256.
    
    de Jong J C, McCormack B J, Smirnoff N, Talbot N J. 1997. Glycerol generates turgor in rice blast. Nature, 389: 244.
    
    Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvp S, Ma L J, Nicol R, Purcell S, Nusbaum C, Galagan J E, and Birren B W. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980-986.
    
    Dean R A. Signal pathways and appressorium morphogenesis. Annu. Rev. Phytopathol., 1997, 35:211-234.
    
    DeZwaan T M, Carroll A M, Valent B, and Sweigard J A. Magnaporthe grisea pthllp is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 1999, 11: 2013-2030.
    Dickman M B, Yarden O. Serine/theonine protein kinases and phosphatases in filamentious fungi. Fungal. Genet. Biol., 1999, 26:99-117.
    
    Dixon K P, Xu J R, Smirnoff N, and Talbot N J. In dependent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 1999, 11:2045-205.
    
    Drori K B, Shichrur K, Katz A. Detection of protein-protein interactions in plant using bimolecular fluorescence complementation. Plant. J., 2004, 40(3): 419-427.
    
    Fang D Y, Kerppola K T. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc. Natl. Sci. USA, 2004, 101(41): 14782-14787.
    
    Farre J C and Subramani S. Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol., 2004, 14: 515-523.
    
    Geoffrey S B, David A Z, Roger Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA, 1999, 96(20): 11241-11246.
    
    Gilbert M J, Thornton C R, Wakley G E, and Talbot N J. A P-type ATPase required for rice blast disease and induction of host resistance. Nature, 2006, 440: 535-539.
    
    Gothel S F, and Marahiel M A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci., 1999, 55: 423-436.
    
    Hamer J E and Talbot N J. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol., 1998, 1:693-697.
    
    Hamer J E, Howard R J, Chumley F G and Valent B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science, 1988, 239, 288-290.
    
    Heath M C, Valent B, Howard R J, and Chumley F G. Interactions of two strains of Magnaporthe grisea with rice, goosegrass and weeping lovegrass. Can. J. Bot, 1990, 68:1627-1637.
    
    Hegde Y, Kolattukudy P E. Cuticular waxes relieve self-inhibition of germination and appressorium formation by the conidia of Magnaporthe grisea. Physiological and Molecualr Plant Pathology, 1997, 51(2): 75-84.
    
    Hemelaar J, Lelyveld V S, Kessler B M, Ploegh H L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-likeproteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J. Biol. Chem., 2003, 278: 51841-51850.
    
    Hicke L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell. Biol., 2001, 2(3): 195-20.
    
    Hirosako K, Imasato H, Hirota Y, et al. 3-Methyladenine specifically inhibits retrograde transport of cation-independent mannose 6-phosphate/insulin-like growth factor II receptor from the early endosome to the TGN. Biochem. Biophys. Res. Commn., 2004, 316(3): 845-852.
    
    Hockema A, Kastelein R A, Vasser M, et al. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol. Cell. Biol., 1987, 7:2914-2924.
    
    Hoff B, Kuck U. Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr. Genet., 2005, 47(2): 132-138.
    Howard R J, and Ferrari M A. Role of melanin in a ppressorium function. Exp. Mycol., 1989, 13:403-418
    
    Howard R J, and Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol., 1996, 50:491-512.
    
    Howard R J, Ferrari M A, Roach D H , and Money N P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci., U S A, 1991, 88:11281-11284.
    
    Howard R J. Cell biology of pathogenesis, p.3-22. In: R. S. Zigler, S. Leong, and Teng (eds), Rice Blast Disease. CAB Internatinal.
    
    Hu C D, Chinenov Y, Kerppola T K. Visualization of Interactions among bZIP and Rel Family Proteins in Living Cells Using Bimolecular Fluorescence Complementation. Molecular Cell, 2002, 9(4): 789-798.
    
    Hu C D, Kerppola K T. Simultaneous visua lization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature Biotechnology, 2003, 21(5): 539-545.
    
    Hynes T R, Tang L N, Mervine S M, Sabo J, Yost E A, Devreotes P N, Berlot C H. Visualization of G protein Py dimers using bimolecular fluorescence complementation demonstrates roles for both β and γ in subcellular targeting. J. Biol. Chem., 2004, 279(29): 30279-302864.
    
    Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, and Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature, 2000, 408: 488-492.
    
    Iniguez-Lluhi J A. Simon MI, Robishaw J D. G protein beta gamma subunits synthesized in St9 cells. Functional characterization an d the significance of prenylation of gamma subun it. J. Biol. Chem., 1992, 267(32):23409-23417.
    
    Jelitto T C. Page H A, and Read N D. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta, 1994, 194:471-477.
    
    Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, and Ohsumi Y. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell., 2005, 16: 2544-2553.
    
    Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell. Sci., 2004, 117:2805-2812.
    
    Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, and Ohsumi Y. Tor-mediated induction of autophagy via an Apgl protein kinase complex. J. Cell. Biol., 2000, 150: 1507-1513.
    
    Kang S H, Khang C H, Lee Y H. Regulation of camp-dependent protein kinase during appressorium formation in Magnaporthe grisea. FEMS Microbiol. Lett., 1999, 170:419-423.
    
    Kawamata T, Kamada Y, Kabeya Y, Sekito T, and Ohsumi Y. Organization of the Pre-autophagosomal Structure Responsible for Autophagosome Formation. Molecular Biology of the Cell, 2008, 19(5): 2039-2050.
    
    Khandekara S S, Silvermana C, Wells-Maranib J, Bacon A M, Birrell H, Brigham-Burke M, DeMarini D J, Jonak Z L, Camilleri P, Fishman-Lobell J. Determination of carbohydrate structures N-Linked to soluble CD154 and characterization of the interactions of CD40 with CD154 expressed in Pichia pastoris and Chinese Hamster Ovary cells. Protein Expression and Purification, 2001, 23(2):301-310.
    
    Kikuma T, Ohneda M, Arioka M, and Kitamoto K. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in Aspergillus oryzae. Eukaryot Cell, 2006, 5: 1328-1336.
    
    Kim S, Ann I P, Rho H S, and Lee Y H. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol. Microbiol., 2005, 57: 1224-1237.
    
    Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, TakaoT, Noda T, and Ohsumi Y. The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway. The Journal of Cell Biology, 2000, 151(2): 263-275.
    
    Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell. Biol.,2000, 151:263-276.
    
    Klionsky D J, Cregg J M, Dunn W A, Jr, Emr S D, Sakai Y, Sandoval I V, Sibirny A, Subramani S, Thumm M, Veenhuis M, and Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev. Cell., 2003, 5: 539-545.
    
    Klionsky D J. Cell biology: regulated self-cannibalism. Nature, 2004, 431: 31-32.
    
    Klionsky D J. The molecular machinery of autophagy: unanswered questions. J. Cell. Sci., 2005, 118:7-18.
    
    Koga H, and Osamu N. Morphological studies on attachment of spores of Magnaporthe grisea to the leaf surface of rice. J. Gen. Plant. Pathol., 2004, 70:11-15.
    
    Koutz P J, Davis G R, Stillman C, Barringer K, Cregg J, Thill G. Structural comparison of the Pichia pastoris alcohol oxidase gene. Yeast, 1989, 5(3):167-177.
    
    Lang T E, Schaeffeler D. Bernreuther, M. Bredschneider, D. H. Wolf, and M. Thumm. Aut2p and Aut7p, two novel microtubule-associated proteins, are essential for delivery of autophagic vesicles to the vacuole. EMBO J, 1998, 17:3597-3607.
    
    Lee Y H, and Dean R A. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell, 1993, 5: 693-700.
    
    Lee Y H, Dean R A. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol. Lett., 1994,115:71-75.
    
    Lengeler K B, Davidson R C, D'souza C, Harashima T, Shen W-C, Wang P, Pan X, Waugh M, and Heitman J. Signal transduction cascades regulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 2000, 64(4): 746-785.
    
    Levine B and Klionsky D J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell, 2004, 6: 463-477.
    
    Li Z, Xiong F, Lin Q, d'Anjou M, Daugulis A J, Yang D S, Hew C L. Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein. Expr. Purif., 2001,21: 438-445.
    Liang X H, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature, 1999, 402: 672-676.
    
    Liang X H, Kleeman L K, Jiang H H, Gordon G, Goldman J E, Berry G, Herman B, Levine B. Protection against fetal Sindbis virus encephalitis by Beclin, a novel Bcl-2 interacting protein. J.Virol., 1998,72:8586-8596.
    
    Liu S, and Dean R A. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant. Microbe. Interact., 1997, 10: 1075-1086.
    
    Liu X-H, Lu J-P, Dong B, Zhang L, Min H, Lin F-C. Involvement of a Magnaporthe grisea serine/threonine kinase, MgATGl, in appressorium turgor and pathogenesis. Eukaryotic Cell, 2007, 6 (6): 997-1005.
    
    Liu Z M, and Kolattukudy P E. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. J. Bacterial., 1999, 181: 3571-3577.
    
    Lu J P, Liu T B, Yu X Y, and Lin F C. Representative appressorium stage cDNA library of Magnaporthe grisea. J. Zhejiang Univ. Sci. B, 2005, 6:132-136.
    
    Lu K P, Hanes S D, and Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature, 1996, 380: 544-547.
    
    Majeski A E, and Dice J F. Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol., 2004.36: 2435-2444.
    
    Mann S S, Hammarback J A. Molecular characterization of light chain 3.A microtubule binding subunit of MAP1A and MAP1B.J. Biol. Chem., 1994,269: 11492-11497.
    
    Marino G, Uria J A, Puente X S, Quesada V, Bordallo J, and Lopez-Otin C. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem., 2003, 278: 3671-3678.
    
    Marks A R. Cellular functions of immunophilins. Physiol. Rev., 1996, 76: 631-649.
    
    Matsuura A, Tsukada M, Wada Y and Ohsumi Y. Apglp, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae, Gene, 1997, 192: 245-250.
    
    Meijer A J and Codogno P. Regulation and role of autophagy in mammalian cells. Int. J. Biochem. Cell. Biol., 2004, 36: 2445-2462.
    
    Meijer W H, van der Klei I J, Veenhuis M, Kiel J A K W. ATG Genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. 2007, 3(2): 106-116.
    
    Mitchell T K, and Dean R A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell, 1995, 7: 1869-1878.
    
    Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell. Biol., 2001, 152:657-667.
    
    Mizushima N, Yamamoto A, Matsui M, Yoshimori T, and Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell., 2004, 15: 1101-1111.
    Money N P, Howard R J. Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method for turgor measurement. Fungal. Gent. Biol., 1996, 20:217-227.
    
    Nakamura N, Matsuura A, Wada Y and Ohsumi Y. Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J. Bio. Chem., 1997, 121:338-344.
    
    Nemoto T, Tanida I, Tanida-Miyake E, Minematsu-Ikeguchi N, Yokota M, Ohsumi M, Ueno T, Kominami E. The mouse Apg10 homologue, an E2 like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification. J. Biol. Chem., 2003,278:39517-39526.
    
    Nesher I, Barhoom S and Sharon A. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC biology, 2008, 6(9): doi:10.1186/1741-7007-6-9
    
    Nevoigt E, Stahl U. Osmoregulation and glycerol metabolism in the yeast, Saccharomyces cerevisiae. FEMS Microl. Rev., 1997, 21:231-241.
    
    Noda T, Suzuki K and Ohsumi Y. Yeast autophagosomes: de novo formation of a membrane structure. Trends. Cell. Biol., 2002, 12: 231-235.
    
    Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell. Biol., 2001,2(3):211-6.
    
    O'Rourke S M, Herskowitz I. The Hogl MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev., 1998, 12: 2874-2886
    
    Ou S H. Rice Diseases. 1985, Kew, UK: Commonwealth Mycological Institute. Park G, Xue C, Zheng L, Lam S, and Xu J R. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol. Plant. Microbe. Interact., 2002, 15: 183-192.
    
    Pattingre S, Petiot A, and Codogno P. Analyses of Galpha-interacting protein and activator of G-protein-signaling-3 functions in macroautophagy. Methods. Enzymol., 2004, 390: 17-31.
    
    Petiot A, Pattingre S, Arico S, Meley D, and Codogno P. Diversity of signaling controls of macroautophagy in mammalian cells. Cell Struct. Funct., 2002, 27: 431-441.
    
    Pinan-Lucarre' B, Balguerie A, Clave C. Accelerated cell death in Podospora autophagy mutants. Eukaryotic cell, 2005, 1765-1774.
    
    Reggiori F and Klionsky D J. Autophagy in the eukaryotic cell. Eukaryot Cell, 2002, 1: 11-21.
    
    Roamnos M A, Clare J J, Beesley K M, et al. Recombinant Bordetella pertusis pertactin from the yeast Pichia pastonis: high-level production and immunological properties. Vaccine, 1991, 9: 901-906.
    
    Sagiv Y, Legesse-Miller A, PoratA, ElazarZ. GATE-16, a Membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J., 2000, 19: 1494-1540.
    
    Scherz-Shouval R, Sagiv Y, Shorer H, and Elazar Z. The COOH Terminus of GATE-16, an Intra-Golgi Transport Modulator, Is Cleaved by the Human Cysteine Protease HsApg4A. J. Biol. Chem., 2003, 278:14053-14058.
    Scherz-Shouval R, Sagiv Y, Shorer H, Elazar Z. The COOH terminus of GATE-16, an intra-Golgi transport modulator, is cleaved by the human cysteine protease HsApg4A. J. Biol. Chem., 2003,278: 14053-14058.
    
    Scorer C A, Clare J J, Mccombie W R, et al. Rapid selection using G428 of high copy number transformants of Pichia pastoris for high-level foreigh gene expression. Bio/Technology, 1994, 12(2):181-185.
    
    Seglen P O, and Gordon P B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA, 1982, 79(6): 1889-1892.
    
    Sesma A, Osbourn A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 2004, 431: 582-586.
    
    Shi Z, Christian D, and Leung H. Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Mol Plant Microbe Interact, 1998, 11: 199-207.
    
    Shintani T. Cytoplasm to vacuole targeting pathway in yeast. Tanpakushitsu Kakusan Koso., 2006, 51: 1480-1483.
    
    Shoji J Y, Maruyama J, Arioka M, and Kitamoto K. Development of Aspergillus oryzae thiA promoter as a tool for molecular biological studies. FEMS Microbiol. Lett., 2004, 244:41-46.
    
    Siegei R S. Methylotroyphic yeast Pichia pastour produced in high-cell-density fermentation with high cell yields vehicle for recombinant protein production. Biotechnology and Bioegineering, 1989, 34: 403 -404.
    
    Silue D, Tharreau D, Talbot N J, Clergeot P H, Notteghem J L, Lebrun M H. Identification and characterization of apfl (-) in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol. Mol. Plant. Pathol., 1998, 53:239-251.
    
    Simon M, Shizuya H. Genomic characterization of the human heterotrimeric G protein, β and γ subunit genes. DNA Res., 2000, 7(2): 111-120.
    
    Soundararajan S, Jedd G, Li X, Ramos-Pamplona M, Chua N H, and Naqvi N I. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell, 2004, 16: 1564-1574.
    
    Su W, Ma H, Liu C, Wu J, Yang J. Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol. Biol. Rep., 2006, 33:273-278.
    
    Straub M, Bredschneider M, and Thumm M. AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. J. Bacteriol., 1997, 179: 3875-3883.
    
    Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Letters, 2007, 581(11):2156-2161.
    
    Sweigard J A, Carroll A M, Farrall L, Chumley F G, and Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant. Microbe. Interact., 1998,11:404-412.
    
    Sykes K, Gething M J, and Sambrook J. Proline isomerases function during heat shock Proc. Natl. Acad. Sci. USA, 1993, 90: 5853-5857.
    Takeshige K, Baba M, Tsuboi S, Noda T, and Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell. Biol., 1992, 119: 301-311.
    
    Talbot N J, Ebbole D J, and Hamer J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993, 5: 1575-1590.
    
    Talbot N J, Kershaw M J, Wakley G E, De Vries O, Wessels J, and Hamer J E. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell, 1996, 8: 985-999.
    
    Talbot N J, McCaferty H R K, Ma M, Moore K, and Hamer J E. Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol. Mol. Plant. Pathol., 1997, 50:179-195.
    
    Talbot N J. Fungal biology-coming up for air and sporulation. Nature, 1999, 398: 295-296.
    
    Talbot N J. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends. Microbiol., 1995,3:9-16.
    
    Talbot N J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol., 2003, 57:177-202.
    
    Talloczy Z, Jiang W, Virgin H W, Leib D A, Scheuner D, Kaufman R J, Eskelinen E L, and Levine B. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc. Natl. Acad. Sci. USA, 2002, 99: 190-195.
    
    Tanida I, Sou Y, Ezaki J, Minematsu-Ikeguchi N, Ueno T, and Kominami E.HsAtg4B/HsApg4B/Autophagin-l Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein-Phospholipid Conjugates. J. Biol. Chem., 2004, 279(35): 36268-36276.
    
    Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, and Kominami E. Human Apg3p/Autlp homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J. Biol. Chem., 2002a, 277: 13739-13744.
    
    Tanida I, Tanida-Miyake E, Nishitani T, Komatsu M, Yamazaki H, Ueno T, and Kominami E. Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs. Biochem. Biophys. Res. Commun., 2002b, 292: 256-262.
    
    Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell. Biol., 2004, 36(12):2503-2518.
    
    Thines E, Eilberta F, Sternerb O, and Anke H. Signal transduction leading to appressorium formation in germinating conidia of Magnaporthe grisea: effects of second messengers diacylglycerols, ceramides and sphingomyelin. FEMS Microbiology Letters, 1997, 156(1): 91-94.
    
    Thines E, Weber R W, and Talbot N J. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell, 2000, 12: 1703-1718.
    
    Tsukada M, and Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett., 1993, 333: 169-174.
    Tucker S L, and Talbot N J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu.Rev.Phytopathol., 2001, 39 :385-417.
    
    Tucker S L, Thornton C R, Tasker K, Jacob C, Giles G, Egan M, and Talbot N J. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell, 2004, 16: 1575-1588.
    
    Valent B. Rice blast as a model system for plant pathology. Phytopathology, 1990, 80: 33-36.
    
    Van den Steen P, Rudd P M, Dwek R A, et al. Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol., 1998, 33: 151-208.
    
    Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot N J. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Scinece, 2006, 312: 580-583.
    
    Viaud M C, Balhadere P V, andTalbot N J. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. The Plant Cell, 2002, 14: 917-930.
    
    Wang H, Bedford F K, Brandon N J, Moss S J, Olsen R W. GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature, 1999, 397: 69-72.
    
    Wang P, Cardenas M E, Cox G M, Perfect J R, and Heitman J. Two cyclophilin A homologs with shared and divergent functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep., 2001, 2: 511-518.
    
    Wang Z Y, Thornton C R, Kershaw M J, Li D, and Talbot N J. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol. Microbiol., 2003, 47: 1601-1612.
    
    Wawrzak Z, Sandalova T, Steffens J J, Basarab G S, Lundqvist T, Lindqvist Y, and Jordan D B. High-resolution structures of scytalone dehydratase-inhibitor complexes crystallized at physiological pH. Proteins, 1999, 35: 425-439.
    
    Weber R W, Wakley G E, Thines E, and Talbot N J. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma, 2001, 216: 101-112.
    
    Wessels J G. Hydrophobins: proteins that change the nature of the fungal surface. Adv. Micro. Physiol., 1997,38:1-45.
    
    Whittaker M M, Whittaker J M. Expression of recombinant galactose oxidase by Pichia pastoris. Protein Expression and Purification, 2000, 20:105-111.
    
    Wosten H A, Schuren F H, Wessels J G. Interfacial selfassembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J, 1994, 13:5848-5854.
    
    Xiao J Z, Ohshima A, Kamakura T, I shiyama T, and Yamaguchi I. Extracelluar glycoprotein (s) associated with celualr differentiation in Magnaporthe grisea. Mol. Plant. Microbe. Interact., 1994a, 7:639-644.
    
    Xiao J Z, Watanabe T, Kamakura T, Oshima A, Yamaguchi I. Studies on cellular differentiation of Magnaporthe grisea. Physiochemical aspects of substratum surfaces in relation to appressorium formation. Physiol. Mol. Plant. Pathol., 1994b, 44:227-236.
    
    Xie Z, Klionsky D J. Autophagosome formation: core machinery and adaptations. Nature cell biology, 2007, 9(10): 1102-1109.
    Xu J R,and Hamer J E.MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea.Genes Dev.,1996,10:2696-2706.
    Xu J R,Staiger C J,and Hamer J E.Inactivation of the mitogen-activated protein kinase Mpsl from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses.Proc.Natl.Acad.Sci.U S A,1998,95:12713-12718.
    Xu J R,Urban M,Sweigard J A,and Hamer J E.The CPKA gene of Magnaporthe grisea is essential for appressorial penetration.Mol.Plant-Microbe.Interact.,1997,10:187-194.
    Xu J R.MAP kinases in fungal pathogens.Fung.Genet.Biol.,2000,31:137-152.
    Xue C Y,Park G,Choi W,Zheng L,Dean R A,Xu J R.Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus.Plant Cell,2002,14:2107-2119.
    Yorimitsu T,and Klionsky D J.Autophagy:molecular machinery for self-eating.Cell Death Differ,2005,12:1542-1552.
    Yoshimori T.Autophagy:a regulated bulk degradation process inside cells.Biochem.Biophys.Res.Commun.,2004,313(2):453-458.
    Yue Z,Jin S,Yang C,Levine A J,Heintz N.Beclin 1,an autophagy gene essential for early embryonic development,is a haploinsufficient tumor suppressor.Proc.Natl.Acad.Sci.USA,2003,100(25):15077-15082.
    Zelter A,Bencina M,Bowman B J,Yarden O,and Read N D.A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa,Magnaporthe grisea,and Saccharomyces cerevisiae.Fungal.Genet.Biol.,2004,41:827-841.
    Zhu H,Whitehead D S,Lee Y H.Genetic analysis of developmental mutants and rapid chrosome mapping of APP1,a gene requried for appressorium formation in Magnaporthe grisea.Mol.Plant-Microbe.Interact.,1996,9:767-774.
    李铁,李佳慧,宁丽峰,等.PS1/GFP融合蛋白对PS1的亚细胞定位的初步研究.中国生物工程杂志,2006,26(6):17-22.
    林福呈,李德葆.植物病原真菌附着胞形成及其基因表达调节.植物病理学报1997,27(3):193-197.
    林福呈.稻瘟病菌附着胞形成机理研究.1999,浙江大学博士学位论文.
    王立安,王源超,李昌文,郑小波.Ca2+信号途径参与稻瘟病菌分生孢子萌发及附着胞形成的调控.菌物系统,2003,22(3):457-465.
    姚斌,张春义,王建华,等.高效表达具有生物活性的植酸酶的毕赤酵母.中国科学(C辑),1998,28(3):237-243.
    赵翔,霍克克,李育阳.毕赤酵母的密码子用法分子.生物工程学报,2000,16(3):308-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700